Entradas etiquetadas como ‘robot’

¿Puede un robot pintar un Rembrandt?

Por Mar Gulis (CSIC)

“¿Sería posible revivir a Rembrandt?”. A partir de esta provocadora pregunta, Ramón López de Mántaras, investigador del CSIC, explica uno de los éxitos de la inteligencia artificial aplicada al arte: la creación de un cuadro que, según los expertos consultados, podría pasar por un auténtico Rembrandt. Científicos, ingenieros e historiadores del arte trabajaron durante más de un año para ‘enseñar’ a una computadora a ser ‘el próximo Rembrandt’. The Next Rembrandt, como se denomina este proyecto, ha sido impulsado por varias multinacionales, la Universidad Técnica de Delft y los museos Mauritshuis y Rembrandthuis. ¿El resultado? Este cuadro, una obra que imita a la perfección los trazos y el estilo del gran pintor holandés.

El software ‘pintó’ la obra tras analizar 326 obras del famoso pintor holandés / The Next Rembrandt

Para ello, “el software analiza detalladamente el trazo de las pinturas originales, las proporciones y distancias que se observan en los retratos de Rembrandt y otras muchas variables que se repiten en las obras del pintor: rostros masculinos, con bigote o barba, con sombrero, con la cabeza generalmente ladeada y mirando a la derecha… Después, con una impresora 3D, esta inteligencia artificial ‘pinta’ un Rembrandt”, comentó Mántaras, director del Instituto de Investigación en Inteligencia Artificial del CSIC, durante una charla del ciclo Inteligencia artificial y robótica en la Residencia de Estudiantes de Madrid.

Previamente, los desarrolladores identificaron y clasificaron los patrones más comunes de la obra del pintor, desde su composición hasta las dimensiones de los rasgos faciales de los personajes retratados. Así, la obra resultante se basa en el análisis pormenorizado de miles y miles de fragmentos pictóricos de los 346 cuadros conocidos del autor. El procesamiento estadístico de todos los datos hace que el software ‘fabrique’ un cuadro que integra las variables que más se repiten; en este caso, la pintura resultante debía ser un retrato de un hombre caucásico, de entre 30 y 40 años, con vello facial, ropa oscura, cuello blanco, sombrero y la cara girada hacia la derecha, como muchas de las obras del maestro del barroco.

A lo largo del proceso, la computadora combina un algoritmo de reconocimiento facial con un software de aprendizaje profundo. Después, ‘aprende’ a pintar una nariz, unos ojos o una boca como lo haría Rembrandt. Como resultado, pinta un nuevo cuadro, no una réplica de uno existente.

El proyecto refleja hasta qué punto está perfeccionándose la capacidad de los ordenadores para realizar tareas específicas mejor que las personas. Este no es el único ejemplo: jugar al ajedrez, buscar soluciones a fórmulas lógicas o realizar diagnósticos más rápido que los médicos son actividades que algunas máquinas resuelven con más pericia que los humanos. Ahora bien, ¿es posible construir máquinas con una inteligencia similar a la humana? Esta es una de las preguntas que planteaba Mántaras, también coautor del libro Inteligencia artificial (CSIC-Catarata). En su opinión, “los intentos de crear este tipo de inteligencia artificial se enfrentan a la dificultad de dotar a las máquinas de sentido común”. Este conocimiento es fruto de nuestras vivencias y experiencias, que a su vez son el resultado de una interacción constante con el entorno, algo que no pueden adquirir las computadoras.

“Ese es el gran desafío. No nos acercamos a la inteligencia artificial general porque desarrollamos inteligencias muy específicas. Hay que integrar todo eso”, añadió. Como señala en su libro, “necesitamos nuevos algoritmos que puedan responder a preguntas sobre prácticamente cualquier tema. Y además, estos sistemas deberán ser capaces de aprender nuevos conocimientos a lo largo de toda su existencia”. Eso sí, mientras se avanza hacia esa inteligencia profunda, ya podemos admirar obras maestras realizadas por computadoras; aunque quizá nos hallemos también ante una nueva pérdida del aura de la obra de arte, tal y como advirtió Walter Benjamin.

 

¿En qué se diferencia un robot de otros tipos de máquinas?

AutoraPor Elena García Armada (CSIC)*

En el año 2000, el CSIC llevó a la feria Aula un robot llamado SILO4, un pequeño cuadrúpedo rojo y del tamaño de una mesa rinconera diseñado en el Instituto de Automática Industrial –hoy, Centro de Automática y Robótica (CSIC-UPM)–. La principal función de SILO4 era la de caminar: eso que cualquier animal hace de forma natural a nosotros, nos había costado tres tesis doctorales, la mía entre ellas, y dos proyectos de investigación.

Entre las muchas visitas que atendimos, una de ellas fue la de una niña rubita de unos siete años. Cuando nos preguntó “¿Esto qué es?”, el compañero que había hecho el diseño mecánico y supervisado la fabricación del SILO4, con la cabeza alta y el pecho hinchado, contestó: “Es un robot”. La niña reflejó una mezcla de sorpresa y curiosidad en su rostro. Tras una pausa de pocos segundos, volvió a preguntar: “¿Y qué sabe hacer?”. Mi compañero volvió a inflar el pecho, alzó la cabeza y, muy satisfecho, respondió: “Este robot sabe andar”. Tras otra pausa, la niña volvió a la carga: “¿Y qué más sabe hacer?”. Mi compañero se desinfló ligeramente, arrugó un poco el ceño y dijo: “No hace nada más, caminar ya es bastante para un robot”. La expresión de decepción de la niña precedió a su fulminante conclusión, que no tardó en expresar con total desinhibición: “Pues vaya cosa. Mi muñeca Pili anda y además hace pis”. Dio media vuelta y se marchó, muy orgullosa de su muñeca y bastante decepcionada por esa mesa roja andante que se hacía llamar robot y ni siquiera era capaz de hacer pis.

elena+silo4baja

Elena García Armada (en la imagen) dedicó su tesis a hacer que SILO4 caminara.

Siguiendo el razonamiento de la niña, podríamos preguntarnos qué tienen de especial los robots si otras máquinas, mecanismos o muñecos aparentemente pueden realizar más funciones que ellos. ¿Qué es, por ejemplo, lo que distinguía a Pili y otras muñecas andantes de SILO4? Pues, a diferencia de lo que creía la protagonista de nuestra anécdota, era precisamente la capacidad de caminar la que marcaba esa diferencia. Pili movía sus piernas rígidas de forma cíclica y mecánica, sin prestar atención al suelo o al entorno que la rodeaba, y por tanto se caía a la menor perturbación en el camino, o a veces sin ella, y seguía moviendo las piernecitas mientras se quedaba tendida en el suelo, sin tener conocimiento de lo sucedido. En cambio, SILO4 tenía tres articulaciones en cada pata que le permitían adaptarse al terreno; además, era capaz de asegurarse de que la postura elegida y los apoyos seleccionados eran estables y le conducían a su destino.

SILO4 estaba dotado del trinomio percepción-decisión-acción, es decir, percibía información del entorno y de sí mismo y la utilizaba en un proceso de razonamiento más o menos sofisticado para ejecutar una acción: el próximo movimiento. De esta forma, tenía la capacidad de realizar de manera autónoma una operación antes reservada a las personas, y esta es precisamente la característica que distingue a los robots de otras máquinas.

Podemos observar este comportamiento en otros robots integrados en nuestra vida cotidiana, como los robots cortacésped o de limpieza. Estos últimos, por ejemplo, se diferencian de una aspiradora tradicional porque limpian sin intervención humana, evitando obstáculos, adaptándose al grado de suciedad y asegurando la higiene completa.

La autonomía de los robots se debe a su condición programable. Es un programa informático o electrónico lo que hace posible que el robot tome decisiones. Sin embargo, hay que tener en cuenta que el robot únicamente podrá tomar decisiones que hayan sido programadas, a partir de estímulos que sea capaz de percibir (a través de sus sensores) y sobre aquellas acciones que pueda realizar (gracias a su diseño mecánico). Por eso, el programa, el sistema de percepción y el diseño constituyen, al mismo tiempo, las capacidades y los límites del robot. No puede tomar una decisión que no haya sido programada, no puede ver su entorno si no tiene cámaras de visión artificial y no puede manipular objetos, si no tiene manos, entre otros ejemplos. No puede hacer pis si no se ha diseñado para ese fin.

 

* Elena García Armada es investigadora en el  Centro de Automática y Robótica (CSIC-UPM) y autora del libro de divulgación Robots (CSIC-Catarata).