Entradas etiquetadas como ‘CSIC Divulga’

Tú también puedes enviar globos sonda a la estratosfera y hacer ciencia ciudadana con Servet V

Por Mar Gulis (CSIC)

Lanzamiento en 3, 2, 1… ¡Deja de soñar con que formas parte de una misión espacial! Ahora puedes hacerlo realidad con la quinta edición de la iniciativa de ciencia ciudadana Servet. Si te gusta la astronáutica, la navegación espacial y todo aquello que se mueva a más de 12.000 metros sobre el nivel del mar, Servet V te está esperando, independientemente de la formación y los conocimientos que tengas. Este proyecto científico abierto a la ciudadanía busca democratizar el acceso al espacio e invita al público a proponer, diseñar y ejecutar sus propias misiones subespaciales. Pero lo primero que debes hacer es rellenar, antes del domingo 29 de agosto de 2021, el formulario de participación.

Proyecto Servet IV. / Germán Martín

Proyecto Servet IV. / Germán Martín

Servet V lanzará tres globos sonda (Hwoyee HY-1600, con capacidad para portar varias cápsulas de hasta 400 gramos cada una), que pondrán rumbo a la estratosfera y volverán a la Tierra tras haber recogido multitud de datos científicos en su viaje hasta los 36.000 metros de altura. Se medirán, entre otros parámetros, la radiación y la temperatura, se harán pruebas de transmisiones mediante LoRaWAN y de vídeo a larga distancia, etc. Entonces, ¿quieres formar parte de Servet V? Consulta las bases, existen dos modalidades de participación:

  • CÁPSULA DE HASTA 400 g. Tú pones la cápsula y el proyecto toda la infraestructura -globos, helio, seguros, organización del lanzamiento, etc.-. Aunque se intentará recuperar la carga, esto no está garantizado. Se seleccionarán nueve cápsulas de hasta 400 gramos.
  • CÁPSULA 0 g. Si lo que deseas es participar en el evento, ayudar en la logística, aprender y echar una mano en la organización, no lo dudes, esta es tu modalidad.

Una vez finalizado el plazo de recepción de solicitudes, que concluye el próximo 29 de agosto, el 6 de septiembre se dará a conocer la selección de participantes. El lanzamiento de Servet V está previsto para el sábado 30 de octubre de 2021 en una localidad zaragozana aún por definir. El día previo se realizarán los preparativos y el domingo 31 se presentarán los resultados al público general. Los datos obtenidos en las distintas ediciones de Servet se irán publicando de forma libre y gratuita en la web del proyecto para que cualquier persona los pueda consultar y analizar.

Proyecto Servet II

Proyecto Servet II

Esta iniciativa ciudadana arrancó en junio de 2017 con el lanzamiento del primer globo sonda, Servet I, y desde entonces, el proyecto ha seguido reuniendo a público experto y aficionado de la navegación espacial, makers, desarrolladores/as, radioaficionados/as, etc. Además, otro de los objetivos del proyecto es acercar la ciencia al entorno rural, por eso, las zonas de lanzamiento elegidas en años previos han sido pequeños municipios de la provincia de Zaragoza, como Alpartir o Alfamén. En este último se realizó, en 2019, el lanzamiento de los globos sonda equipados con las misiones aeronáuticas del proyecto Servet IV.

Récord mundial de distancia de transmisión a través de LoRaWAN

Uno de los globos de Servet IV, “tras mandar sus últimas señales el día del lanzamiento por la noche mientras cruzaba Soria, revivió inesperadamente. Tres ‘latidos’ fueron detectados dos días después en su paso por las Azores”, relataba Francisco Sanz, director ejecutivo de la Fundación Ibercivis. Con este globo se batió el récord mundial de distancia alcanzada por una comunicación transmitida a través del protocolo de red LoRaWAN. Con una potencia de 0,025 vatios, su señal se recibió a una distancia de 766 kilómetros.

LoRaWAN es una tecnología de red de área amplia y baja potencia (LPWAN: Low Power Wide Area Network), diseñada para que dispositivos de baja potencia se comuniquen con aplicaciones conectadas a Internet a través de conexiones inalámbricas de largo alcance utilizando las bandas de radio ISM -reservadas internacionalmente para el uso de energía de radiofrecuencia para fines industriales, científicos y médicos distintos de las telecomunicaciones-.

Récord de distancia de transmisión de 766 kilómetros, conseguido por uno de los globos sonda lanzados con Servet IV. / The Things Network

Récord de distancia de transmisión de 766 kilómetros, conseguido por uno de los globos sonda lanzados con Servet IV. / The Things Network

Con otro globo también se consiguió transmitir a 744 km mediante TTN (The Things Network), a través de LoRaWAN. Además, se midió radiación, se transmitió en APRS (Automatic Packet Reporting System, un sistema de radioaficionado para comunicaciones digitales en tiempo real), se envió vídeo en tiempo real, etc. Estas cápsulas lograron recuperarse en Buñuel, Navarra, pero las que viajaban en otros globos no corrieron la misma suerte.

Proyecto Servet II

Proyecto Servet II

Servet cuenta con el apoyo de la Fundación Ibercivis -de la que forma parte el Consejo Superior de Investigaciones Científicas-, Etopia Centro de Arte y Tecnología, los Laboratorios CESAR en Etopia, la Universidad de Zaragoza, la Unión de Radioaficionados Españoles y la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia e Innovación. Si tienes alguna duda puedes contactar con info@ibercivis.es

Siete libros de ciencia para tu maleta veraniega

Por Mar Gulis (CSIC)

Las deseadas y merecidas vacaciones están cerca, por eso nos gustaría proponerte unas lecturas de divulgación con las que disfrutar del verano. Las colecciones ¿Qué sabemos de? y Divulgación (CSIC-Catarata) cuentan con más de 150 títulos de libros fáciles de llevar y leer. Aquí te presentamos algunos de los números más recientes.

¿Existe una filosofía en español?

Decía Heidegger que pensar, lo que se dice pensar, solo es posible en griego y en alemán. Entonces, ¿no es factible la existencia de un pensamiento filosófico en nuestro idioma? El investigador del CSIC Reyes Mate aborda esta cuestión el libro Pensar en español, el primer volumen de estas colecciones dedicado a la filosofía. En un mundo dominado por el inglés, el autor trata de “crear un marco de referencia que nos sitúe frente a otros pensares en otras lenguas y, también, establezca vínculos entre nuestros propios intentos de pensamiento, en el primer caso para diferenciarnos, y en el segundo caso para unirnos”.

Para los que gusten de la reflexión en nuestra lengua, este texto es más que recomendable. Además, viene con contenido extra: un vídeo resumen de un minuto y una entrevista al autor en el nuevo pódcast del CSIC ‘Ciencia para leer’.

La enfermedad de las mil caras

La esclerosis múltiple es una enfermedad crónica, inflamatoria y neurodegenerativa del sistema nervioso central. Tiene un marcado componente autoinmune, y aparece generalmente en personas de entre 20 y 40 años, lo que supone un enorme impacto en su calidad de vida, importantes repercusiones sociales, y un elevado coste sanitario. Esta patología afecta a 2,5 millones de pacientes en el mundo y, a pesar de la investigación desarrollada desde su descubrimiento en el siglo XIX, aún presenta muchos interrogantes.

La esclerosis múltiple afecta a 700.000 personas en Europa. En España, la incidencia es de 100 casos por 100.000 habitantes, en su mayoría mujeres. / CSIC-Catarata

Las científicas Leyre Mestre y Carmen Guaza del Instituto Cajal del CSIC se adentran en su evolución, sintomatología, tratamientos y líneas futuras de estudio en La esclerosis múltiple, un libro que da a conocer una enfermedad muy heterogénea y difícil de tratar.

Los entresijos de la ciencia

Desde que alguien formula una hipótesis en un despacho o laboratorio de cualquier parte del planeta hasta que esa idea aparece publicada en una revista científica en forma de nueva teoría, tecnología o producto existe un largo y complicado proceso poco conocido más allá de los campus universitarios y los centros de investigación. Por qué y cómo se hace la ciencia está escrito “desde dentro” por Pere Puigdomènech, un profesional que ha dedicado su vida a esta labor. “Condensar en un libro de bolsillo un texto sobre la ciencia en sí misma no era tarea fácil, pero esta actividad tiene tal impacto tanto por los millones de personas que se dedican a ella como por su influencia en cómo vivimos y en las decisiones que toman los gobiernos, que merecía la pena intentarlo”, comenta el autor.

Con este libro, el investigador del Centro de Investigación en Agrigenómica adscrito al CSIC pretende describir la evolución histórica de la actividad investigadora, qué papel cumple en nuestra sociedad y cuál es su funcionamiento interno. Sus páginas, idóneas para curiosos y curiosas de los vericuetos científicos, responden a preguntas como quién investiga, dónde lo hace, qué método y reglas sigue o con qué financiación cuenta.

Nanotecnología y desarrollo sostenible

Desde 2010 se han publicado más de un millón de artículos científicos sobre descubrimientos o desarrollos relacionados con la nanotecnología y se han concedido cinco premios Nobel de Física o Química a personas que han realizado aportaciones significativas en este ámbito. Estos dos datos son solo una muestra de la relevancia que ha adquirido la llamada ‘ciencia de lo pequeño’ en los últimos años. Objetos o partículas que miden la milmillonésima parte de un metro (10-9) se perfilan como una de las soluciones para lograr la supervivencia de la especie humana en imprescindible equilibrio con el planeta que habita.

Por su carácter transversal, la nanotecnología impacta en la mayoría de los objetivos de la Agenda 2030. 

El investigador del CSIC en el Instituto de Ciencia de Materiales de Madrid Pedro Serena firma Nanotecnología para el desarrollo sostenible, un libro que explica cómo el conocimiento acumulado sobre el nanomundo puede ayudar a mejorar nuestra calidad de vida sin comprometer el futuro de nuestros descendientes. El autor introduce los aspectos fundamentales de la nanotecnología y su salto de los laboratorios al mercado, para luego conectar las aplicaciones existentes y las futuras con los Objetivos de Desarrollo Sostenible (ODS) establecidos por la ONU en su Agenda 2030.

¿Qué tienen en común la niebla y la cerveza?

Rodrigo Moreno, investigador del CSIC en el Instituto de Cerámica y Vidrio es autor de Los coloides, el libro que responde a esta pregunta. El arcoíris, un flan, la ropa deportiva impermeable que transpira y no pesa, la espuma con la que rizamos nuestro pelo o el famoso gel hidroalcohólico que nos aplicamos continuamente. Los coloides están presentes en muchos procesos y productos cotidianos, aunque la mayoría no hayamos oído hablar nunca de ellos. Son mezclas no homogéneas de dos o más fases (gas, líquido o sólido) en las que una de ellas tiene un tamaño menor a un micrómetro (0,001 milímetros) y que hacen posible la existencia de muchos materiales que usamos a diario. También se encuentran detrás de complejas tecnologías que en el futuro podrían permitir reutilizar materias primas o eliminar microplásticos de ríos y océanos. Este texto describe las características, técnicas de preparación y algunas de las numerosas aplicaciones de los sistemas coloidales.

La espuma de la cerveza es un coloide en el que partículas de gas, las burbujas, se encuentran dispersas en un medio líquido. 

La sorprendente vegetación de Atacama

Entre el océano Pacífico y la cordillera de los Andes se extiende un territorio de unos 178.000 kilómetros cuadrados donde predominan los tonos rojizos y, a simple vista, no se percibe rastro alguno de vegetación. Atacama, ubicado en el norte de Chile, es el desierto cálido más árido del mundo. Allí hay lugares donde no llueve en años, incluso en décadas, y otros en los que la media anual de precipitaciones no llega a los 5 milímetros de agua. Las temperaturas oscilan unos 30 grados entre el día y la noche, y la radiación solar es implacable. A pesar de las condiciones climáticas tan extremas, en este desierto se han descrito miles de especies de plantas que el investigador del Centro Nacional de Biotecnología del CSIC Carlos Pedrós-Alió nos invita a descubrir.

El ‘desierto florido’ es uno de los fenómenos más llamativos que suceden en Atacama. Solo algunos años, y en zonas diferentes, la superficie se transforma en un campo de flores de distintas especies que dura varios meses. / Gerhard Hüdepohl

“Después de veinte años visitando este territorio para estudiar microorganismos, vi que en algunos sitios había plantas. Quise saber de qué especies se trataba, cómo se las arreglan para vivir en este entorno, qué adaptaciones tienen a la aridez, de dónde sacan el agua, cómo se distribuyen y cuánto tiempo hace que aparecieron en la evolución”, cuenta el científico. El resultado de esta investigación es el libro Las plantas de Atacama. El desierto cálido más árido del mundo, un recorrido por una de las zonas naturales más espectaculares del planeta.

La expedición Magallanes-Elcano

El 10 de agosto de 1519 partían desde Sevilla cinco naves con unos 250 tripulantes a bordo. Era el comienzo de la famosa expedición capitaneada por Fernando de Magallanes y finalizada gracias a Juan Sebastián Elcano. Financiada por la Corona de Castilla, su objetivo principal era llegar por occidente a un lugar llamado La Especiería – en el archipiélago de Las Molucas, ubicado en Indonesia– y crear así una ruta marítima alternativa a la establecida por Portugal para controlar el comercio de especias como el clavo de olor, la canela, la nuez moscada y la pimienta negra.

Terra Brasilis y el Atlántico Sur (Atlas Miller, 1519). Imagen del mapa que forma parte de la portada del libro. / CSIC

Más de tres años después, el 6 de septiembre de 1522, 18 europeos y 3 orientales enfermos y agotados arribaron a Sanlúcar de Barrameda. Después de recorrer 14.460 leguas, habían conseguido culminar la primera vuelta al mundo. En la conmemoración de su quinto centenario, Las plantas de la expedición Magallanes-Elcano (1519-1522)  rinde tributo a esta hazaña promovida por la búsqueda de nuevas plantas y nos propone viajar a través de unas páginas impregnadas de olores y sabores exóticos. El libro de la colección Divulgación está coordinado por el investigador del CSIC en el Real Jardín Botánico Pablo Vargas y escrito por una veintena de investigadores e investigadoras procedentes de aquellos países por los que transcurrió esta azarosa singladura.

Ácido hialurónico: mucho más que un tratamiento estético

Por Daniel Fernández-Villa (CSIC)*

El tiempo pasa para todos. Donde ayer había un pelo oscuro y fuerte, hoy asoma ya una cana, y donde hoy hay una piel tersa y suave, mañana habrá una arruga. Es así, es ley de vida. Sin embargo, a muchos nos cuesta afrontar esta realidad. Se podría aventurar que esto es debido a la visión que se nos ha inculcado viviendo en sociedad mientras crecíamos, pero lo que es seguro es que hoy en día disponemos de muchos recursos para disimular el paso del tiempo a unos precios bastante accesibles para la mayoría.

¿Quién no ha escuchado alguna vez hablar de todas las maravillas que puede ofrecernos el ácido hialurónico? Es el remedio número uno para combatir el paso del tiempo en nuestra piel. Cada día podemos verlo anunciado en forma de cremas, acondicionadores o inyecciones reafirmantes. Pero, ¿qué otros usos podemos darle? ¿Podría mitigar el paso del tiempo, no solo en el exterior? Por supuesto que sí. De hecho, podría ser un tratamiento eficaz para enfermedades que afectan a millones de personas en todo el mundo.

Osteopenia: una condición, diferentes enfermedades

Nuestra piel no es la única que envejece con el paso del tiempo: la sociedad también lo hace. Debido al aumento de la esperanza de vida en las últimas décadas, las sociedades desarrolladas tienen poblaciones cada vez más envejecidas, y eso ha traído consigo el incremento de la prevalencia de algunas enfermedades crónicas. Las que nos ocupan en esta ocasión son las relacionadas con el esqueleto.

 

 

Seguro que, por desgracia, tienes algún familiar o conoces a alguna persona con osteoporosis, una enfermedad que se caracteriza principalmente porque disminuye la densidad ósea, rasgo conocido como osteopenia. Pero esta no es la única causa por la que aparece dicha condición. Por ejemplo, tras tratamientos prolongados con determinados fármacos antiinflamatorios puede desarrollarse osteopenia, o bien puede ser consecuencia de una mala formación de hueso, como ocurre en los casos de osteogénesis imperfecta. En todas estas circunstancias, aunque por diferentes causas primarias, los huesos son menos densos y, por tanto, tienen una mayor tendencia a la rotura.

La guerra civil ósea: osteoblastos vs. osteoclastos

Cabría preguntarse qué tienen en común todos los procesos que derivan de la osteopenia. En este sentido, podríamos comparar nuestros huesos con la Sagrada Familia de Barcelona, ya que se encuentran en remodelado constante desde que nacemos hasta que morimos. De hecho, se calcula que tardamos unos diez años en renovarlos por completo.

Esto se debe principalmente a la acción de dos tipos celulares residentes en estas zonas que se encuentran en constante disputa. Por un lado, están las células encargadas de formar el hueso, los osteoblastos y, por el otro, las células encargadas de degradarlo, los osteoclastos. Ambos son necesarios para el correcto mantenimiento de nuestros huesos y, en condiciones normales, el balance neto entre formación y destrucción es cero. Sin embargo, cuando alguno de estos actores se desregula empiezan los problemas. Por ejemplo, en muchos casos de osteopenia, lo que se ha comprobado es que los encargados de formar el hueso están más “cansados” que los que lo destruyen, o bien que estos últimos están hiperactivos, lo que en ambos casos produce un desequilibrio hacia la destrucción de hueso.

Teniendo esto en cuenta, actualmente disponemos de tratamientos que pueden estimular a las células formadoras de hueso y otros que inhiben la acción de los osteoclastos. No obstante, dichos tratamientos se toman por vía oral y hay que administrar dosis altas para que después de distribuirse por todo el organismo lleguen a una concentración suficiente a las zonas de interés, lo que causa efectos adversos indeseados.

Formulaciones inyectables: ácido hialurónico y compañía

¿Y qué pinta el ácido hialurónico en todo esto? ¿Cómo podemos usarlo para conseguir regenerar nuestros huesos? El ácido hialurónico no solo se usa con fines estéticos. Actualmente ya hay disponibles muchos tratamientos basados en él. Por ejemplo, desde hace décadas se inyecta en articulaciones de pacientes con artritis para aliviar los dolores del roce entre huesos debido a la inflamación existente, o también se usa como recubrimiento de diferentes dispositivos biomédicos para evitar una posible reacción contra ellos al ser implantados en nuestro cuerpo.

En el caso de las enfermedades osteopénicas, el objetivo es aprovechar la estructura de este compuesto al máximo. Desde el punto de vista funcional, en nuestro laboratorio del CSIC sometemos al ácido hialurónico a un tratamiento químico para que, al ponerlo en contacto con otro compuesto similar (otro polímero) como el quitosano, se produzca una gelificación en apenas unos minutos. De esta forma tendríamos dos soluciones líquidas al principio –el ácido hialurónico y el quitosano-, fáciles de inyectar dentro del hueso a través de técnicas mínimamente invasivas. Una vez dentro, entrarían en contacto y se produciría la gelificación, de manera que el gel quedaría embebido en la estructura ósea.

Este tratamiento regenera los huesos, pero solo en parte. Lo que conseguimos es tener una formulación segura y natural, que puede ser inyectada fácilmente y que se mantiene dentro del hueso durante un periodo de tiempo más o menos largo. De esta manera se podrían aplicar los mismos fármacos que ya estamos usando en clínica, pero con dosis mucho más bajas, porque se administran de forma local, y de un modo mantenido y controlado en el tiempo, lo que reduce al mínimo los efectos secundarios.

En cualquier caso, se puede llegar más lejos con el ácido hialurónico. Estamos explorando una vía que consiste en encapsular células madre dentro de este sistema doble. El campo de las células madre ha supuesto una revolución en los últimos tiempos por los buenos resultados que están mostrando en etapas preclínicas, ya que se ha visto que son capaces de liberar toda una serie de moléculas que promueven la regeneración de los tejidos. Sin embargo, en la mayoría de los ensayos clínicos realizados en humanos se ha comprobado que estos efectos desaparecen enseguida porque nuestro cuerpo elimina rápidamente las células madre que introducimos sin protección. Con nuestro procedimiento, las células no solo quedarían atrapadas dentro del gel y del hueso, liberando todos esos compuestos regenerativos durante mucho más tiempo que si se aplicasen «desnudas”, sino que además podrían acabar transformándose en osteoblastos. Con pequeñas modificaciones podríamos adaptar fácilmente la terapia a cada enfermedad e, incluso, ajustarla atendiendo a la severidad de cada paciente.

Daniel Fernández-Villa (@DanielFdezVilla) es investigador predoctoral en el grupo de Biomateriales del Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC). Si quieres conocer más acerca de esta terapia, puedes ver el este vídeo que presentó a la segunda edición del concurso “Yo investigo. Yo soy CSIC” y que fue premiado con la tercera posición.

Azúcar, miel, edulcorantes… ¿existe una forma sana de endulzar?

Por Jara Pérez Jiménez (CSIC)*

Cada vez más gente reduce su consumo de azúcares porque ha escuchado que estos componentes tienen múltiples efectos negativos en la salud. Al mismo tiempo, aparecen otros edulcorantes que son promocionados como saludables: la panela, la miel, el azúcar de coco, la estevia… ¿Cuál de todos ellos elegir? ¿Qué edulcorante es más saludable? Vamos a verlo en detalle.

En primer lugar, hay que señalar que no todos los azúcares de los alimentos son iguales. Por un lado, existen los denominados azúcares intrínsecos: son azúcares que, como en el caso de la fruta o la leche, están incluidos dentro del alimento. Esto hace que el cuerpo necesite realizar múltiples reacciones químicas para poder liberarlos y que pasen a la sangre, lo que hacen lentamente junto con los otros nutrientes y compuestos beneficiosos que están en estos alimentos. Por el contrario, en el caso de los azúcares libres la estructura original del alimento se rompe y el compuesto pasa rápidamente a la sangre, sin ser acompañado de otros componentes beneficiosos. Los azúcares libres son los que se añaden al alimento, ya sea por el consumidor en casa o por la industria alimentaria, y también los que se encuentran en mieles, siropes y zumos. Sí, por muy natural y casero que sea un zumo, en él  se ha roto la estructura del alimento y por tanto ya no tenemos azúcares intrínsecos, sino azúcares libres.

La Organización Mundial de la Salud (OMS) ha establecido un consumo diario responsable de azúcares libres en torno al 5% de las calorías consumidas en un día  (ojo, que este valor podría ser del 0% si consumimos fuentes de carbohidratos complejos) y de un máximo, en cualquier caso, del 10%. Esto se traslada, para un adulto, a un valor de 25 a 50 gramos de azúcares libres al día, cantidad que superan muchas personas en España. Además, la evidencia científica ha demostrado que la ingesta excesiva de azúcares libres está asociada no solo con aquellas enfermedades con las que la relacionamos más inmediatamente, como la diabetes tipo 2, sino también con enfermedades cardiovasculares , el hígado graso no alcóholico  (una situación en la que el hígado aparece tan dañado como en el alcoholismo pero por causa del consumo excesivo de ciertos azúcares libres) o algunos tipos de cáncer.

Por tanto, debemos reducir el consumo de azúcares libres en nuestra alimentación. Pero, ¿qué ocurre con productos como el azúcar moreno o la panela? Pues que, frente al 100% de azúcar contenido en el azúcar blanco, tienen un 95-98%, lo cual no implica diferencias nutricionales en la práctica. Sí, aunque hayas escuchado que tienen más vitaminas o minerales que el azúcar blanco, lo cual es cierto, debemos tener en cuenta que, por ejemplo, para consumir el mismo magnesio que está contenido en 30 gramos de almendras tendríamos que tomar 100 gramos de panela, lo que son 95 gramos de azúcares libres. De manera que los efectos perjudiciales superarían ampliamente a los beneficios que pudiéramos obtener. Lo mismo ocurre con la miel: a pesar de las múltiples propiedades que se le han atribuido, contiene un 70-80% de azúcares libres.

¿Son los edulcorantes artificiales una alternativa?

Últimamente se está promocionando mucho la estevia como un edulcorante natural. Debemos aclarar que, al comprar un producto que se anuncia como endulzado con estevia, en realidad lo que lleva es el E-960: un conjunto de compuestos con poder edulcorante llamados glucósidos de esteviol que son extraídos a partir de la planta de estevia mediante un proceso similar al utilizado para extraer el azúcar de la remolacha o la caña azucarera. En este caso, efectivamente, estos compuestos dan sabor dulce sin tener calorías, lo que ocurre también con edulcorantes artificiales como el aspartamo o el ciclamato.

Sin embargo, el consumo frecuente de estos edulcorantes también presenta problemas, que no tienen nada que ver con riesgos de toxicidad o con que sean cancerígenos, como se suele pensar. Lo que ocurre es que, con estos edulcorantes, por un lado, se produce el denominado ‘efecto halo’: como pensamos que estamos tomando algo saludable, acabamos añadiendo más de lo que tomaríamos de un producto que percibimos como insano, como el azúcar blanco. Por ejemplo, en un estudio se vio que las personas que usaban mermelada para endulzar el yogur acababan añadiendo más azúcar que el que llevaba un yogur azucarado. Por otro lado, estos compuestos tienden a alterar nuestro umbral del dulce: es decir, los receptores que tenemos para detectar el sabor dulce se están saturando y necesitamos cada vez más dulce para identificarlo. Por ejemplo, si acompañamos la comida con un refresco edulcorado, aunque sea sin calorías, estamos recibiendo constantemente ese sabor dulce y en el postre necesitaremos un producto con grandes cantidades de azúcar para reconocerlo como dulce.

Por tanto, la mala noticia es que no existe realmente un edulcorante saludable, sino que deberíamos limitar el consumo de estos productos a algo esporádico. Y cuando, puntualmente (lo que no significa varias veces por semana), vayamos a consumir un producto de repostería, sea industrial o casera, podemos escoger simplemente el que prefiramos por sus características sensoriales, pero sin pensar que nutricionalmente está aportando algo diferente. La buena noticia, por el contrario, es que podemos consumir piezas de frutas (sin procesar) sin preocuparnos, ya que la OMS no ha establecido ninguna recomendación para reducir su consumo porque contienen azúcares intrínsecos y no libres. De hecho, se ha asociado claramente un consumo escaso de frutas con múltiples efectos adversos para la salud, incluido un aumento en el riesgo global de mortalidad. Y esto incluye todas esas frutas que siguen “malditas” en muchas listas, como el higo, el plátano o la uva. La otra buena noticia es que, si vamos reduciendo la cantidad de azúcares libres en nuestra dieta, poco a poco nuestro umbral del dulce se irá rebajando, y aprenderemos a disfrutar cada vez más de los sabores originales de los alimentos.

* Jara Pérez Jiménez es investigadora del Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN) del CSIC.

Esclerosis múltiple: la enfermedad de las mil caras

Por Mar Gulis (CSIC)

La esclerosis múltiple (EM) es una patología crónica e inflamatoria, con un componente autoinmune, que afecta a 2,5 millones de personas en el mundo y a 700.000 personas en Europa. En España, la incidencia es de 100 casos por 100.000 habitantes, en su mayoría mujeres (3 de cada 4 pacientes). Afecta al sistema nervioso central y aparece generalmente en personas de entre 20 y 40 años, por lo que es la mayor causa de discapacidad no traumática en adultos jóvenes. Entre los múltiples y variados síntomas que provoca se encuentran la pérdida de visión, ciertos problemas en el habla, alteraciones motoras, falta de coordinación muscular, sensación de hormigueo, alteraciones gastrointestinales o disfunción urinaria y/o sexual. Esto supone un enorme impacto en la calidad de vida de los pacientes, importantes repercusiones sociales y un elevado coste sanitario.

Si quieres saber más sobre esta enfermedad, respondemos a algunas preguntas con el libro La esclerosis múltiple (CSIC-Catarata), firmado por las investigadoras Leyre Mestre y Carmen Guaza, del Instituto Cajal del CSIC.

¿Cuál es la causa de la esclerosis múltiple?

Para comprender la EM, hay que tener en cuenta la variedad de estímulos que llegan y activan las neuronas del cerebro y la médula espinal, y que actúan como control a todas nuestras actividades. En la EM se produce la desmielinización o la pérdida de la mielina de los axones, un proceso que te contamos a continuación.

“En algún momento todos hemos tenido un cable entre las manos y hemos comprobado que está compuesto por un material conductor recubierto de un material aislante. Algo parecido encontramos en el sistema nervioso central”, explican las investigadoras. Las neuronas tienen su axón, una prolongación que conduce el impulso nervioso de una célula a otra, rodeado por la mielina. Esta substancia protege las fibras nerviosas y contribuye a que los mensajes viajen de manera más rápida y fluida. En la EM, “la destrucción de la mielina convierte a los axones en una especie de ‘cables pelados’ que van a transmitir peor la información, o incluso dejarán de transferirla. Dependiendo de dónde se haya producido la desmielinización y su grado, las consecuencias para el sistema nervioso central del paciente serán distintas”, apuntan las científicas. En este sentido, “la diversidad en el grado y en la localización donde se produce la falta de mielina es lo que genera los distintos síntomas. Son dos de las características básicas de la esclerosis múltiple, por eso se denomina la enfermedad de las mil caras”, afirman Mestre y Guaza. Además, en fases iniciales, la percepción de los síntomas puede ser muy leve y suelen pasar desapercibidos, lo que dificulta su diagnóstico. Por tanto, la mielina o, mejor dicho, la desaparición de la misma, es una de las claves de esta patología; aunque a día de hoy aún se desconoce la causa de la pérdida de esta substancia.

¿Cómo evoluciona la enfermedad?

La heterogeneidad que caracteriza a la EM también puede verse en que presenta hasta tres fases diferentes. La primera y más frecuente es la denominada remitente recurrente. Supone un 85-90% de los casos y se manifiesta en brotes temporales de deficiencias neurológicas, que remiten al poco tiempo totalmente, aunque a veces dejan secuelas de discapacidad en los pacientes.

La siguiente forma (remitente progresiva) puede aparecer entre 8 y 20 años después de la manifestación del primer brote, y puede desencadenarse tras un brote temporal. En esta fase, explican las investigadoras, “se produce una acumulación de discapacidad neurológica progresiva, sin que haya brotes”. Por último, hay otra variedad clínica, la primaria progresiva, que afecta a un 10-15% de los pacientes. En este caso, desde el principio de la enfermedad aparece discapacidad neurológica y se produce un empeoramiento gradual desde los primeros síntomas.

¿Cómo puede diagnosticarse la enfermedad?

Mestre y Guaza explican que los avances tecnológicos y metodológicos han ayudado mucho al diagnóstico. Un ejemplo es el desarrollo de la resonancia magnética, que ha facilitado la detección de lesiones desmielinizantes. Además, se han incluido en los criterios diagnósticos elementos radiológicos y de análisis de líquido cefalorraquídeo, que protege la parte interna del cerebro. De esta forma, se consigue una mayor especificidad y un diagnóstico y tratamiento más temprano. Sin embargo, las investigadoras inciden en la necesidad de evaluar la actividad y la progresión de la enfermedad. La progresión de la EM se define “como el empeoramiento de más de un punto en la escala de discapacidad neurológica de Kurtzke que se mantiene durante al menos seis meses”, apuntan.

En la EM se produce la pérdida de la mielina de los axones / Freepik

¿Su origen es genético o ambiental?

Un posible origen de la enfermedad podría estar en el resultado de mutaciones genéticas en la población escandinava durante el primer milenio que, posteriormente, se expandieron por las migraciones de la descendencia y las invasiones vikingas. Esta teoría, no demostrada de forma concluyente, explicaría la mayor prevalencia de la EM en países poblados por descendientes escandinavos (Islandia, Reino Unido, Canadá, Australia y Nueva Zelanda).

Al margen de esta hipótesis, sí es posible afirmar que la EM no es una enfermedad hereditaria, aunque existe evidencia científica de que, al comparar a los pacientes con personas sanas, presentan diferencias en genes relacionados con los mecanismos reguladores de la respuesta inmune, entre otros. La genética es por tanto un factor relevante pero no suficiente para explicar la causa de la enfermedad, ya que también entran en juego factores ambientales.

Las investigadoras señalan algunos de estos factores, como el déficit de vitamina D. Diferentes estudios han demostrado que individuos con niveles altos de esta vitamina disminuían el riesgo de desarrollar EM. La obtención de vitamina D está relacionada con la exposición a la luz solar, por lo que esta circunstancia podría determinar la distribución irregular de la enfermedad según la zona geográfica, ya que es más común en latitudes altas y muy escasa en regiones cercanas al trópico.

Otros factores de riesgo, como el consumo de tabaco o los procesos infecciosos, pueden afectar al desarrollo y evolución de la patología, así como la obesidad en edades tempranas y la ingesta de sal. También la microbiota intestinal ha cobrado protagonismo en los últimos años en este sentido: al ser clave en el entrenamiento del sistema inmunitario para discriminar lo propio de lo extraño, puede influir en el desarrollo de una patología autoinmune como esta.

¿Se puede curar?

Las autoras señalan que, por el momento, no existe una cura definitiva, aunque son optimistas, ya que en los últimos años han surgido “nuevos tratamientos farmacológicos modificadores de la enfermedad que han logrado reducir la frecuencia e intensidad de los brotes, prevenir la aparición de nuevas lesiones o retrasar y disminuir la discapacidad contraída”.

Un total de 15 compuestos, aprobados por la Agencia Europea del Medicamento, han demostrado su eficacia, pero “hay que tener siempre en cuenta el beneficio/riesgo para cada persona, así como la influencia del tratamiento en la vida cotidiana del paciente”, precisan. Como complemento a la terapia farmacológica, proponen la fisioterapia, el ejercicio físico, el acompañamiento psicológico o una correcta alimentación para la mejora funcional de las actividades desarrolladas por los pacientes y de su estado de ánimo.

A pesar de la investigación desarrollada en torno a la EM desde su descubrimiento en el siglo XIX, este ámbito de estudio aún presenta muchos interrogantes. Para mejorar el tratamiento y calidad de vida de los pacientes en el futuro serán claves el diagnóstico temprano, asociado a tecnologías como la genómica y al manejo del big data, y la medicina regenerativa con terapia celular.

 

* Leyre Mestre y Carmen Guaza son investigadoras del CSIC en el Instituto Cajal y autoras de La esclerosis múltiple, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

El clavo: la especia protagonista de la primera vuelta al mundo

Por Esteban Manrique Reol (RJB-CSIC)*

A principios del siglo XVI, se desató en Europa una verdadera vorágine por el descubrimiento de nuevas tierras y tesoros. Durante las décadas y siglos siguientes, una inmensa cantidad de información cartográfica, semillas de plantas tropicales, especias, plantas medicinales y, sobre todo, especímenes vegetales inundaron los gabinetes de historia natural y los jardines botánicos europeos. Una de las plantas más emblemáticas de este periodo fue el clavo de olor. Sin duda, tenía todos los componentes para ser protagonista de una película de aventuras: intriga, ambición, riqueza, misterio…

Las especias no solo fueron muy importantes económicamente hablando, sino que también sirvieron para impulsar el crecimiento y el desarrollo del conocimiento del mundo natural y de la ciencia botánica en particular. En los siglos venideros, especialmente durante el siglo XVIII, las expediciones a los nuevos territorios ya siempre incluirían a geógrafos, geólogos, botánicos y zoólogos, entre otros naturalistas, pertenecientes a los más prestigiosos gabinetes de historia natural y jardines botánicos. La descripción exacta de la planta o el animal para su posterior reconocimiento, así como de sus hábitats naturales, pasó a ser un elemento importante de las expediciones.

Mapa de las islas Molucas, 1594. / Petrus Plancius/Claesz

El árbol del clavo de olor –conocido popularmente como ‘clavero’ (Sizygium aromaticum)­– puede alcanzar los seis metros de altura y sus flores reúnen una serie de características (sabor, olor, capacidad de conservación de alimentos, propiedades medicinales) que hicieron que esta especia fuera ya objeto de comercio en la Antigüedad. Hay restos arqueológicos del III milenio a. C. en Terqa, Siria, que nos hacen pensar que entonces ya había un activo comercio de clavo de olor entre Oriente Medio, la India y las islas del sudeste asiático, de donde es originaria la planta.

La misteriosa procedencia del clavo

Sin embargo, y a pesar de que las referencias sobre el clavo dadas por Plinio el Viejo en el siglo I apuntaban hacia la India, el origen del clavo fue un misterio durante muchos siglos. Hay que tener en cuenta la cantidad de relatos fantasiosos que transmitían los viajeros en la época de las grandes expediciones. Y, para mayor confusión, se sabe que algunos mapas se falseaban a propósito.

Sizygium aromaticum. Köhler’s Medizinal-Pflanzen (vol II, 1890)

El clavo de olor o aromático es, de todas aquellas especias asiáticas que alcanzaban Europa, por la que se llegaba a pagar los precios más altos. Fluctuaba mucho, pero se dice que el precio del kilo de clavo se tasaba en oro. Había, pues, un gran interés en mantener oculta su procedencia. Ejemplo de ello es el Atlas Miller elaborado en Portugal hacia 1519, que mostraba datos falsos para impedir que otros navegantes, particularmente españoles, pudieran llegar al lugar de las especias.

A mediados del siglo XV, Niccolò Da Conti se convirtió en el primer europeo en informar con cierta precisión sobre la procedencia de la especia. Esta información fue presentada por el monje y cosmógrafo Fra Mauro en su obra maestra, el Mapamundi (1459). De alguna manera, Da Conti estaba poniendo en manos de los portugueses el comercio mundial de las especias y propiciando la caída del monopolio veneciano y otomano en la comercialización de los productos provenientes del Oriente.

Mapamundi o hemisferio circular del Atlas Miller (c. 1519)

El dominio portugués

A partir de 1511, los portugueses se establecieron definitivamente en Asia y así tuvieron acceso directo a los mercados y productos del Lejano Oriente. Pronto, Alfonso de Albuquerque intentó establecer relaciones amistosas con los gobernantes locales y alianzas comerciales con proveedores de drogas y especias, clavo en particular. En 1513 los viajes entre los puertos portugueses en Malaca (en la actual Malasia) y Ternate (islas Molucas, actual Indonesia) llegaron a ser regulares. Jorge de Albuquerque fue nombrado capitán general de Malaca en 1514. En enero de 1515 envió una misiva del rey de Ternate a Manuel I prometiendo lealtad al soberano portugués, y también envió un regalo peculiar: un tronco de árbol de clavo y una pequeña rama con algunas hojas y capullos de flores. A partir de este momento los portugueses conocieron en detalle el aspecto del árbol y con ello se hicieron con el control de la producción y el comercio de clavo de olor.

Eran pues las islas Molucas el misterioso lugar donde crecía de forma exclusiva (endémica) el árbol del clavo de olor, pero solo lo hacía en las montañas de cinco islas del archipiélago. En concreto, los mejores clavos eran los provenientes de la isla de Ternate.

De la primera vuelta al mundo a la expansión del clavo

La lucha por el comercio del clavo no había hecho más que empezar. De hecho, esta especia fue la protagonista absoluta de la primera vuelta al mundo. Fernando de Magallanes, tras la negativa del rey Manuel I a financiar un nuevo viaje a su cargo, pues Portugal ya tenía establecida una ruta por oriente para llegar a las islas de las Especias, presentó en 1519 a Carlos I su audaz plan de una ruta alternativa viajando hacia el oeste: fue la expedición de Magallanes y Elcano (1519-1522). Después del largo viaje transoceánico de tres años de duración, la nave Victoria retornó a Sanlúcar de Barrameda tras realizar la primera circunnavegación de la historia. Aunque Magallanes murió en Filipinas, regresaron Juan Sebastián Elcano y Antonio Pigafetta, relator del viaje. En el informe presentado al emperador, el cronista italiano incluía una muy clara descripción del árbol de clavo.

El navegante Fernando de Magallanes descubrió en 1520 el Estrecho de Magallanes, durante la expedición española a las Molucas. Cuadro del pintor chileno Álvaro Casanova Zenteno (1857-1939)

Posteriormente, debido a la relevancia económica de esta especia, franceses y holandeses consiguieron sacar semillas de clavero de las islas originarias e introdujeron la planta en otras áreas tropicales. Los primeros en plantar el árbol del clavo fuera de su lugar de origen fueron los franceses, quienes lo introdujeron en las islas Mauricio durante el siglo XVIII. Más tarde se introdujo en el suroeste de la India, Sri Lanka, Zanzíbar y Madagascar.

Propiedades químicas del clavo y su uso en la actualidad

Además de los capullos de flores aromáticos, hay otras dos partes del clavero que se utilizan como especias: los pedúnculos florales y los frutos. El aroma proviene de varios compuestos volátiles que constituyen el aceite esencial del clavo y que se obtiene por destilación en etanol. La composición en principios activos y aromas es compleja e interesante ya que es la especia que tiene más cantidad de eugenol, el principal principio activo del aceite esencial.

En relación a su peso seco, el clavo contiene entre el 15 y el 20% de aceite esencial, en el que el eugenol es el principal componente (entre el 85 y el 95% del aceite esencial). El eugenol también se encuentra en otras especias como la nuez moscada (miristicáceas) y la canela (lauráceas). El químico italiano Ascanio Sobrero (1812-1888), descubridor de la nitroglicerina, aisló el eugenol a mediados del siglo XIX y, a partir de entonces, se empleó en medicina. Una de sus mayores propiedades es la de ser un eficaz antioxidante. De ahí su utilización en la conservación de alimentos.

Hoy el clavo como especia se sigue usando ampliamente en todas las cocinas del mundo. Su mercado no ha disminuido desde el siglo XV, sino muy al contrario. Son muchos los trabajos científicos que han publicado estudios de las propiedades terapéuticas del clavo o de los componentes de su aceite esencial, principalmente del eugenol. El tipo y número de productos en los que se añade el clavo de olor o su esencia ha ido creciendo exponencialmente en todos los sectores, tanto en medicina como en cosmética y, por supuesto, en la alimentación.

 

* Esteban Manrique Reol es doctor en biología y actual Director del Real Jardín Botánico de Madrid (CSIC). Este texto es una adaptación del capítulo que firma dentro del libro de la colección Divulgación En búsqueda de las especias. Las plantas de la expedición Magallanes-Elcano (1519-1522) (CSIC-Catarata), coordinado por Pablo Vargas. El libro se presenta el jueves 13 de mayo de 2021 a las 12:00 horas en el Real Jardín Botánico, en un acto con entrada libre que también podrá seguirse online.

Encuentros temporales entre astronomía y prehistoria

Por Enrique Pérez Montero y Juan F. Gibaja Bao (CSIC) *

Entre las estrategias que usa la ciencia para facilitar el entendimiento de la naturaleza está la de proporcionar medidas que ayuden a fijar en una escala espacio-temporal aquellos objetos o eventos que estudia. No obstante, si el objeto de estudio sobrepasa las escalas que nos son familiares, puede ser complicado hacerse una idea de lo que esos números representan.

Uno de los casos donde esto ocurre de forma más clara es en la astronomía. Suele ser muy complejo distinguir la diferencia entre los cientos de miles de kilómetros a los que un asteroide ha pasado de la Tierra (en algunos medios de comunicación a veces se dice que nos ha pasado rozando), y los miles de millones de pársecs (unidad de longitud equivalente a 3,2616 años luz) a los que se encuentra la última galaxia de turno que ha roto el récord de distancia en el universo.

Esto mismo sucede incluso con escalas más pequeñas y cercanas, como la histórica. Al hablar de la prehistoria metemos en el mismo saco temporal a los primeros homínidos de hace unos 2,5 millones de años y a los últimos cazadores-recolectores del Mesolítico, que habitaron en ciertas zonas del Atlántico y Norte de Europa hace cerca de 5.000 años.

En el caso de la astronomía, una escala de distancia que trata de solventar esta dificultad es la basada en la velocidad de la luz, que viaja a unos 300.000 kilómetros por segundo. En el entorno de nuestro planeta esta escala no resulta práctica, ya que a un rayo de luz le da tiempo a dar siete vueltas y media a la Tierra en un solo segundo. Sin embargo, resulta mucho más cómodo y fácil imaginar que el Sol, la estrella que ilumina cada día nuestras vidas, está a 8 minutos y 20 segundos de distancia-luz, en vez de expresar que está a 150 millones de kilómetros. Es decir, podríamos recordar qué hicimos durante esos 8’20’’ transcurridos desde que los primeros rayos salieron del sol y llegaron a nuestro planeta.

El nacimiento de la escritura y la nebulosa de la Mariposa

Para poder entender la magnitud de la que hablamos proponemos hacer coincidir varios eventos de la historia de la humanidad con la distancia-luz a la que se encuentran algunos de los objetos astronómicos más notables. Así, por ejemplo, tomemos como punto de partida de nuestro viaje el momento en que se fija el inicio de la historia, el nacimiento de la escritura hace unos 3.500 años en Mesopotamia, en el extremo oriental del Mediterráneo. Poco después de ese momento partió la luz que los telescopios captan hoy en día desde la nebulosa de la Mariposa, también denominada NGC 6302, a 3.400 años-luz en la dirección de la constelación de Escorpio.

Nebulosa de la Mariposa. / NASA, ESA, and the Hubble SM4 ERO Team

Estas nubes de gas se produjeron cuando una estrella de masa intermedia, más o menos como nuestro Sol, terminó de fusionar los últimos elementos ligeros que se encuentran en el núcleo para crear otros más pesados. En ese momento, dicho núcleo se compactó para formar una enana blanca y las capas externas fueron eyectadas al medio interestelar.

¿Qué pasó en el cielo durante el inicio del Neolítico?

Otro momento relevante del desarrollo de la humanidad es el inicio de la domesticación de animales y vegetales, lo que conocemos como Neolítico. Aunque las primeras evidencias se documentan en Próximo Oriente hace unos 10.000 años, en pocos siglos aquellas comunidades ocuparon toda Europa. Sin duda, nosotros y nosotras somos sus más directos herederos. En ese mismo momento el cúmulo globular Messier 22, a 10.400 años-luz de distancia, nos envió la luz que hoy podemos ver. Este cúmulo se sitúa en la dirección de la constelación de Sagitario y está muy cerca del bulbo de nuestra galaxia. Está formado por una asociación de decenas o centenas de miles de estrellas, algunas de las cuales se cuentan entre las más antiguas de la Vía Láctea.

En la actualidad los observatorios infrarrojos espaciales y radiotelescopios de la Tierra recogen la radiación electromagnética que salió hace 28.000 años de Sagitario A*, que es como se denomina al núcleo de nuestra galaxia. Hoy sabemos que en el centro de la Vía Láctea hay un agujero negro supermasivo con una masa equivalente a cuatro millones de veces la de nuestro Sol. La presencia de un agujero negro tan enorme en esta posición no es algo anormal, sino un hecho común a todas las galaxias de tamaño similar a la nuestra. Cuando la radiación electromagnética porcedente de Sagitario A* inició su camino hacia la Tierra, algunos de nuestros antepasados más antiguos como especie, el Homo Sapiens, entraban en las cuevas de Altamira para pintar los magníficos bisontes, ciervos, manos y signos, tan enigmáticos a nuestros ojos contemporáneos.

Imagen de las cuevas de Altamira. / Museo de Altamira, D. Rodríguez

El origen del Homo Sapiens y la Gran Nube de Magallanes

Los Homo Sapiens aparecieron en África hace unos 150.000 años, momento en el que la luz emergía de la Gran Nube de Magallanes, más allá de los límites de nuestra galaxia. Esta es la más brillante entre las numerosas galaxias enanas satélite de la Vía Láctea. En ella se encuentra la nebulosa de la Tarántula, donde se halla el criadero de estrellas más masivo de todo nuestro grupo local de galaxias. En esta región se están creando más de diez nuevas estrellas por año y algunas de ellas son tan masivas que provocan vientos galácticos que arrastran el gas a cientos de kilómetros por segundo.

Los primeros homínidos y la galaxia de Andrómeda

Finalmente, si mirásemos por una máquina del tiempo qué ocurría en la Tierra hace dos millones y medio de años, observaríamos el origen de la Humanidad. En aquel momento, nuestros tatarabuelos los Homo Habilis habitaban en África y comenzaban a hacer algo que ninguna especie en nuestro planeta había hecho: transformar la naturaleza para crear instrumentos. Es el inicio de la tecnología, los primeros pasos de lo que hoy son nuestros móviles, telescopios o naves espaciales. Precisamente, a esa distancia espacio-temporal se encuentra la galaxia de Andrómeda o M31. Es el objeto más cercano a la Vía Láctea de un tamaño y masa parecidos. Su descubrimiento, realizado en la década de 1920 gracias a Edwin Hubble, nos concienció de que las galaxias eran numerosas y de que la nuestra no constituía todo el universo.

Galaxia Andrómeda. / Wikipedia, Boris Štromar

Todavía nos parece irreal pensar que su luz haya viajado más tiempo del recorrido por nuestra especie desde nuestro tatarabuelo Habilis. Y eso que es la galaxia más cercana a nosotros, en un universo que alberga miles de millones de ellas. Todo un desafío para nuestra comprensión sobre su inmensidad.

 

* Enrique Pérez Montero es investigador del el Instituto de Astrofísica de Andalucía del CSIC e investigador principal del proyecto de divulgación Astronomía Accesible, que tiene como fin el fomento de la astronomía entre las personas con discapacidad. Juan F. Gibaja Bao es investigador en la Escuela Española de Historia y Arqueología en Roma del CSIC y dirige y participa en diversos proyectos de divulgación científica, como Ciencia Incluisva.

Enfermedades raras: cuando lo excepcional se subestima

Por Francesc Palau (Hospital Sant Joan de Déu) y Mar Gulis (CSIC)*

Acondroplasia, uveítis, esclerodermia, síndrome de Prader-Willi, fenilcetonuria, ataxia de Friedreich…¿Reconoces algún término? ¿Sabes de qué se trata? Son nombres de enfermedades poco comunes, por lo que tal vez tengas la suerte de que no te suene ninguna. ¿Y si te decimos que a esta pequeña lista de patologías se podrían añadir otras 6.165 y que todas se conocen como “enfermedades raras”? A pesar de denominarse así, este conjunto de trastornos es muy numeroso y afecta a una población nada desdeñable. En la Unión Europea, con aproximadamente 446 millones de habitantes, el número de pacientes afectados por ellos se calcula en unos 26 millones. Estudios recientes realizados por la Genetic Alliance en Reino Unido confirman que una de cada diecisiete personas puede estar afectada por una enfermedad rara en algún momento de su vida.

Cuando oímos golpes de cascos, solemos pensar en caballos, pero podrían ser cebras. Lo común, frente a lo raro

El contraste entre los datos epidemiológicos de la población afectada y la elevada diversidad y heterogeneidad de estas patologías, muchas reconocidas a lo largo de los siglos XIX y XX y otras descritas hace poco tiempo o muy recientemente, nos pone ante la paradoja de la rareza: las enfermedades son raras, pero los pacientes que las padecen son muchos. Además, cuando se trata de este tipo de patologías, sus tasas de incidencia son bajas, pero su impacto colectivo en las poblaciones y los sistemas de salud es enorme, algo que a menudo se subestima.

Pero, ¿cuáles son las características que cumple una enfermedad para definirla como rara? La Unión Europea establece que un trastorno o condición de salud se puede etiquetar como enfermedad rara si el número de personas afectadas es menor de una entre dos mil, es decir, en términos epidemiológicos tiene una prevalencia de menos de cinco afectados por cada diez mil habitantes. En Estados Unidos, la Rare Diseases Act de 2002 afirma que “enfermedades raras son aquellas que afectan a poblaciones pequeñas de pacientes, concretamente a poblaciones menores de 200.000 individuos”. Algunas enfermedades raras son relativamente frecuentes y más conocidas por todos y todas, como ocurre con la fibrosis quística o la distrofia muscular de Duchenne, pero muchas de ellas son infrecuentes, con menos de una persona afectada por cada cien mil, y se conocen como ultra-raras.

Un difícil diagnóstico y tratamiento

Según el Estudio sobre la situación de Necesidades Sociosanitarias de personas con Enfermedades Raras en España (Estudio ENSERio)un paciente con una enfermedad rara espera una media de cuatro años hasta obtener un diagnóstico, aunque en el 20% de los casos transcurren diez o más años hasta lograr el adecuado.

Por otro lado, la complejidad de estas enfermedades y su ‘escasa’ frecuencia hacen que el tratamiento sea complicado, en parte debido  a que la industria farmacéutica tiene un interés menor en desarrollar y comercializar productos destinados a un pequeño número de pacientes. Los medicamentos que finalmente terminan saliendo al mercado se denominan medicamentos huérfanos.

La Agencia Europea del medicamento (EMA) mantiene información actualizada anualmente sobre la realidad de los medicamentos huérfanos en Europa y en el portal de Orphanet- España se puede consultar la lista completa. Aunque esta lista va en aumento, en la actualidad hay un 90% de enfermedades raras sin tratamiento.

El Estudio ENSERio destaca que el 47% de pacientes recibe un tratamiento que considera inadecuado o que no es el que necesita, solo el 15% utiliza medicamentos huérfanos y el 51% de las familias tiene dificultades para acceder a estos medicamentos.

La investigación en los ámbitos fisiopatológico, diagnóstico y terapéutico, así como el compromiso de financiación, tanto pública como privada, resultan fundamentales para resolver la situación. Se requieren ideas innovadoras e impulsar el desarrollo de consorcios público-privados, con participación del ámbito académico y de la industria y la implicación de los pacientes. Tampoco hay que olvidar la importante labor que realizan las asociaciones de pacientes y las fundaciones sin ánimo de lucro, incluso la aportación más reciente que tienen los ensayos clínicos financiados directamente por los propios pacientes.

Está claro que se requiere un gran esfuerzo médico, sanitario, científico, social y político para poder mejorar el diagnóstico y el tratamiento de cada una de las enfermedades raras, así como la calidad de vida y curación de los afectados. También es importante ser capaces de planificar para prevenirlas y lograr la incorporación social del individuo como persona plena, adaptada al entorno e integrada en la sociedad. Que su “rareza” no nos haga subestimarlas.

 

* Francesc Palau dirige el Servicio de Medicina Genética y el Instituto Pediátrico de Enfermedades Raras del Hospital Sant Joan de Déu y un grupo de investigación del CIBER de Enfermedades Raras (CIBERER). Es autor del libro Enfermedades raras, de la colección de divulgación ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

La regla de los cinco segundos o cuánto de sucia está esa fresa que se cayó al suelo

Por Javier S. Perona (CSIC) *

La “regla de los cinco segundos” se refiere al tiempo máximo que puede pasar un alimento en contacto con el suelo para poder llevárnoslo a la boca de forma segura. Como la ciencia se ocupa de las materias más peregrinas, también ha salido al rescate para analizar esta creencia popular. El tema debe ser extremadamente fascinante, porque al menos doce estudios llevados a cabo por científicos y científicas, estudiantes de secundaria e incluso programas de televisión han intentado verificar o rechazar esta aseveración. Hagamos un repaso y veamos si es cierta o si se trata de un mito más.

En el programa Cazadores de mitos, que se emitió en Discovery Channel hasta 2018, dedicaron una sección de un episodio de 2005 a responder a esta pregunta. Los conductores, Jamie Hyneman y Adam Savage, colocaron placas de contacto en el suelo de su tienda durante 5 segundos en busca de bacterias. Tras incubar cada placa durante 24 horas, contaron la cantidad de bacterias que había en ellas. Obtuvieron resultados diferentes de ubicaciones adyacentes entre sí, por lo que decidieron que sería importante eliminar la ubicación como una variable en la prueba. Para ello, crearon algunas superficies uniformemente contaminadas con caldo de ternera. Dejaron caer comida húmeda, pastrami (carne roja en salmuera), y comida seca, galletas saladas, en la superficie durante dos y seis segundos y compararon los resultados con un control. El pastrami húmedo recogió más bacterias que las galletas saladas, pero no hubo una diferencia apreciable entre las muestras de dos y seis segundos. Así pues, concluyeron que la cantidad de bacterias que se recogían en los alimentos dependía de su humedad, el tipo de superficie de los alimentos y el lugar donde se dejaban caer, pero no del tiempo que estaban en contacto.

Varios experimentos han tratado de dilucidar cómo influye la humedad, la superficie superficie donde cae el alimento o el tiempo, entre otros factores. / Wikipedia

Los cazadores de mitos no fueron los primeros en hacer el experimento. Anteriormente, en 2003, Jillian Clarke, una estudiante de secundaria de Chicago, había estudiado el tema con verdadera profusión. Con la ayuda de una investigadora predoctoral, Meredith Agle, hicieron pruebas en distintos tipos de suelo, con diferentes grados de limpieza y diferentes alimentos. Además, realizaron encuestas entre los estudiantes de la Escuela Secundaria de Ciencias Agrícolas y encontraron que las personas prefieren recoger y comer galletas y gominolas del suelo que coliflor o brócoli. No puedo entender por qué. Incluso llegaron a tomar imágenes de microscopía electrónica de barrido, pero las gominolas se arrugaban y no se veían bien, así que se pasaron a la microscopía electrónica de barrido ambiental. Finalmente, concluyeron que la transferencia de la bacteria E. coli desde un azulejo a un osito de gominola se produce en menos de 5 segundos.

Pero, ¿qué dice la ciencia?

Sin desmerecer el trabajo de Clarke y Agle (supongo que les pondrían un sobresaliente), el fenómeno ha sido investigado también por varias universidades. En la de Clemson (EEUU), Paul Dawson y colaboradores encontraron que la Salmonella Typhimurium puede sobrevivir hasta 4 semanas en superficies secas en poblaciones lo suficientemente altas como para transferirse desde la madera, el azulejo y la moqueta a la salchicha de Bolonia (similar a la mortadela) y al pan, y que además lo hace de forma inmediata. Los resultados fueron publicados en la revista científica Journal of Applied Microbiology.

Aunque ha habido otros intentos de analizar esta regla, probablemente, el estudio más exhaustivo lo realizaron Robyn C. Miranda y Donald W. Schaffner, de la Universidad Estatal de Nueva Jersey. Fue publicado en 2016 en Applied and Environmental Microbiology, una de las revistas más prestigiosas de microbiología. Miranda y Schaffner evaluaron diferentes tipos de superficie (acero inoxidable, azulejos, madera y moqueta), alimentos (sandía, pan, pan con mantequilla y gominolas) y tiempos de contacto (menos de 1 segundo, y menos de 5, 30 y 300 segundos). Los alimentos se dejaron caer sobre las superficies desde una altura de 12,5 cm y se dejaron reposar durante los tiempos previstos. Los resultados fueron muy claros. La bacteria Enterobacter aerogenes se transfirió mucho mejor a la sandía que a cualquier otro alimento, y las gominolas resultaron las más resistentes (se mantuvieron más de 5 minutos sin contaminarse). La transferencia de bacterias al pan fue similar, tuviera o no mantequilla. Aunque el artículo no menciona de qué lado cayó el pan con mantequilla, asumimos que fue del lado graso, de acuerdo con la Ley de Murphy.

Cuanta más agua haya, más rápido pasan las bacterias de la superficie al alimento.

La moqueta, más segura que el acero

Los investigadores concluyeron que los tiempos de contacto más largos resultan en una mayor transferencia de bacterias, pero también que otros factores, como la naturaleza del alimento y la superficie, son de igual o mayor importancia. Algunas transferencias tuvieron lugar instantáneamente (menos de 1 segundo), como en el caso de la sandía. Probablemente, las diferencias entre sandía y gominolas se debieron a que las bacterias necesitan la presencia de agua para pasar de un medio al otro. Cuanta más agua disponible haya, más rápido pasan. Aunque no se investigó al respecto, debemos suponer que el sabor de las gominolas no afecta a su resistencia a la incorporación de bacterias, aunque sea sabor a sandía. En cuanto a superficies, la moqueta era más segura que la madera o el acero inoxidable, aunque instintivamente nos pueda parecer lo contrario.

Como vemos, los resultados obtenidos permitirían aceptar que se pueden consumir algunos alimentos de forma segura si están menos de 5 segundos en contacto con algunas superficies. Pero lo cierto es que cuando se nos cae un alimento al suelo, no tenemos tiempo ni medios para valorar todos los condicionantes, por lo que es mejor desecharlo.

Lo que seguro que no sirve es dar un besito al alimento caído, como hacían algunas de nuestras madres. Es como pretender que se le pase a alguien el dolor diciendo “sana, sana, culito de rana”. ¡Qué manía con el culo de las ranas!

*Javier S. Perona (@Malnutridos) es investigador del CSIC en el Instituto de la Grasa y responsable del blog Malnutridos. Este texto es una ampliación del publicado en la sección Desmintiendo bulos en la Newsletter  de la Delegación del CSIC en Andalucía y Extremadura.

 

Viajar en avión, ¿cómo afecta a la calidad del aire?

Por Mar Gulis (CSIC)

¿Cuándo fue la última vez que viajaste en avión? Es posible que tu respuesta se remonte a casi un año (o más) por la situación en la que nos encontramos, pero ahora piensa cuántos vuelos realizaste antes… En 2019, por los aeropuertos españoles pasaron 275,36 millones de pasajeros y las aerolíneas españolas movieron a 113,83 millones de personas, el 41,4% del tráfico total, según datos del Ministerio de Transportes, Movilidad y Agenda Urbana. Además, como recoge AENA, España recibió 83,7 millones de turistas internacionales, 900 mil más que el año anterior, y de ellos el 82% (más de 68,6 millones) utilizaron el avión como medio de transporte.

¿Sabes lo que suponen estas cifras en contaminación? En este sentido, un estudio de la revista Global Environmental Change estima que “un 1% de la población del mundo es responsable de más de la mitad de las emisiones de la aviación de pasajeros que causan el calentamiento del planeta”.

Un avión puede llegar a emitir hasta veinte veces más dióxido de carbono (CO2) por kilómetro y pasajero que un tren.

Un motor de avión emite principalmente agua y dióxido de carbono (CO2). Sin embargo, dentro de él tiene lugar un proceso de combustión a muy alta temperatura de los gases emitidos, lo que provoca reacciones atmosféricas que a su vez producen otros gases de efecto invernadero, como el óxido de nitrógeno (NO). Por ello, el Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC) estima que el efecto invernadero de los aviones es unas cuatro veces superior al del CO2 que emiten. Según Antonio García-Olivares, investigador del CSIC en el Instituto de Ciencias del Mar (CSIC), esto eleva el efecto global de los aviones a aproximadamente la mitad del efecto del tráfico global de vehículos.

¿Cuándo contamina más?

Un avión puede llegar a emitir hasta veinte veces más dióxido de carbono (CO2) por kilómetro y pasajero que un tren. Según un estudio de la Agencia Europea del Medio Ambiente de 2014, el tráfico aéreo es el que mayores emisiones produce (244,1 gramos por cada pasajero-km), seguido del tráfico naval (240,3 g/pkm), el transporte por carretera (101,6 g/pkm) y el ferroviario (28,4 g/pkm).

“Esto es, el transporte por avión y por barco emiten en la Unión Europea más del doble de CO2 por pasajero-km que el transporte por carretera, y el transporte por tren es casi 4 veces más limpio que por carretera, y casi 9 veces más limpio que el transporte por avión”, comenta Antonio García-Olivares.

El CO2 y el resto de gases que emite la aviación se añaden a la contaminación atmosférica “que afecta a la salud humana solo en los momentos de despegue, y en menor grado, en el aterrizaje”, señala el investigador. Durante la mayor parte del viaje, el avión vuela en alturas donde al aire está estratificado (en capas) y la turbulencia vertical es mínima. Esto hace que la difusión de los contaminantes hacia la superficie terrestre sea prácticamente nula. Pero, “los contaminantes permanecen en altura, donde sufren distintas reacciones fotoquímicas, contribuyendo algunos de ellos al efecto invernadero”, añade.

En cualquier caso, el tráfico aéreo también incide en el aire que respiramos. En los aeropuertos no solo los aviones emiten gases contaminantes, sino también otros medios de transporte como los taxis, los autobuses y los vehículos de recarga, que en su mayoría son diésel. Al quemar combustible y rozar sus ruedas con el suelo, todos ellos liberan partículas ultrafinas a la atmósfera consideradas potencialmente peligrosas para la salud, explica Xavier Querol, del Instituto de Diagnóstico Ambiental y Estudios del Agua del CSIC.

El grado en que estas emisiones aumentan los niveles de partículas contaminantes en una ciudad, dependerá de la distancia del aeropuerto con respecto al núcleo de población y al urbanismo. En grandes ciudades con altos edificios (streetcanions), la dispersión es muy mala y el impacto en la exposición humana es mayor que en otras; a diferencia de lo que suele ocurrir en un aeropuerto, donde las emisiones se pueden dispersar y contaminar menos, indica Querol.

En grandes ciudades con altos edificios (streetcanions), la dispersión es muy mala y el impacto en la exposición humana es mayor.

¿Sería posible viajar en avión sin contaminar?

“La tendencia del tráfico aéreo es a crecer en las próximas décadas un 30% más que en la actualidad, pero en la presente década es probable que la producción de petróleo y líquidos derivados del petróleo comiencen a declinar. Ello, unido a la posible presión legislativa por disminuir el impacto climático, podría frenar esa tendencia al crecimiento del tráfico aéreo”, reflexiona Antonio García-Olivares.

Un estudio en el que ha participado el investigador concluye que, si la economía fuese 100% renovable, el coste energético de producir metano o combustibles de aviación a partir de electricidad y CO2 sería mucho más elevado que en la actualidad y desencadenaría una fuerte subida de los precios de los viajes en avión y, por tanto, una reducción del transporte aéreo hacia valores en torno al 50% de los actuales.

Reducir la contaminación implica, como resume el investigador del CSIC en el Instituto de Ciencias del Mar Jordi Solé, cambiar los modos y la logística del transporte, así como reducir su volumen y la velocidad (cuanto más rápido vamos, más energía consumimos y más contaminamos). “La navegación aérea a gran escala y el transporte en general se tienen que rediseñar en un sistema con cero emisiones; por tanto, el transporte aéreo tiene que estar armonizado en un modelo acorde con un sistema socio-económico diferentes y, por supuesto, ambiental y ecológicamente sostenible”, concluye Solé.