Entradas etiquetadas como ‘geociencias’

Volcanes bajo el mar

Por Adelina Geyer* (CSIC)

Los volcanes son unos de los fenómenos naturales más espectaculares de nuestro planeta. En los últimos 60 años se han registrado anualmente entre 50 y 80 erupciones, en las que el magma sale del interior de la Tierra a través de fracturas en el suelo dando lugar a exuberantes columnas eruptivas de varios kilómetros de altura o a espectaculares ríos de lava. Cuando pensamos en un volcán, solemos imaginarnos una gran montaña, como el gran monte Fuji (Japón), o el domo de lava Puy de Dôme (Francia). Pero olvidamos que el fondo de los océanos acoge también abundante actividad volcánica. De hecho, la gran mayoría del volcanismo en la Tierra, se estima que más del 80%, ocurre bajo el agua, tanto en zonas profundas (a kilómetros de profundidad) como someras (a algunos centenares de metros).

Vista del monte Fuji y la pagoda Chūrei-tō desde el florecido parque Arakurayama Sengen, en Fujiyoshida, prefectura de Yamanashi, en Japón central. Imagen: Reginald Pentinio / Flickr

La actividad volcánica de nuestro planeta, ya sea aérea (en la superficie terrestre) o submarina, se concentra primordialmente en los límites de las placas tectónicas. A lo largo de las zonas de dorsal o rift (límites divergentes) y las de subducción (límites convergentes) existen cambios de temperatura, presión o de composición química que permiten que las rocas del manto se fundan parcialmente y se genere magma. Este magma asciende hacia la superficie y, en ocasiones, se detiene a diferentes profundidades para acumularse en reservorios (cámaras magmáticas) que alimentan a los sistemas volcánicos. Además, un pequeño porcentaje de la actividad volcánica se origina dentro de las placas tectónicas (volcanismo intraplaca) sobre los denominados puntos calientes, zonas donde la temperatura del manto es anómalamente elevada.

Vista del volcán Puy de Dôme desde el Puy de Côme. El Puy de Dôme es, uno de los volcanes más jóvenes de la región Chaîne des Puys, en el Macizo Central, en el sur de Francia. Imagen: Clément Beckert

Coladas de lava bajo las aguas

Durante una erupción, el tipo de actividad y los materiales volcánicos generados dependen principalmente de la composición y el contenido de gas en el magma que asciende a la superficie. Además, para el caso del volcanismo submarino, otro factor principal es la profundidad de la zona de emisión de magma.

En la mayoría de las erupciones submarinas en aguas profundas, el magma suele ser de composición basáltica. El magma basáltico, de alta temperatura (1000 a 1200 °C), baja viscosidad (puede fluir con facilidad) y bajo contenido en gas, sale al fondo del océano en forma de fuentes y coladas de lava. Cuando estas entran en contacto con el agua fría (2 a 4 °C), la superficie exterior del magma se enfría rápidamente hasta convertirse en vidrio. Las lavas submarinas más comunes son las almohadilladas (pillow lavas), por sus formas más o menos esféricas o redondeadas, en forma de almohada. También son frecuentes los flujos de lava lobulados (lobate lavas), de superficie lisa o con una textura de caparazón de tortuga de vidrio fracturado por contracción, y los flujos laminares (sheet flows), que pueden presentar superficies lisas, alineaciones, pliegues, etc. La presencia de uno u otro tipo de coladas de lava no depende de la composición química, sino de las diferencias en la tasa de suministro de magma, la topografía subyacente y las condiciones del flujo.

Lavas almohadilladas en el fondo oceánico de Hawaii. Imagen: National Undersea Research Program (NURP) / Office of Oceanic and Atmospheric Research (OAR), USA

Un millón de montes submarinos

La acumulación de materiales volcánicos en el fondo del mar, especialmente de coladas de lava, da lugar a los denominados montes submarinos (seamounts). Se trata de los volcanes más abundantes de la superficie de la Tierra ─se han identificado más de un millón─, pero los menos estudiados. Los montes submarinos pasan por varias etapas de crecimiento, y es común observar en sus cumbres cráteres de tamaño muy variable: de pocas decenas de metros a unos kilómetros.

Durante la etapa de desarrollo de los montes submarinos en aguas profundas la alta presión hidrostática (presión del agua) favorece un tipo de actividad volcánica poco o nada explosiva. La presión es tan elevada que el agua no hierve de forma explosiva cuando entra en contacto con el magma. A medida que el edificio volcánico crece, el centro emisor de magma se vuelve más somero, por lo que la presión hidrostática disminuye. En este momento, comienza a haber una interacción explosiva entre el agua y el magma, similar a cuando caen gotas de agua en una sartén con aceite muy caliente. La actividad volcánica se vuelve más violenta, con fases eruptivas llamadas de tipo surtseyano (por el volcán Surtsey), que generan conos de toba ­─roca ligera formada por cenizas volcánicas­─ submarinos y superficiales. Si la actividad volcánica continúa, puede llegar a crearse una gran isla volcánica, como Tenerife o La Palma (Islas Canarias).

Erupción del volcán Surtsey (Islandia, 1963), que dio lugar al nombre del tipo de actividad surtseyana. Imagen: National Oceanic and Atmospheric Administration’s (NOAA), Office of Oceanic and Atmospheric Research (OAR), USA

Fuentes hidrotermales

Otro fenómeno relacionado con el volcanismo submarino es la actividad hidrotermal, tanto en los montes submarinos como a lo largo de las dorsales oceánicas. El agua de mar se infiltra por las fracturas de la corteza, se calienta con las rocas volcánicas y el magma que hay en profundidad, reacciona con las rocas de la corteza oceánica y vuelve a subir al lecho marino. En su camino, los fluidos hidrotermales realizan un intercambio químico con las rocas que atraviesan, dejando atrás unos elementos y recogiendo otros que traen de vuelta hacia la superficie y al océano. De esta manera, los fluidos hidrotermales transportan gases producidos por la interacción agua-roca o provenientes del magma, así como altas concentraciones de metales en solución.

Las soluciones hidrotermales surgen a través de fumarolas en el fondo del océano a temperaturas que alcanzan varias centenas de grados. Al emerger, las soluciones precipitan diversos minerales (pirita, calcopirita, etc.) que forman depósitos y sedimentos ricos en hierro y manganeso. Además, las altas concentraciones de sulfuro de hidrógeno en estas fumarolas sustentan un conjunto biológico único, que incluye bacterias oxidantes de sulfuro, que forman la base de una cadena alimentaria.

Una ‘fumarola negra’ emite chorros de fluidos cargados de partículas, predominantemente minerales de sulfuro, de grano muy fino. Las ‘fumarolas negras’ se forman a partir de depósitos de sulfuro de hierro, que es negro. Las ‘fumarolas blancas’ se forman por depósitos de bario, calcio y silicio, de color blanco. Imagen: National Ocean Service National Oceanic and Atmospheric Administration, U.S. Department of Commerce

Mucho queda por aprender del volcanismo submarino de nuestro planeta, pero los avances tecnológicos recientes como los ROV (vehículos operados remotamente) permiten tomar imágenes, vídeos e incluso recoger muestras para avanzar en el conocimiento de la dinámica y los productos de las erupciones submarinas.

¿Qué será lo siguiente que descubramos sobre el misterioso fondo del océano?

*Adelina Geyer es investigadora del CSIC en el Instituto de Geociencias de Barcelona (GEO3BCN – CSIC) y miembro del Grupo de Volcanología de Barcelona. Geyer divulga la ciencia de los volcanes para público general e infantil.

Si los muros del Metro hablaran… ¿Qué nos dicen los azulejos de una ‘estación fantasma’?

Por Elena Mercedes Pérez Monserrat y Mar Gulis (CSIC)*

El Metro de Madrid cumple 100 años en 2019. Esta red de Metro, que hoy es una de las mejores del mundo y cuenta con 302 estaciones a lo largo de 294 kilómetros de recorrido, fue inaugurada en 1919 por el rey Alfonso XIII con una sola línea Norte-Sur que iba desde Puerta del Sol a Cuatro Caminos (el germen de la que hoy se denomina Línea 1), con un total de 8 estaciones y que no llegaba a cubrir 3,5 kilómetros.

En los años 60 del siglo XX, cuando la compañía Metropolitano decidió alargar los trenes, se reformaron las estaciones para que los andenes pasaran de tener 60 a 90 metros. Pero hubo una estación en la que, por su situación en curva y por la cercanía a las paradas colindantes, no se pudo acometer esta reforma y acabó siendo clausurada por el Ministerio de Obras Públicas: la estación de Chamberí.

 

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

Tras más de 40 años cerrada y siendo objeto de curiosidades varias, la estación de Chamberí, después de una importante actuación de limpieza, restauración y conservación, fue reabierta en 2008 como centro de interpretación visitable del Metro de Madrid. Durante esas décadas en las que la “estación fantasma” permaneció cerrada al público, los accesos exteriores fueron vallados, hecho que permitió que se conservaran muchos de los objetos cotidianos de la época, como carteles publicitarios, tornos, papeleras… así como las cerámicas que recubrían toda la estación. Es decir, lo excepcional del lugar es que se trata de la única estación del Metropolitano que conserva su estado original casi en su práctica totalidad.

Luz y color para el Metropolitano de Madrid

En 1913 los ingenieros Carlos Mendoza (1872-1950), Miguel Otamendi (1878-1958) y Antonio González Echarte (1864-1942) presentaban un proyecto de red de metro para la ciudad de Madrid. El arquitecto Antonio Palacios (1874-1945) fue el encargado de diseñar las estaciones, los accesos y los edificios del proyecto. Se buscaba integrar el uso de materiales tradicionales en un entorno tecnológico completamente nuevo, dando un resultado muy decorativo de marcado estilo español. Con la aplicación de azulejería en el suburbano se pretendía proporcionar luminosidad y color a unos nuevos espacios -bajo tierra- que iban a ser utilizados por personas acostumbradas a la luz natural. La rica variedad de cerámicas de las diversas regiones españolas facilitó poner en práctica este empeño.

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

En Madrid, la cerámica vidriada aplicada a la arquitectura tuvo su máximo apogeo a finales del siglo XIX y principios del XX. Entonces, la azulejería publicitaria -especialmente en las estaciones del Metropolitano- y la urbana cobraron un especial significado. Este material favoreció el auge de las industrias cerámicas de los principales centros productores. Así, en la arquitectura madrileña de principios del siglo XX la cerámica vidriada desempeñaba un papel esencial desde la concepción inicial de los proyectos; y cabe resaltar la apuesta por seleccionar materias primas nacionales para su elaboración. En cuanto a las piezas de reposición que se han elaborado recientemente para las labores de restauración, se han respetado los aspectos formales de las originales, pero utilizando materiales y tecnologías que incrementan su resistencia.

El uso de la cerámica vidriada respondía también al apogeo en la época de la publicidad alicatada, así como a las condiciones de buena conservación y fácil limpieza que presenta la azulejería. Tras la Guerra Civil española (1936-1939) la publicidad en cerámica de la estación fue cubierta por tela y papel, que protegieron las cerámicas.

Qué nos dice el análisis científico de las cerámicas vidriadas de Chamberí

Un estudio multidisciplinar coordinado por personal investigador del Instituto de Geociencias (CSIC/UCM) ha permitido conocer las materias primas y las tecnologías de fabricación de unas cerámicas vidriadas extraordinarias, especialmente elaboradas para este emplazamiento excepcional: la estación de Metro de Chamberí (Madrid). El conocimiento adquirido pretende apostar por la conservación y puesta en valor de estos materiales, tanto de las piezas originales como de las de reposición.

Conforme a la función que desempeñan en la estación, las piezas estudiadas se agrupan en:

  • Azulejos blancos y lisos, que revisten la práctica totalidad de los paramentos y desempeñan una función esencialmente práctica, al otorgar luminosidad y resultar de fácil limpieza.
  • Piezas con reflejo metálico y superficies adornadas, con un carácter marcadamente decorativo, resaltando los encuentros de los planos y el enmarcado de la publicidad alicatada en los andenes.
Piezas originales. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas originales. Arriba: azulejos blancos, elaborados en Onda (Castellón). Abajo: piezas con reflejo metálico, elaboradas en Triana (Sevilla). Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Los azulejos blancos originales fueron fabricados en Onda (Castellón) a partir de mezclas arcillosas muy ricas en carbonatos y cocidas a unos 950 ºC. Presentan un vidriado plúmbico alcalino cuya opacidad es en gran parte otorgada por partículas ricas en plomo y arsénico. Las piezas originales de carácter decorativo -con reflejo metálico- fueron elaboradas en Triana (Sevilla) a partir de arcillas illíticas calcáreas y cocidas entre 850-950 ºC. Se cubrieron con vidriados plúmbicos transparentes, con la adición de cobre y estaño.

Piezas de reposición. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas de reposición, elaboradas en Madrid. Arriba: azulejos blancos. Abajo: piezas con reflejo metálico. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Las piezas de reposición se elaboraron según el aspecto de las originales y se apostó por la utilización de materiales y técnicas que otorgaran especial resistencia a las piezas. Se fabricaron en Madrid con materias primas principalmente procedentes de Barcelona, Castellón y Teruel. Las blancas, a partir de arcillas illítico-caoliníticas y calcáreas ricas en cuarzo cocidas a >950 ºC, aplicando un vidriado alcalino muy rico en zircona y alúmina. Las nuevas piezas con reflejo se elaboraron a partir de arcillas illítico-caoliníticas muy alumínicas cocidas a <850 ºC y con la importante adición de una chamota especialmente refractaria, cubriéndose con un vidriado plúmbico-potásico rico en alúmina.

 

* Este proyecto de investigación ha sido realizado por un equipo multidisciplinar del Instituto de Geociencias (CSIC/UCM), la Universidad de Granada, el Museo Nacional de Ciencias Naturales (CSIC) y la Universidad Nacional de Educación a Distancia. Puedes leer el artículo completo aquí.