Entradas etiquetadas como ‘medio ambiente’

Cómo medir la degradación del territorio

cara2Por J.M. Valderrama (CSIC)*

La degradación del territorio es la herencia irreversible de la desertificación y solo con grandes inversiones puede recuperarse una pequeña parte del esplendor perdido. Con este panorama la mejor estrategia es la prevención, como ocurre en la mayor parte de los problemas de carácter medioambiental. Y para atajarla hay dos vías: una es el análisis de los procesos socioeconómicos que causan la desertificación y la puesta en marcha de políticas de cambio, y otra vía es la detección temprana de la degradación y su magnitud.

Según la definición de Naciones Unidas, desertificación es “la degradación de tierras en zonas áridas, semiáridas y subhúmedas secas, causada por diversos factores como las variaciones climáticas y las actividades humanas”. Además se precisa que degradación es la “reducción o pérdida de la productividad biológica o económica y de la complejidad de las tierras”.

Mapa

Mapa de condición de la tierra de la Península Ibérica para el período 2000-2010, que refleja variaciones relativas de madurez ecológica / Estación Experimental de Zonas Áridas (CSIC).

Uno de los enfoques de medición es el conocido como RUE, siglas correspondientes a Rain Use Efficiency, que significa “eficiencia de uso de la lluvia”. El concepto detrás de estas siglas es el siguiente: la cantidad de biomasa producida por cada unidad de lluvia que cae en un territorio. Por ser un poco más específicos: los kilogramos por hectárea de vegetación que se producen cada año por cada milímetro de lluvia que recibe el suelo.

En zonas áridas, donde el agua disponible es el factor limitante para la vida, la degradación del territorio se mide a partir del RUE. Este sistema ofrece un retrato bastante preciso de la condición de la tierra, ya que refleja directamente la capacidad del suelo para amortiguar la falta de agua durante los periodos secos. Con un poco de elaboración matemática es posible determinar las zonas en mejor estado y hacer un seguimiento de su tendencia.

La tecnología actual permite sistematizar este método y evaluar la degradación en grandes territorios. Mediante imágenes de satélite es posible estimar la productividad vegetal para todo el planeta. Mientras que la red de estaciones meteorológicas, cada vez más amplia, permite obtener datos directos de precipitación y temperatura.

Montaje degradación

Ejemplo de aplicación del sistema 2dRUE en una sucesión de imágenes de Google Earth de un territorio que se está degradando / M.E. Sanjúan.

Una versión avanzada de este tipo de tecnologías es 2dRUE, desarrollada en la Estación Experimental de Zonas Áridas, del CSIC.  Se trata de una metodología de bajo coste, que usa datos públicos y abiertos. Tras una maquinaria computacional compleja, ofrece al usuario mapas contrastables y con una interpretación sencilla. El primer ensayo fue realizado en la Península Ibérica y, tras los resultados, ha sido adoptada por los gobiernos español y portugués con el fin de informar a la Convención de Naciones Unidas para la Lucha Contra la Desertificación, cuya misión es vigilar y mejorar la condición de los ecosistemas. Su éxito ha sido tal, que también se ha utilizado en el Magreb, Sahel, Mozambique y el Nordeste brasileño, y en la actualidad está siendo utilizada para toda China.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y viajes. 

Desde Norteamérica a Europa: sustancias tóxicas voladoras

Por Mar Gulis (CSIC)

Es difícil ponerle puertas al campo y también al aire. La comunidad investigadora y los gestores políticos conocen desde hace tiempo que los polibromodifeniléteres (PBDEs), una de las familias de retardantes de llama más ampliamente utilizada, se liberan con facilidad de los objetos a los que han sido añadidos y pasan al medio ambiente. Recientemente además se ha descubierto que estos compuestos que evitan la combustión pueden viajar por el aire miles de kilómetros y cruzar de un continente a otro. Así es como productos manufacturados en Estados Unidos liberan PBDEs que acaban depositados en lagos de alta montaña de Europa.

Los PBDEs se empezaron a comercializar en los años 70 en productos como ropa, aparatos electrónicos, tapicerías o mobiliario, para evitar su inflamación. Estos aditivos se añaden durante el proceso de fabricación de tal forma que no quedan ligados por enlaces químicos a los materiales; lo que facilita que puedan ser emitidos al medio ambiente durante su utilización y cuando se desechan.

A principios del siglo XXI se comenzaron a descubrir sus efectos para la salud y el medio ambiente. Diversas investigaciones comprobaron que son persistentes y que se acumulan en los seres vivos. En los últimos años se ha observado que los niños de madres con niveles altos de PBDEs en sangre muestran una disminución de peso, de circunferencia abdominal y de diámetro de la cabeza durante la gestación. También hay indicios de cierto retraso intelectual en niños que han recibido dosis altas de PBDEs mediante alimentación materna.

En Estados Unidos se prohibió el uso de estos compuestos en el año 2006. En Europa se hizo escalonadamente entre 2004 y 2013. Desde 2009 forman parte de la lista de los Contaminantes Orgánicos Persistentes (COPs) de la Convención de Estocolmo. Sin embargo, los productos que fueron fabricados en años previos siguen estando en el mercado y liberando PBDEs al medio ambiente.

Detectores PBDEs

Sistemas de recogida de muestras en los lagos de montaña europeos / Instituto de Diagnóstico Ambiental y Estudios del Agua (CSIC).

La alta volatilidad de estos compuestos favorece su transporte por el aire y su deposición en ecosistemas acuáticos y terrestres. De hecho, una investigación desarrollada por el Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC ha identificado sustancias procedentes de Norteamérica en zonas de alta montaña de Europa. El estudio se desarrolló entre los años 2004 y 2006, durante los cuales se tomaron muestras directas de agua y nieve en cuatro zonas de alta montaña del continente. Concretamente en el lago Redón (Pirineo catalán), en Gossenköllesee (Alpes, Austria), Lochnagar (Grampian Mountains, Escocia) y Skalnate (Tatras, Eslovaquia). Estas zonas ya habían sido objeto de estudio por parte de diferentes grupos de investigación, lo que permitía contar con datos para la comparación.

Los estudios de deposición atmosférica han mostrado un incremento de estos compuestos en los lagos situados más al oeste, Lochnagar y Redon, cuando las masas de aire vienen de esta dirección. Sin embargo, en los lagos del centro de Europa esto no se observa porque la emisión continental europea de estos compuestos sobrepasa el aporte transcontinental. “La coincidencia de resultados entre los lagos pirenaicos y escoceses situados a una distancia de 1.600 kilómetros y con regímenes climáticos diferentes pone de manifiesto lo que influye la transferencia transoceánica”, explica Joan Grimalt, uno de los investigadores autores del estudio y director del IDAEA del CSIC.

En el caso de Lochnagar y Redón “hemos visto un aumento en la concentración de retardantes de llama con la entrada de masas de aire provenientes del Atlántico Norte, lo que significa que estas muestras deben de proceder de Norteamérica”, apunta Pilar Fernández, también investigadora del equipo del CSIC. Es decir, por primera vez se demuestra que existe una transferencia continental de contaminantes entre América y Europa.

En investigaciones previas se había comprobado la presencia de retardantes de llama en estas zonas de alta montaña, pero las muestras se habían tomado en nieve acumulada o en peces, por lo que no se podía conocer cuándo habían llegado, desde dónde y bajo qué circunstancias. La última investigación ha tomado muestras en nieve nueva a lo largo de un tiempo, lo que ha permitido ver cómo se iba produciendo la contaminación.

Otro resultado del estudio confirma que se da un aumento de la concentración de estas sustancias cuando las temperaturas son más elevadas y cuando hay mayor deposición de lluvia y de partículas, añade Grimalt.

Sol que refrigera: el nuevo aire acondicionado

Por Mar Gulis (CSIC)

Con temperaturas exteriores que rondan los 40 grados y un Sol abrasador cuesta imaginar que esa fuente de energía pueda ser la misma que nos refrigere. Pero precisamente eso es lo que ha conseguido un equipo de investigación del Instituto de Ciencias de la Construcción Eduardo Torroja del CSIC, que ha creado varios prototipos capaces de enfriar un espacio variable, como una habitación o un barco, activados por energía solar térmica y que utilizan agua como refrigerante. Estos prototipos han sido desarrollados con el objetivo de sustituir los actuales sistemas de refrigeración, con un alto impacto en el calentamiento del planeta y en la capa de ozono.

En el sur de Europa hay alrededor de 40 millones de máquinas de climatización con una potencia inferior a 15 kW, un rango que suele utilizarse en una vivienda o un pequeño comercio. De estos 40 millones, ocho están en España. La mayoría de estos sistemas utilizan, de media, alrededor de 1,5 kilogramos de refrigerantes fluorados, gases que contribuyen al calentamiento global. La idea es que los actuales sistemas sean sustituidos al final de su vida útil por otros basados en refrigerantes naturales, como el agua.

Los protocolos impuestos a los sistemas de refrigeración exigen que cumplan con varios requisitos relacionados con el confort y la salud, entre los que se encuentran el control de la temperatura interior, de la humedad relativa y de la proliferación de la Legionella. Además, desde el Protocolo de Kioto y el Protocolo de Montreal, estos sistemas deben controlar las emisiones de gases de efecto invernadero y evitar la destrucción del ozono estratosférico.

Prototipo

Refrigeración solar: libre de Legionella, no destruye el ozono y apenas genera CO2. / Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC).

Las actuales máquinas suelen cumplir con los tres primeros requisitos pero no con el cuarto, ya que utilizan como fluido de trabajo un compuesto químico que contiene flúor. Estos fluidos son gases que tienen un índice de impacto unas 3.400 veces mayor que el CO2 en el calentamiento global en un horizonte temporal de 20 años, según el índice GWP. Además, estas máquinas, al usar la electricidad como fuente de energía, generan una emisión adicional de CO2. Algunos refrigerantes fluorados también contienen cloro, por lo que son responsables, en parte, de la destrucción de la capa de ozono.

La Unión Europea y otros organismos internacionales llevan alrededor de cuatro décadas intentando resolver estos problemas. Hasta la fecha no lo han conseguido. La estrategia consiste en sustituir los refrigerantes existentes por otros más respetuosos con la capa de ozono. Se han hecho avances en este sentido y se han conseguido propuestas que reducen la masa de refrigerantes fluorados. Sin embargo, estas fórmulas tienen en la mayoría de los casos una eficiencia menor, por lo que hacen necesario incrementar la emisión de CO2 durante su funcionamiento.

Instalación

Detalle de la instalación solar que activa el prototipo / Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC).

Según explica el investigador del CSIC y líder del proyecto del Instituto Torroja, Marcelo Izquierdo Millán, la tecnología desarrollada por el Consejo utiliza sal de bromuro de litio y agua. Las propiedades de esta mezcla para su uso en aire acondicionado ya eran conocidas a principios del siglo XX. No obstante, su aplicación comercial se ha retrasado ya que esta disolución suele producir la formación de cristales en ciertas condiciones. Precisamente, una de las innovaciones de la tecnología del CSIC es que ha logrado refrigerar sin que se produzca esta cristalización.

Los prototipos desarrollados por el Instituto Torroja son capaces de enfriar agua a entre 7 y 18 grados centígrados con temperaturas exteriores de entre 30 y 42 grados y pueden enfriar un espacio de unos 35-20 metros cuadrados a una temperatura constante de entre 24 y 26 grados. Además, su tamaño es similar al de un aire acondicionado actual: alrededor de un metro cúbico.

Estas máquinas podrían ser utilizadas como sistemas de refrigeración y calefacción con un rango de potencia de entre 10 y 20 kW en edificios, viviendas, autobuses, barcos, camiones etc., aprovechando la energía solar térmica y también el calor residual de los motores. Al final, el mismo calor que nos abrasa será la solución para un verano más fresco y, sobre todo, menos contaminante.

¿Fuego o contaminación? Un dilema en la prevención de incendios

Ethel EljarratPor Ethel Eljarrat*

El fuego es una fuente importante de daños a la propiedad y de pérdida de vidas. Por ejemplo, en 2006 se produjeron a nivel mundial en torno a 7 millones de incendios que causaron 70.000 muertes y 500.000 heridos. Además, se estima que el coste económico total de los incendios representa en torno al 1% del producto interior bruto en la mayoría de los países avanzados. Así pues, existe una necesidad de proteger los materiales contra posibles incendios y de allí que haya normativas de seguridad específicas. Con el fin de cumplir con estas normas de seguridad contra incendios, se aplican sustancias ‘retardantes de llama’ o ‘materiales ignífugos’ a los materiales combustibles, tales como plásticos, maderas, papel, textiles y equipos electrónicos. Se trata de productos químicos que se añaden a los materiales combustibles para aumentar su resistencia al fuego, dificultando su ignición o impidiéndola en forma completa si el fuego es pequeño.

Incendio en Nueva Orleans

El objetivo de los retardantes de llama es evitar incendios / DirectNIC.com.

Actualmente, las sustancias químicas que se comercializan como retardantes de llama están presentes de manera generalizada en nuestros hogares. Pueden integrar del 5 al 30% del peso total de los productos que los llevan. Además, algunos de ellos son simples aditivos de los materiales sin estar demasiado unidos químicamente a ellos. Con el tiempo, los retardantes de llama se liberan y contaminan nuestros hogares, nuestros cuerpos y nuestro medio ambiente, incluso en lugares distantes de donde se fabricaron y se usaron.

Las vías de exposición humana a estos compuestos son, mayoritariamente por ingesta de alimentos, así como por inhalación de aire. Debido a las propiedades físicoquímicas de los retardantes de llama, estos tienden a acumularse en los alimentos más grasos, como los de origen animal: pescados, carnes, lácteos y huevos. Los retardantes de llama, una vez emitidos al medio ambiente, son biodisponibles y por eso se acumulan en los tejidos de diferentes organismos tanto acuáticos como terrestres. Cuando una persona se alimenta de estos organismos, incorpora ese contaminante a sus propios tejidos donde queda acumulado.

Dentro de los retardantes de llama se cuentan algunos que preocupan hoy en día a la comunidad científica por su toxicidad, alta persistencia y capacidad de difundirse por el medio ambiente. Durante décadas se han realizado estudios de presencia y comportamiento ambiental, así como de efectos tóxicos de una de las familias de retardantes de llama más ampliamente utilizada, los polibromodifeniléteres (PBDEs). La exposición humana a los PBDEs provoca la alteración del equilibrio de las hormonas tiroideas, daños permanentes en el aprendizaje y la memoria, cambios de conducta, pérdida de audición, retraso en inicio de la pubertad, disminución del número de espermatozoides, malformaciones fetales y, posiblemente, cáncer (como el de tiroides).

Debido a la preocupación creciente en el ámbito de la salud pública, se han tomado medidas internacionales para su regulación y eliminación. La Unión Europea ha dictado normas para eliminar o reducir la presencia de algunas de estas sustancias. También han sido incluidas en el Convenio de Estocolmo sobre contaminantes orgánicos persistentes a fin de reducir su presencia a nivel mundial. A consecuencia de estas y otras medidas, estos PBDEs identificados como conflictivos están siendo sustituidos por otras sustancias.

salón

Los retardantes están presentes en nuestros hogares en los muebles, edredones, alfombras, etc. / Wikipedia.

Sin embargo, la industria química ha respondido a estas legislaciones reemplazando los PBDEs por otras sustancias químicas de propiedades muy similares a las ya prohibidas. Estos nuevos retardantes de llama están apareciendo ahora en el medio ambiente, en la fauna silvestre y en los seres humanos en todas partes del mundo, ¡con lo que podríamos estar repitiendo la misma historia que con los PBDEs!

Un comité de expertos del Convenio de Estocolmo propone alternativas como pueden ser cambios en el diseño de los productos, procesos industriales y otras prácticas que no requieran el uso de ningún retardante de llama. Por ejemplo, las alternativas no químicas en los muebles pueden ser telas sintéticas o barreras inherentemente retardantes de llama que además resistan las fuentes de ignición que arden sin llama. Los productos electrónicos pueden ser rediseñados para separar las partes con alto voltaje de las cubiertas externas, o protegidos con metal en vez de plástico. Las técnicas de construcción con resistencia al fuego pueden eliminar la necesidad de usar sustancias químicas retardantes de llama en el material de aislamiento, reemplazándolo por materiales alternativos, como los hechos con fibras.

En el Instituto de Diagnóstico Ambiental y Estudios del Agua del CSIC llevamos 15 años estudiando el impacto de los retardantes de llama en el medio ambiente, en organismos vivos y en humanos. Diversos estudios han proporcionado los primeros datos de niveles en España de PBDEs en suelos, fangos de depuradora, sedimentos, peces, aves y leche materna. Asimismo, y a raíz del uso de los nuevos retardantes de llama, actualmente la actividad científica de nuestro grupo de investigación se centra en tener un mejor conocimiento del impacto ambiental de estos sustitutos de los PBDEs.

* Ethel Eljarrat es investigadora en el Instituto de Diagnóstico Ambiental y Estudios del Agua del CSIC

Cómo llevar un río al laboratorio

Por Mar Gulis

Cerca de 25.000 kilómetros de los cursos fluviales de España, algo así como el 33% del total, están muy contaminados, según indican varios estudios científicos. Los ríos son uno de los ecosistemas acuáticos más amenazados por las actividades humanas. El vertido de aguas domésticas o residuales insuficientemente tratadas o la llegada de pesticidas utilizados en la agricultura empeoran la calidad química del agua, afectando a los organismos que habitan en los ríos.

Detalle recogida porta sustratos

Detalle de la recogida de un porta sustratos, cerca del nacimiento del río Gállego.

Y el papel de estos organismos no es baladí: contribuyen al buen estado de sus aguas e incluso procesan parte de los vertidos y contaminantes que llegan al río; es decir, son parte imprescindible del proceso de autodepuración del río. Precisamente, su estudio en el laboratorio permite predecir el impacto sobre ecosistemas acuáticos de determinados contaminantes y otros factores ligados al cambio climático, como el incremento de la temperatura o la radiación ultravioleta. Pero, ¿cómo se lleva un río al laboratorio?

Quienes se encargan de hacerlo son los ecotoxicólogos fluviales. En el Instituto Pirenaico de Ecología del CSIC son quienes valoran el estado de los ríos y miden los compuestos químicos que puedan resultar perjudiciales para la salud del río. Para hacerlo, estudian los organismos que habitan en ellos, como las algas o los insectos. Las algas están expuestas a todos los compuestos químicos transportados por el agua del río. Además, al estar ‘fijas’ en un lugar determinado del río (adheridas a una piedra, por ejemplo), permiten conocer qué cosas han sucedido en ese punto, como qué compuestos químicos había en el agua durante el periodo en el que han crecido.

Vista canales artificiales en el laboratorio

Vista lateral de los canales artificiales en funcionamiento, iluminados con fluorescentes que simulan la luz solar.

En este sentido, estos microorganismos actúan como indicadores de la calidad del agua, ya que la presencia o ausencia de las diferentes especies es una señal de la presencia o ausencia de determinados contaminantes.

Como los investigadores no se pueden llevar ni el río ni las piedras al laboratorio, utilizan sustratos artificiales. Estos son trocitos de plástico que se insertan en unas estructuras para que no se los lleve la corriente del río. Se dejan un tiempo en el río y se recogen cuando las algas han crecido sobre ellos. Una vez en el laboratorio los sustratos y sus algas son depositados en canales artificiales con agua del río, y sometidos a las mismas condiciones de luz, velocidad, etcétera, que se utilizarán durante los experimentos.

Una vez en el laboratorio se recrean diferentes situaciones. Por ejemplo, para medir el efecto o la toxicidad de un determinado compuesto se comparan los microorganismos de varios canales: en uno de ellos se deja el agua limpia y en los demás se añaden diferentes cantidades del tóxico que se quiere estudiar. Al medir y comparar la fotosíntesis de unas algas con otras se puede conocer con mucha precisión cuánta cantidad del tóxico afecta al alga.

Si quieres saber más sobre cómo llevar un río al laboratorio échale un vistazo al vídeo realizado por el CSIC para dar a conocer sus líneas de investigación. El vídeo forma parte del proyecto de divulgación ‘Investiga con nosotros’, que cuenta con el apoyo de la FECYT.

Te presentamos Arbolapp, una app gratuita para identificar árboles

FICHA ANDROIDok

Por Mar Gulis

¿Sabías que La Gioconda está pintada sobre una tabla de álamo? ¿O que los frutos del madroño contienen alcohol y su consumo excesivo puede provocar borracheras? ¿O que en el Antiguo Egipto se usaban los frutos del almendro para ajusticiar a los criminales? Estas son algunas de las curiosidades que recoge Arbolapp, una app con la que podrás identificar los árboles silvestres de la Península Ibérica y las Islas Baleares desde tu móvil. El lugar idóneo para utilizarla es el medio natural, así que si estás planeando una salida al campo, ahora tienes otro aliciente. Pero si no te mueves de casa, también puedes empezar a curiosear: Arbolapp ya se puede descargar gratuitamente en teléfonos Android o IOS.

Aunque su uso es muy intuitivo, vamos a dar algunas pistas. Esta app incluye información sobre 118 especies de árboles que pueblan bosques y demás hábitats naturales de la España peninsular, Portugal continental, Andorra y las Islas Baleares. A lo largo de 98 fichas encontrarás textos descriptivos, fotografías y curiosidades de arces, abedules, avellanos, higueras, fresnos, enebros, pinos, chopos… Además podrás acceder a mapas que te mostrarán en qué provincias está presente cada el árbol.

Para identificar una especie, puedes elegir entre dos tipos de búsqueda. Una guiada, en la que hay que escoger en sucesivas pantallas la alternativa que mejor describe el árbol que quieras reconocer; y otra abierta, que permite encontrar árboles por provincia, tipo de hoja, fruto, flor u otros criterios.

Fagus sylvatica, haya Felipe Castilla

Hojas de haya (Fagus sylvatica) / Felipe Castilla

Y si la botánica nunca ha sido tu punto fuerte, no te preocupes. Arbolapp está pensada para que cualquier usuario pueda manejarla, por eso utiliza un lenguaje asequible y cientos de fotografías y dibujos acompañan los textos para facilitar la comprensión. Eso sí, detrás de este proyecto está el trabajo de un equipo de personas pertenecientes al Área de Cultura Científica y al Real Jardín Botánico del CSIC, por lo que al afán divulgativo se une el rigor científico. Además, el proyecto ha sido cofinanciado por la Fundación Española para la Ciencia y la Tecnología (FECYT).

Una cosa más: la app está disponible en Google play y App Store tanto en castellano como en inglés. También cuenta con una página web (www.arbolapp.es) donde encontrarás más información sobre su uso y contenidos. ¿Te animas a probarla?

Este edificio se come la contaminación

Por Mar Gulis

Aunque lo parezca, no es ciencia ficción. Entre el sinfín de aplicaciones de la nanotecnología, esta es una más: la construcción de edificios capaces de absorber los gases nocivos del aire. La iglesia del Jubileo en Roma es un buen ejemplo.

Igleisa

Fachada de la iglesia del Jubileo de Roma, obra del arquitecto Richard Meier

Inaugurada en 2003, el artífice de esta obra fue el arquitecto norteamericano Richard Meier, que resultó ganador de un concurso después de competir con colegas de la talla de Fran Gehry, Peter Eisenmman o Tadao Ando. En un simple vistazo, lo que llama la atención de este edificio son sus líneas simples, su armonía y el dominio absoluto del color blanco. La elección de este tono no fue casual. Además de ser el favorito de Meier, el blanco simboliza la pureza, por lo que pareció el más idóneo para caracterizar una iglesia con la que además se pretendía revitalizar el barrio romano de Tor Tre Teste. Pero se planteaba un problema: ¿cómo evitar que la blancura inicial se echase a perder con el paso del tiempo? Esto, en un enclave como Roma, una ciudad con elevados índices de contaminación, era una cuestión de primer orden.

La solución vino de la mano de TX Millenium, un cemento que, al contener dióxido de titanio, garantiza la blancura del material a pesar de la polución y las inclemencias meteorológicas.

¿Cómo se consigue esto? Los avances en la nanotecnología obran el ‘milagro’. La superficie de este tipo de edificios ‘verdes’ se recubre con un material -en este caso el cemento TX Millenium- que es un fotocatalizador, es decir, descompone los óxidos nitrosos de la atmósfera. En la iglesia de Meier son las nanopartículas de dióxido de titanio las que atrapan la suciedad y luego la descomponen en contacto con la luz solar. De este modo el edificio se convierte en una especie de gran ambientador, tal y como explica el experto en nanomateriales Pedro Serena.

El problema es que, al tratarse de una tecnología en pleno desarrollo, conlleva unos elevados costes de fabricación. Son precisamente los catalizadores incrustados en formato de nanopartículas lo que encarece estos cementos. Aún hace falta producirlos en masa, pero la idea, según señala el investigador, es que toda una ciudad pudiese ser un gran sistema descontaminante.

La nanotecnología es una ciencia relativamente nueva que, al trabajar en una escala sumamente pequeña (un nanómetro equivale a una mil millonésima parte de un metro) permite la manipulación de los materiales a nivel molecular. Propiedades como la masa, la fuerza, la conductividad o la elasticidad pueden ser alteradas para crear materiales totalmente diferentes. Y no es un milagro, es ciencia.

 

Si quieres más ciencia para llevar sobre nanomateriales, consulta el libro de Pedro Serena La nanotecnología (CSIC-Catarata).