Entradas etiquetadas como ‘materiales’

Si los muros del Metro hablaran… ¿Qué nos dicen los azulejos de una ‘estación fantasma’?

Por Elena Mercedes Pérez Monserrat y Mar Gulis (CSIC)*

El Metro de Madrid cumple 100 años en 2019. Esta red de Metro, que hoy es una de las mejores del mundo y cuenta con 302 estaciones a lo largo de 294 kilómetros de recorrido, fue inaugurada en 1919 por el rey Alfonso XIII con una sola línea Norte-Sur que iba desde Puerta del Sol a Cuatro Caminos (el germen de la que hoy se denomina Línea 1), con un total de 8 estaciones y que no llegaba a cubrir 3,5 kilómetros.

En los años 60 del siglo XX, cuando la compañía Metropolitano decidió alargar los trenes, se reformaron las estaciones para que los andenes pasaran de tener 60 a 90 metros. Pero hubo una estación en la que, por su situación en curva y por la cercanía a las paradas colindantes, no se pudo acometer esta reforma y acabó siendo clausurada por el Ministerio de Obras Públicas: la estación de Chamberí.

 

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

La icónica decoración de las estaciones del Metro de Madrid, incluidos vestíbulos, andenes o bocas de acceso, fue diseño del arquitecto Antonio Palacios. / Laura Llera

Tras más de 40 años cerrada y siendo objeto de curiosidades varias, la estación de Chamberí, después de una importante actuación de limpieza, restauración y conservación, fue reabierta en 2008 como centro de interpretación visitable del Metro de Madrid. Durante esas décadas en las que la “estación fantasma” permaneció cerrada al público, los accesos exteriores fueron vallados, hecho que permitió que se conservaran muchos de los objetos cotidianos de la época, como carteles publicitarios, tornos, papeleras… así como las cerámicas que recubrían toda la estación. Es decir, lo excepcional del lugar es que se trata de la única estación del Metropolitano que conserva su estado original casi en su práctica totalidad.

Luz y color para el Metropolitano de Madrid

En 1913 los ingenieros Carlos Mendoza (1872-1950), Miguel Otamendi (1878-1958) y Antonio González Echarte (1864-1942) presentaban un proyecto de red de metro para la ciudad de Madrid. El arquitecto Antonio Palacios (1874-1945) fue el encargado de diseñar las estaciones, los accesos y los edificios del proyecto. Se buscaba integrar el uso de materiales tradicionales en un entorno tecnológico completamente nuevo, dando un resultado muy decorativo de marcado estilo español. Con la aplicación de azulejería en el suburbano se pretendía proporcionar luminosidad y color a unos nuevos espacios -bajo tierra- que iban a ser utilizados por personas acostumbradas a la luz natural. La rica variedad de cerámicas de las diversas regiones españolas facilitó poner en práctica este empeño.

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

Estado actual de la estación de Metro de Chamberí (Madrid), alicatada con azulejos blancos y decorada con piezas coloreadas y/o con reflejo metálico. / Laura Llera

En Madrid, la cerámica vidriada aplicada a la arquitectura tuvo su máximo apogeo a finales del siglo XIX y principios del XX. Entonces, la azulejería publicitaria -especialmente en las estaciones del Metropolitano- y la urbana cobraron un especial significado. Este material favoreció el auge de las industrias cerámicas de los principales centros productores. Así, en la arquitectura madrileña de principios del siglo XX la cerámica vidriada desempeñaba un papel esencial desde la concepción inicial de los proyectos; y cabe resaltar la apuesta por seleccionar materias primas nacionales para su elaboración. En cuanto a las piezas de reposición que se han elaborado recientemente para las labores de restauración, se han respetado los aspectos formales de las originales, pero utilizando materiales y tecnologías que incrementan su resistencia.

El uso de la cerámica vidriada respondía también al apogeo en la época de la publicidad alicatada, así como a las condiciones de buena conservación y fácil limpieza que presenta la azulejería. Tras la Guerra Civil española (1936-1939) la publicidad en cerámica de la estación fue cubierta por tela y papel, que protegieron las cerámicas.

Qué nos dice el análisis científico de las cerámicas vidriadas de Chamberí

Un estudio multidisciplinar coordinado por personal investigador del Instituto de Geociencias (CSIC/UCM) ha permitido conocer las materias primas y las tecnologías de fabricación de unas cerámicas vidriadas extraordinarias, especialmente elaboradas para este emplazamiento excepcional: la estación de Metro de Chamberí (Madrid). El conocimiento adquirido pretende apostar por la conservación y puesta en valor de estos materiales, tanto de las piezas originales como de las de reposición.

Conforme a la función que desempeñan en la estación, las piezas estudiadas se agrupan en:

  • Azulejos blancos y lisos, que revisten la práctica totalidad de los paramentos y desempeñan una función esencialmente práctica, al otorgar luminosidad y resultar de fácil limpieza.
  • Piezas con reflejo metálico y superficies adornadas, con un carácter marcadamente decorativo, resaltando los encuentros de los planos y el enmarcado de la publicidad alicatada en los andenes.
Piezas originales. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas originales. Arriba: azulejos blancos, elaborados en Onda (Castellón). Abajo: piezas con reflejo metálico, elaboradas en Triana (Sevilla). Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Los azulejos blancos originales fueron fabricados en Onda (Castellón) a partir de mezclas arcillosas muy ricas en carbonatos y cocidas a unos 950 ºC. Presentan un vidriado plúmbico alcalino cuya opacidad es en gran parte otorgada por partículas ricas en plomo y arsénico. Las piezas originales de carácter decorativo -con reflejo metálico- fueron elaboradas en Triana (Sevilla) a partir de arcillas illíticas calcáreas y cocidas entre 850-950 ºC. Se cubrieron con vidriados plúmbicos transparentes, con la adición de cobre y estaño.

Piezas de reposición. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos). Superior: azulejos blancos. Inferior: piezas decorativas con reflejo metálico

Piezas de reposición, elaboradas en Madrid. Arriba: azulejos blancos. Abajo: piezas con reflejo metálico. Perspectivas: a simple vista, imágenes de microscopia óptica de polarización (vidriados y soporte cerámico) y electrónica de barrido (soportes cerámicos).

Las piezas de reposición se elaboraron según el aspecto de las originales y se apostó por la utilización de materiales y técnicas que otorgaran especial resistencia a las piezas. Se fabricaron en Madrid con materias primas principalmente procedentes de Barcelona, Castellón y Teruel. Las blancas, a partir de arcillas illítico-caoliníticas y calcáreas ricas en cuarzo cocidas a >950 ºC, aplicando un vidriado alcalino muy rico en zircona y alúmina. Las nuevas piezas con reflejo se elaboraron a partir de arcillas illítico-caoliníticas muy alumínicas cocidas a <850 ºC y con la importante adición de una chamota especialmente refractaria, cubriéndose con un vidriado plúmbico-potásico rico en alúmina.

 

* Este proyecto de investigación ha sido realizado por un equipo multidisciplinar del Instituto de Geociencias (CSIC/UCM), la Universidad de Granada, el Museo Nacional de Ciencias Naturales (CSIC) y la Universidad Nacional de Educación a Distancia. Puedes leer el artículo completo aquí.

Superconductividad: física cuántica que puedes ver

María José CalderónPor María José Calderón*

Hace 104 años, el 8 de abril de 1911, en un laboratorio de Leiden (Holanda) se descubrió un fenómeno que aún no comprendemos completamente: la superconductividad. Unos años antes, Heike Kamerlingh Onnes había conseguido condensar el helio y de esta forma bajar la temperatura hasta -269ºC, muy cerca del cero absoluto (a -273ºC). Este logro, por el que Onnes recibiría el premio Nobel en 1913, permitió la realización de experimentos a temperaturas muy bajas que abrió nuevos horizontes en el estudio de las propiedades eléctricas y magnéticas de los materiales.

Onnes centró su atención en estudiar cómo conducían la electricidad los metales a temperaturas extremadamente bajas. Eligió el mercurio, que es sólido a esas temperaturas, y encontró un comportamiento completamente inesperado: a casi -269ºC, y de forma abrupta, los aparatos de medida no registraban ninguna resistencia al paso de la corriente.

Los metales normales siempre presentan resistencia debido a la interacción de los electrones entre ellos y con el movimiento de los átomos del sólido. Dicha resistencia produce una pérdida de la energía de los electrones en forma de calor. Este es el efecto Joule, que puede resultar muy útil para hacer un calefactor eléctrico o un secador, pero que también es el responsable de una significativa pérdida de energía eléctrica en su transporte desde los puntos de producción a los de consumo. Para contrarrestar la pérdida de energía tenemos que conectar los metales a pilas u otras fuentes de voltaje. Sin embargo, en un superconductor, una vez que se ha establecido el paso de corriente, esta persiste para siempre.

Otra propiedad de los superconductores, asociada de forma fundamental a la conducción sin resistencia, es que expulsan los campos magnéticos. Este es el efecto Meissner, descubierto en 1933. Una consecuencia espectacular de este efecto es que un superconductor levita sobre un imán (o viceversa).

Aunque parezca extraño, la superconductividad es mucho más común de lo que parece. ¡Los materiales superconductores se cuentan por cientos! Sin embargo, todos ellos son metales a temperatura ambiente y tenemos que enfriarlos mucho, a temperaturas muy por debajo de las que se registran en los lugares más fríos de la Tierra, para que sean superconductores. Afortunadamente, la temperatura crítica máxima por debajo de la cual los materiales superconducen está ahora muy por encima de los -269ºC del mercurio. Los materiales cupratos, descubiertos en 1986, superconducen por encima de la temperatura del nitrógeno líquido (-196ºC), por lo que es relativamente fácil enfriarlos.

Levitacion

Imán levitando sobre un superconductor enfriado con nitrógeno líquido durante una actividad de divulgación del CSIC.

Los superconductores ya se usan en múltiples aplicaciones y se prevé que jueguen un papel fundamental en las tecnologías del futuro en campos como la energía, el medio ambiente, el transporte, la nanotecnología y la salud. Precisamente en este ámbito, ya se utilizan potentes electroimanes fabricados con cables superconductores en equipos de resonancia magnética.

Las aplicaciones podrán ser aún más amplias cuanto más se conozca la naturaleza de estos materiales, cuyas claves se han ido desgranando poco a poco a lo largo de la historia. Por ejemplo, la primera explicación microscópica de la superconductividad data de 1957. Bardeen, Cooper y Schrieffer dieron con la clave para explicar por qué los electrones en los superconductores se comportaban de forma diferente y se les distinguió con el premio Nobel de Física de 1972 por ello. Esta es la llamada teoría BCS. En pocas palabras, los electrones se asocian formando los llamados pares de Cooper. Estos pares no son independientes unos de otros sino que todos saben lo que están haciendo los demás, como en una danza bien ensayada, y así pueden moverse sin encontrar ningún tipo de resistencia a su movimiento. Aunque contado así parezca trivial, fue necesario el desarrollo de la física cuántica para llegar a entender este comportamiento colectivo de los electrones.

Pero, ¿por qué se asocian los electrones para formar parejas? ¿No se supone que dos cargas eléctricas iguales se repelen? Así es, pero los electrones que conducen la electricidad están inmersos en un material por lo que están sometidos a otros tipos de interacciones. En los llamados superconductores convencionales, que se descubrieron en las primeras décadas del siglo XX, los iones vibran de tal forma que los electrones prefieren formar parejas (porque minimizan su energía). Hay otros muchos superconductores, los no convencionales, en los que los electrones también forman parejas, pero aún no sabemos qué les empuja a ello.

La última gran familia de superconductores, basados en hierro, se descubrió en 2008. Tras 104 años de investigación en este campo aún quedan incógnitas por resolver y mucha tecnología por desarrollar.

*María José Calderón investiga, junto con Belén Valenzuela y Leni Bascones, los nuevos superconductores de hierro en el Instituto de Ciencia de Materiales de Madrid del CSIC. Puedes saber más sobre superconductividad en su web de divulgación y seguir sus noticias a través de su twitter.

Biomimética: bañadores que imitan la piel del tiburón y mucho más

Mario HoyosPor Mario Hoyos (CSIC)*

Muchas de las grandes innovaciones científicas se basan en la imitación de la naturaleza. La fascinante habilidad de determinados seres vivos para adherirse a las superficies, repeler el agua, endurecer la piel o generar energía a partir de la luz solar ha inspirado investigaciones punteras en el marco de lo que se conoce como biomimética. El término, que literalmente significa imitar la vida, fue introducido por el estadounidense Otto Schmitt en la década de 1950, cuando estudiaba el desarrollo de dispositivos electrónicos tomando como base el sistema nervioso del calamar.

Una de las áreas más beneficiadas por la biomimética ha sido la Ciencia de Materiales. El antecedente más conocido es el famoso velcro que en 1955 patentó el ingeniero suizo George de Mestral. El invento llegó después de haber estudiado la estructura de las flores de cardo y la gran adherencia que desarrollan en todo tipo de tejidos, debida a la multitud de ganchillos que actúan como resistentes garfios.

Los ganchillos del velcro (derecha) imitan a los del cardo (izquierda) / Zephyris - Olivepixel

Los ganchillos del velcro (derecha) imitan a los del cardo (izquierda) / Zephyris – Olivepixel

En la misma línea, las patas de algunas salamanquesas han inspirado la creación de estructuras superficiales con extraordinarias propiedades. Estos animales pueden adherirse a casi cualquier superficie gracias al entramado microscópico de las almohadillas de sus extremidades. Dicho entramado está compuesto por unos pelos muy finos (denominados setae), de tan sólo 0,1 mm de longitud, que terminan en pequeñísimas ramificaciones en forma de espátula. Pese a su diminuto tamaño, las setae de las patas de un Gecko Tokay macho de 70 gramos tienen una fuerza adhesiva que teóricamente podría sostener un peso de unos 133 kilos. Esto es debido a la denominada  fuerza de Van der Waals. En 2005, investigadores de la Universidad de Akron y del Instituto Politécnico Rensselaer (EEUU) crearon una estructura de setae sintética con nanotubos de carbono con la que se han obtenido mejores propiedades incluso que las de los gecko naturales.

La extraordinaria capacidad de adherencia del camaleón se debe a los finísimos pelos de sus extremidades / Bjørn Christian Tørrissen

La extraordinaria capacidad de adherencia de las salamanquesas se debe a los finísimos pelos de sus extremidades / Bjørn Christian Tørrissen

La repelencia al agua es otra propiedad de las superficies que se ha desarrollado extraordinariamente gracias a la biomimética. La rugosidad a escala molecular de la flor de loto ayuda a mantener en la parte superior de sus hojas hasta la más minúscula gota de agua, que resbala por su superficie por pequeñas que sean su masa e inercia. Esta ventaja evolutiva permite la ‘autolimpieza’ de sus hojas, ya que las gotas, cuando resbalan repelidas, arrastran las minúsculas partículas y bacterias que supondrían una amenaza para su supervivencia. Gracias al diseño biomimético, varios laboratorios y compañías han emulado la repelencia al agua o superhidrofobia de la flor de loto para crear superficies, pinturas y recubrimientos que se limpian con agua sin necesidad de detergente. No es descabellado imaginar azoteas y edificios recubiertos con pintura blanca (con mayor capacidad para reflejar la luz solar y, por tanto, reducir el efecto invernadero) que a la vez incorpora el ‘efecto loto’ para limpiarse con la única ayuda del agua de lluvia.

El modelo por excelencia que aúna repelencia al agua y diseño es la piel del tiburón: perfecto ejemplo natural de estructura hidrodinámica adaptada al movimiento en el agua. La piel de los escualos está cubierta por pequeñas escamas dentadas, cuya estructura varía en función del lugar que ocupan. A partir de esta característica se han creado bañadores de competición que reducen la fricción al máximo y la energía necesaria para desplazarse.

Bañador

Tomando como modelo la piel del tiburón, se han diseñado bañadores de alta competición / Albert kok – Wikipedia

La adhesión y la repelencia al agua no son las únicas propiedades que se han estudiado. La ciencia se fija en la naturaleza para buscar respuestas a necesidades sanitarias, energéticas o para desarrollar materiales inteligentes y tejidos capaces de cambiar de estructura blanda a rígida en cuestión de segundos. Y no es ciencia ficción. Pero eso, os lo contaremos otro día…

 

* Mario Hoyos es investigador Marie Curie del grupo HEMPOL del Instituto de Ciencia y Tecnología de Polímeros del CSIC.