Entradas etiquetadas como ‘Marte y el enigma de la vida’

El origen del fervor por los marcianos: los canales de Marte

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Durante la primera mitad del siglo XX, el género de la ciencia ficción tuvo como principal fuente de inspiración la fiebre por los marcianos. Numerosas obras, como la archiconocida novela The War of the Worlds (La guerra de los mundos, 1898) de H. George Wells, contaban historias de invasiones extraterrestres, civilizaciones marcianas, viajes y colonizaciones espaciales… Incluso los relatos llegaron a traspasar la ficción y medios de comunicación publicaron noticias en las que se hablaba de la existencia de una civilización inteligente en el planeta vecino. Pero, ¿cómo se creó este imaginario colectivo?

Ilustraciones de Frank R. Paul y Henrique Alvin Corrêa.

Para conocer el origen, debemos remontarnos a la Roma de 1863, donde se produjo un descubrimiento que convirtió a Marte en el centro de atención del mundo científico y no tan científico. El precursor, sin pretenderlo, fue Prieto A. Secchi, que observó mucho mejor Marte que los astrónomos que le precedieron y distinguió por primera vez unas líneas oscuras que surcaban la superficie del planeta rojo. Él interpretó esas líneas como accidentes naturales del terreno y las denominó ‘canali’.

El también astrónomo italiano Giovanni V. Schiaparelli recogió el testigo de los ‘canali’ y tras sus observaciones entre 1877 y 1878, obtuvo los detalles más precisos de la superficie de Marte hasta esa fecha. Cuando habló por primera vez de esas estructuras no pensó que podrían ser obra de seres inteligentes y fue muy cauteloso al afirmar que seguramente se trataba de formaciones de origen natural. De hecho, la nomenclatura que utilizó para nombrarlas hacía referencia a ríos famosos, bíblicos (Gehon, Hiddekel y Phison, del Jardín del Edén), mitológicos (Styx, del reino de Hades) y reales (Ganges, Euphrates y Nilus).

Mapa de Marte realizado por Schiaparelli en 1888.

Sin embargo, el artículo científico en que publicó el descubrimiento, titulado Osservazioni astronomiche e fisiche sull’asse di rotazione e sulla topografía del pianeta Marte (Observaciones astronómicas y físicas sobre el eje de rotación y la topografía del planeta Marte), tuvo repercusión mundial, fuera incluso de los círculos científicos, y se podría decir que todo se le fue de las manos. Cuando el artículo fue publicado en inglés, el término italiano ‘canali’, en lugar de ser traducido por channels, palabra que se refiere a una estructura de origen natural, fue traducido por canals, que en inglés hace alusión a una estructura artificial construida por el ser humano. Los canales de Marte pronto se hicieron famosos y crearon una nueva visión de Marte que cambió para siempre la imagen del planeta rojo, originando una gran controversia acerca de la posibilidad de que pudiera albergar vida inteligente.

El más convencido y convincente de todos los defensores a ultranza de los canales fue el estadounidense Percival Lowell, que puede ser considerado el verdadero artífice de la fiebre marciana. Se dedicó en exclusiva a la observación de Marte, con el objetivo de demostrar que los canales de Schiaparelli eran realmente canales artificiales hechos por una civilización marciana. Tras sus observaciones de 1905, 1907 y 1909, Lowell publicó dos libros sobre sus teorías acerca de Marte que tuvieron un gran éxito editorial. En el primero de ellos, Mars and its Canals (Marte y sus canales), planteó la hipótesis de un planeta con vegetación en el que una civilización inteligente avanzada había construido una complejísima red de canales que permitía transportar agua desde los casquetes polares, cuando se fundían en verano, hacia las áridas tierras del ecuador. Y en esta misma línea publicó Mars As the Abode of Life (Marte como cuna de la vida).

La visión de Lowell de un planeta habitado fue muy discutida desde el principio por la comunidad científica, pero tuvo una enorme repercusión en la opinión pública, acaparando titulares impactantes e inundando los medios de comunicación con noticias sobre una avanzada civilización marciana. Lowell alimentó la idea de la existencia de seres extraterrestres y originó la fiebre por los marcianos que dio lugar a tantas obras de ciencia ficción.

Lowell en The New York Times Sunday Magazine del 27 de agosto de 1911.

El fin de la discusión sobre la existencia de vida extraterrestre evolucionada en Marte vino de la mano del astrónomo greco-francés Eugène Michel Antoniadi. En 1909, con un mayor telescopio, consiguió ver una imagen nítida de la superficie marciana, cubierta de detalles, pero no había canales a la vista. Realizó los mapas más detallados de Marte hasta entonces, que incluso se utilizaron como referencia para las misiones robóticas que, décadas después, fueron enviadas a Marte. La controversia sobre los canales fue cerrada “oficialmente” en 1965, cuando la sonda espacial robótica norteamericana Mainer 4 sobrevoló con éxito Marte y envió las primeras imágenes de la superficie del planeta. Y no, no había canales.

 

*Juan Ángel Vaquerizo es autor del libro Marte y el enigma de la vida (CSIC-Catarata) de la colección ¿Qué sabemos de? y colaborador del departamento de Astrofísica y Ciencias del Espacio ISDEFE en el Centro de Astrobiología (CSIC-INTA).

La dicotomía marciana. ¿Por qué Marte tiene dos hemisferios radicalmente distintos?

Por Juan Ángel Vaquerizo (CSIC-INTA)*

Marte tiene dos caras: el hemisferio norte está hundido, es una zona deprimida y muy lisa que presenta pocos impactos de meteoritos, mientras que el hemisferio sur está sobreelevado respecto al norte y está plagado de cráteres. Esta diferencia es lo que se conoce como dicotomía marciana. La disparidad entre hemisferios es una de las singularidades de nuestro vecino que ha despertado más curiosidad y, por ende, ha sido motivo de estudio desde su descubrimiento. Y aún sigue siéndolo, porque no existe consenso sobre el origen de esta característica fundamental del planeta, que refleja la historia geológica del mismo y también la posible presencia de agua en el pasado.

Mapa topográfico de Marte. / NASA/JPL

Mapa topográfico de Marte. / NASA/JPL

Desde los años sesenta del siglo XX, la exploración planetaria ha permitido aumentar el conocimiento sobre la geología y geografía marcianas –la geografía de Marte se conoce con el nombre de areografía, término proveniente de Ares (equivalente griego al dios romano Marte), y consiste en la caracterización y cartografiado de las regiones de Marte-. Gracias a las naves espaciales que han sobrevolado u orbitado el planeta, tenemos en la actualidad un gran conocimiento sobre sus accidentes geográficos y sus características superficiales: volcanes, cañones, antiguos lechos de río, canales de descarga y vastas regiones salpicadas de cráteres. Todos estos elementos permiten establecer los diferentes procesos geológicos que han tenido lugar a lo largo del tiempo, modelando el planeta rojo a escala global: vulcanismo, actividad tectónica, acción del agua líquida y del hielo y, claro está, impactos de meteoritos.

Para poder cartografiar la superficie de Marte, y en consecuencia las elevaciones del planeta, se definió un nivel de elevación cero o datum. Con el agua en mente, el datum marciano se define como la elevación en la que se alcanzan los valores de presión y temperatura del punto triple del agua, es decir, aquellos para los que el agua puede estar simultáneamente en los tres estados: sólido, líquido y gaseoso. Estos valores son una presión atmosférica de 610,5 Pa (6,1173 mb) y una temperatura de 273,16 K (0,01 oC). Para hacerse una idea, la cuenca más profunda de Marte y una de las mayores del Sistema Solar, Hellas Planitia, está muy por debajo del datum marciano y se encuentra a más de 7 kilómetros de profundidad.

Cráteres en Hellas Planitia. / ESA/DLR/FU Berlín

Cráteres en Hellas Planitia. / ESA/DLR/FU Berlín

Pero el descubrimiento de la dicotomía marciana llega con los primeros mapas completos del planeta. Entre 1998 y 1999 el instrumento Mars Orbiter Laser Altimeter (MOLA), un altímetro láser a bordo de la nave Mars Global Surveyor de la NASA, generó el mapa topográfico más preciso jamás realizado. MOLA recolectaba al día en torno a 900.000 medidas de elevación con una sensibilidad tan alta que el rango de error en elevación, de media, era de tan solo 13 metros. Con toda esta información -en total se utilizaron 27 millones de medidas de elevación recopiladas por el instrumento para conformar el mapa global-, se observó que la dicotomía de Marte tiene tres expresiones físicas globales:

Topografía de Marte

La parte norte del planeta es una inmensa depresión respecto a la parte sur. La dicotomía distingue entre las denominadas tierras altas (uplands) del sur y las tierras bajas (lowlands) del norte. Los datos altimétricos muestran que las tierras bajas son entre 3 y 6 km más bajas que las tierras altas del sur. Esta característica del relieve marciano recuerda la diferencia de elevación entre los continentes y los fondos oceánicos de la Tierra.

Densidad de cráteres de impacto

También existe una acusada diferencia en la densidad de cráteres de impacto, mucho menos numerosos en las tierras bajas del norte. En el hemisferio sur aparecen regiones plagadas de grandes cráteres y caracterizadas por superficies abruptas. En contraste, las lowlands situadas al norte presentan pocos cráteres grandes, su suelo es muy llano y muestran otros tipos de elementos que indican que han ocurrido extensos procesos de renovación de su superficie, como coladas de lava y grandes inundaciones.

Grosor de la corteza

Existe además una gran diferencia en el grosor de la corteza entre los dos hemisferios, mayor en las tierras altas del sur que en las tierras bajas del norte. Las uplands del sur tienen un grosor máximo aproximado de 58 km, mientras que las lowlands del norte apenas alcanzan los 32 km de grosor.

Estas tres manifestaciones físicas de la dicotomía no coinciden exactamente, de modo que no es posible trazar una frontera exacta de separación ni asegurar que todas ellas se deban a una misma causa. No obstante, se considera que el origen de la dicotomía es único y que produjo como resultado los tres aspectos observados. Asimismo, hay bastante acuerdo en que la dicotomía de Marte parece ser extremadamente antigua, que se originó en una etapa muy temprana del planeta, al comienzo de la evolución geológica de Marte, cuando la corteza estaba recién formada o terminando de formarse.

Mapas topográficos de relieve sombreado de muy alta resolución producidos por el equipo científico de MOLA. / NASA/MOLA

Mapas topográficos de relieve sombreado de muy alta resolución producidos por el equipo científico de MOLA. / NASA/MOLA

En la actualidad hay dos posibles hipótesis sobre el origen de la dicotomía: una endógena y otra exógena. La endógena establece que la dicotomía es el resultado de procesos convectivos asimétricos en el manto de Marte que produjeron el adelgazamiento de la corteza en la parte norte del planeta y un engrosamiento en el sur. La otra explicación, la exógena, parece contar con un mayor consenso y establece que la dicotomía es el resultado de un impacto gigantesco. Un impacto en Marte de un objeto de entre 1.600 y 2.700 km de tamaño -como los que existían en el Sistema Solar en la época estimada- habría sido capaz de crear una cuenca de impacto tan grande como Vastitas Borealis, nombre con el que se conoce a la inmensa llanura del hemisferio norte. El tamaño de esta zona, de 10.600 km de longitud y 8.500 km de anchura (Asia, Europa y Australia juntas), y su forma elíptica hacen plausible que sea el resultado de un gran impacto. Pero, por ahora, ese gran impacto es solo una hipótesis.

 

 

* Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA) y autor del libro Marte y el enigma de la vida (CSIC-Catarata) de la colección ¿Qué sabemos de?