Archivo de la categoría ‘Astronomía’

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

La feria Ciencia en el Barrio reúne a 500 adolescentes para divulgar la ciencia

Por Mar Gulis (CSIC)

Abderrahim y Anás salen a explicar una estratigrafía arqueológica que acaban de realizar en su instituto para entender las huellas del tiempo en el paisaje. Una investigadora del CSIC, María Ruiz del Árbol, les ha explicado cómo hacerlo previamente. Estamos en el Instituto de Educación Secundaria (IES) María Rodrigo, en el Ensanche de Vallecas, y es la primera vez que reciben una visita de este tipo. Sus profesores y el director del IES no salen de su asombro; estos chicos no se implican en actividades académicas y menos científicas. Hasta que cambia su contexto de aprendizaje.

Motivar y generar curiosidad es uno de los objetivos de Ciencia en el Barrio, un proyecto del CSIC que, con el apoyo de la FECYT, trata de llevar actividades de divulgación científica a distritos de Madrid que no contaban con esta oferta. Este viernes, 16 de marzo, estudiantes procedentes de Usera, Carabanchel, Villaverde, Puente de Vallecas, Hortaleza y San Blas-Canillejas replican los talleres realizados previamente con personal investigador del CSIC en sus Institutos de Educación Secundaria (IES) en la Feria Ciencia en el Barrio, en el IES Arcipreste de Hita, en Entrevías, convirtiéndose así en divulgadoras y divulgadores por un día.

A las 10.00 de la mañana, el salón de actos del Arcipreste era un hervidero. Cerca de 500 adolescentes procedentes de nueve institutos madrileños deambulaban de un lado a otro buscando un stand, probando microscopios, preparando el material para hacer una extracción de ADN, ordenando los utensilios para hacer una cata de chocolate…La oferta de la feria es sumamente variada: hasta las 14.00, sus protagonistas van a acercarse a la ciencia a través de experimentos sobre los orígenes de la vida en el universo, la microelectrónica o la nanotecnología; y también mediante  talleres para aprender matemáticas con la vida de las abejas, ‘cocinar’ con polímeros, realizar catas de chocolates, pruebas olfativas o aplicar conocimientos arqueológicos al barrio.

Desde 2016, el Área de Cultura Científica del CSIC ha organizado en cada uno de los institutos participantes talleres experimentales, conferencias, clubes de lectura, y exposiciones sobre temas de actualidad científica, además de visitas guiadas a centros de investigación punteros. El programa está dirigido a estudiantes de 4º de la ESO, pero el resto del alumnado y la comunidad educativa y vecinal también pueden participar en algunas de las actividades.

Ciencia en el Barrio constituye una iniciativa pionera en la ciudad. Hasta el momento más de 2.500 personas han participado en un centenar de actividades que han permitido desmontar ideas falsas sobre las y los científicos, favorecer el contacto directo entre los jóvenes y el personal investigador, así como reforzar vocaciones científicas e inspirar otras nuevas.

¿Quieres una dosis de humor científico? ‘Ciencia en Navidad’ te espera este 22 de diciembre

Por Mar Gulis (CSIC)

Se abre el telón. Dos científicos comienzan una disertación acerca de si es posible la vida extraterrestre. Pero nada es lo que parece… Así comienza la cuarta edición de ‘Ciencia en Navidad’, un evento con el que el CSIC quiere celebrar estas fiestas apostando por el lado más lúdico de la ciencia.

Bajo el título ‘2017: una odisea llegar hasta aquí’, humor, espectáculo y astrobiología convergerán en una representación que tendrá lugar el próximo 22 de diciembre en la sede central del CSIC (C/ Serrano, 117), a las 18.00 horas. Sobre las tablas, el biólogo molecular Óscar Huertas, junto al ingeniero electrónico Miguel Abril, el astrofísico Manuel González y el investigador y divulgador Emilio García, los tres últimos del Instituto de Astrofísica de Andalucía del Consejo, protagonizarán desternillantes diálogos sobre el origen de la vida en el universo. Durante la representación, los asistentes incluso recibirán la visita de dos extraterrestres enviados a la Tierra con la misión de exterminar a la especie humana.

 

Con ‘2017: una odisea llegar hasta aquí’, que se dirige a un público mayor de 8 años, el CSIC se propone ofrecer una actividad de divulgación para toda la familia durante el periodo navideño. Y una vez más, la clave de ‘Ciencia en Navidad’ está en la utilización de formatos alternativos para acercar a la sociedad temas complejos. Esta vez, el reto es seducir a personas de diferentes edades y perfiles con contenidos relacionados con la astrobiología.

“La ciencia está haciendo cosas para averiguar si existe vida extraterrestre inteligente. No os podéis perder esta charla, ¡puede cambiar vuestras vidas!”, dicen los artífices de la propuesta. La entrada es libre y gratuita hasta completar aforo, así que ya tenéis plan para este viernes.

¿Te inspiran la fotografía y la ciencia? Participa en #FOTCIENCIA

Por Mar Gulis (CSIC)

¿Te gusta la fotografía? ¿La ciencia y la tecnología disparan tu creatividad? Pues estamos esperando tus propuestas. FOTCIENCIA es una iniciativa que celebra su 15ª edición y que seleccionará las mejores imágenes de ciencia del año para conformar un catálogo y una exposición itinerante. La muestra resultante recorrerá una veintena de museos y centros culturales de España en 2018. Las fotografías pueden presentarse hasta el próximo 14 de diciembre de 2017 a las 14:00 horas.

Las imágenes deben estar relacionadas con la investigación científica o sus aplicaciones, y pueden reflejar aspectos como el objeto de estudio de la investigación, las personas que la realizan, su instrumentación e instalaciones, los resultados del avance científico, etc. Para participar es necesario presentar las fotografías en formato digital a través de un formulario disponible en la página web www.fotciencia.es, junto con un texto que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada por el autor o autora.

En esta iniciativa puede participar cualquier persona mayor de edad que presente fotografías propias que no hayan sido seleccionadas en procesos similares. Pero también hay una modalidad, ‘La ciencia en el aula’, dirigida al alumnado de centros educativos y de formación profesional, que pueden participar a través de sus profesores y profesoras.

 

Vídeo con las imágenes seleccionadas en la pasada edición de FOTCIENCIA (2016).

 

Las propuestas se pueden presentar a una de las siguientes modalidades:

  • Micro, cuando la dimensión real del objeto fotografiado sea menor o igual a 1 milímetro o la imagen haya sido obtenida mediante un instrumento de micrografía (óptica o electrónica) o técnicas de difracción.
  • General, cuando la dimensión real del objeto fotografiado sea mayor de 1 milímetro.

Además, los autores y autoras también pueden adscribir su imagen a otras modalidades específicas, como ‘Agricultura sostenible’ ‘Alimentación y nutrición’, que cuentan con el apoyo de dos centros del CSIC: el Instituto de Agricultura Sostenible (IAS) y el Instituto de Agroquímica y Tecnología de Alimentos (IATA).

Las dos mejores imágenes de la categoría General y las dos mejores imágenes de la categoría Micro, según los criterios mencionados anteriormente, serán remuneradas con una cantidad de 1.500€ cada una. En las demás modalidades, se seleccionará una foto que recibirá 600€.

La organización hará una selección adicional de fotografías para incluirlas en el catálogo y en la exposición itinerante, que se prestará gratuitamente a las entidades que la soliciten. Todas las fotos presentadas pasarán a formar parte de la galería de imágenes de la web de FOTCIENCIA.

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra.

Toda la información y normas de participación están disponibles en www.fotciencia.es

 

Semana de la Ciencia del CSIC: viajar al pasado, hacer catas científicas y más

Por Mar Gulis (CSIC)

Viajar al pasado a través de los restos orgánicos de un yacimiento navarro (Instituto de Ciencias de la Vid y el Vino), aprender sobre los caballitos de mar (Instituto de Investigaciones Marinas) o realizar catas catas de queso para conocer sus propiedades nutricionales (Instituto de Productos Lácteos de Asturias) son tres de las 331 actividades con las que el CSIC abre este año la Semana de la Ciencia. A través de los más de 81 centros de investigación participantes, esta iniciativa, organizada con apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), ofrecerá propuestas para todos los públicos en torno a diversas áreas del conocimiento.

Muchas de las actividades de la Semana de la Ciencia del CSIC han sido diseñadas para que el público asuma un papel activo e interactúe con el personal investigador.

Las actividades, gratuitas y dirigidas al público general, se presentan en formatos clásicos, como exposiciones, rutas científicas o conferencias, y en otros más novedosos, como degustaciones, cafés científicos, concursos o los innumerables talleres diseñados para que el público interactúe con la ciencia. Así, ‘Convierte tu móvil en un microscopio’, organizada por el Instituto de Recursos Naturales y Agrobiología de Sevilla, el taller ‘Experimenta con partículas’, del Centro Nacional de Aceleradores, o ‘Iluminación estroboscópica’, una iniciativa del Laboratorio de Investigación en Fluidodinámica y Tecnologías de la Combustión, reflejan la vertiente práctica de la Semana de la Ciencia.

En esta edición, el CSIC estrena ‘Ciencia de Tomo y Lomo’, una aventura conjunta entre investigación y librerías en Madrid. Además, el consejo también ha incorporado la ciencia ciudadana a su programación, a través de iniciativas como ‘Plásticos 0 en la playa’, un taller del Instituto Mediterráneo de Estudios Avanzados. El objetivo en este caso es que la propia sociedad recabe datos valiosos para evaluar los efectos de los residuos marinos sobre los ecosistemas costeros.

El pasado 2 de noviembre arrancó la cita anual con la divulgación científica en muchas comunidades autónomas. En la mayoría de ellas, la Semana de la Ciencia se prolongará hasta finales de mes. ¡Consulta la programación y participa!

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

Un viaje espacial de 20 años para descubrir si hay vida en Próxima b

Por Miguel Abril (CSIC)*

Hace solo unos meses se anunció oficialmente uno de los hitos más importantes de la astronomía de los últimos años: el descubrimiento de Próxima b, un exoplaneta parecido al nuestro con condiciones que podrían hacerlo habitable. Aunque no es, ni mucho menos, el primero descubierto con estas características, lo que hace tan especial a Próxima b es que orbita en torno a la estrella más cercana a nosotros, Próxima Centauri, a solo 4,2 años luz. La noticia hizo que el proyecto Breakthrough Starshot –una iniciativa que pretende mandar la primera sonda en viaje interestelar– cobrara un interés especial al fijar sus ojos en el exoplaneta recién descubierto como potencial objetivo.

Portada de Nature sobre el descubrimiento de Próxima b.

Pero vayamos por partes: ¿tan cerca está este nuevo exoplaneta? ¿Cuánto son cuatro años luz? Podemos visualizarlo de forma muy gráfica realizando un sencillo experimento mental: supongamos que reducimos el Sol al tamaño de un garbanzo y lo colocamos en el punto central de un campo de fútbol. En ese caso, la Tierra sería del tamaño de un grano de arena y orbitaría a un metro de distancia. Y Próxima Centauri, ¿dónde quedaría? Pues ni en el banderín de córner, ni en la portería, ni siquiera en las gradas, como podríamos pensar. Incluso en este modelo reducido Próxima Centauri queda muy lejos: no solo fuera del estadio, sino incluso de la ciudad, de la provincia y muy probablemente de la comunidad autónoma. Concretamente, a unos 270 kilómetros de distancia del garbanzo. Conclusión: no, Próxima b no está próxima (lo siento, me lo han puesto a huevo).

Entonces… ¿Qué pasa, que nadie les ha explicado esto a los responsables de Starshot? ¿Cómo pretenden mandar una sonda hasta allí si está tan lejos? Y, aunque lo consiguieran, ¿cuánto tardaría en llegar? Empecemos diciendo que la misión no enviaría una única sonda, sino un enjambre de ingenios de pequeño tamaño, bajo consumo y coste reducido, para así aumentar las posibilidades de éxito. Estas minisondas tendrían el tamaño de un chip electrónico (similar a un sello postal), aunque para impulsarlas se usarían velas de unos 2 x 2 metros, que se propulsarían usando un láser de gran potencia situado en la superficie terrestre. Según los expertos, mediante esta técnica se conseguirían velocidades del orden de… ¡un 20% de la velocidad de la luz! Así el viaje hasta Próxima b duraría algo más de veinte años y apenas cuatro después se podrían tener datos e imágenes del planetita.

Representación de cómo serían las minisondas enviadas por Breakthrough Starshot hasta Próxima b. / Wikimedia Commons.

¿Y qué pasa si lo conseguimos? ¿Encontraríamos vida en Próxima b? Pues esto es objeto de intenso debate. Hay quien dice que las enanas M como Próxima Centauri son demasiado activas para permitir que se desarrolle la vida, y que además los planetas en su zona de habitabilidad están tan cerca que presentan lo que se conoce como anclaje por marea. Es decir, que ofrecerían siempre la misma cara a la estrella (como sucede con nuestra Luna), por lo que un hemisferio tendría temperaturas abrasadoras y el otro sería un desierto congelado. Sin embargo, los defensores de la posibilidad de vida argumentan que bajo ciertas condiciones el anclaje puede no ser total, como es el caso de Mercurio, que gira sobre sí mismo tres veces por cada dos vueltas al Sol. Y que incluso con anclaje total, tal vez en la zona de transición entre el día y la noche podría haber una estrecha franja con temperaturas templadas que permitirían al menos el desarrollo de formas de vida simple… (¿En serio? ¿Vida simple en una franja estrecha? ¡Venga, Dios, que has creado cosas tan chulas como el tiranosaurio o el tigre de dientes de sable! ¡Puedes hacerlo mejor!).

Un reciente estudio de la Universidad de Cornell sugiere la biofluorescencia como posible mecanismo de defensa ante las súbitas liberaciones de radiación de alta energía que se producen en las enanas M. La biofluorescencia es un fenómeno mediante el cual determinados corales y otros organismos de nuestro planeta absorben las radiaciones ultravioleta y las transforman en longitudes de onda dentro del espectro visible. Vale, no es un tigre de dientes de sable, pero brilla por la noche. Como en Avatar. Mola.

 

*Miguel Abril es ingeniero electrónico en el Instituto de Astrofísica de Andalucía del CSIC, en Granada, y miembro del grupo de divulgación científica Big Van.

FOTCIENCIA14: estas son las mejores imágenes de 2016

Por Mar Gulis (CSIC)

Un chorro de agua que cambia su trayectoria y curvatura al entrar en contacto con un dedo, resina fosilizada de conífera, una imagen microscópica de un medallón del siglo XIV, esferas de carbono que parecen una ciudad futurista… Estos son algunos de los temas abordados en las propuestas que han resultado elegidas en la 14 edición de FOTCIENCIA.

Si quieres verlas, mira este vídeo:

Estas imágenes, junto a otras que se elegirán entre las 666 presentadas, serán incluidas en un catálogo y formarán parte de una exposición que recorrerá diferentes museos y centros de España durante 2017. Dos copias de la muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. El objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una visión artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que explica el interés científico de lo que ilustra.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

 

Eclipses, tránsitos y ocultaciones

Luis CuestaPor Luis Cuesta* y Mar Gulis (CSIC)

Si miramos al cielo con atención mañana por la tarde-noche podremos observar un sutil eclipse de luna desde la mayor parte de España. Parte de nuestro satélite se teñirá de rojo y se oscurecerá, sin dejar de verse por completo, al bloquear la Tierra los rayos de Sol que llegan a la Luna. Es lo que se conoce como un eclipse penumbral parcial, que se produce cuando los tres cuerpos se alinean de forma que una parte de la Luna entra en el cono de penumbra creado por la Tierra.

eclipse luna

Eclipse total de luna visto desde el Observatorio de Calar Alto (Almería). / Juan Pedro Gómez Sánchez.

Aprovechamos la ocasión para hablaros de eclipses, tránsitos y ocultaciones; fenómenos que se producen cuando los cuerpos astronómicos se encuentran alineados. Es la diferencia en el tamaño aparente de los cuerpos lo que hace que se dé uno de ellos y no los otros.

Se habla de eclipse cuando el tamaño de los cuerpos es similar. Así, en los eclipses de Sol los tamaños aparentes de nuestra estrella y nuestro satélite son casi iguales, por lo que la Luna tapa completamente al Sol. A veces, los cambios en las distancias relativas, debidos a que las órbitas no son exactamente circulares, producen eclipses anulares, en los que la Luna no tapa completamente el disco solar.

La ocultación ocurre cuando el cuerpo más cercano, el que pasa por delante y produce la ocultación, es mucho más grande que el más lejano, el ocultado. El cuerpo ocultado desaparece completamente durante un tiempo hasta que vuelve a aparecer al otro lado del ocultador. Es lo que pasa, por ejemplo, cuando los planetas del sistema solar pasan por detrás del Sol.

transito venus

Tránsito de Venus visto desde Cartagena. / Juan Pedro Gómez Sánchez.

Por el contrario, un tránsito se da cuando el cuerpo más cercano, el que pasa por delante, es mucho más pequeño que el más lejano, el transitado. Durante el tránsito, el cuerpo pequeño no tapa completamente al grande, sólo oculta parte de su luz en la zona del tránsito. Sólo los planetas interiores, como Mercurio y Venus, pueden producir tránsitos sobre el Sol. En promedio, se producen 13 tránsitos cada 100 años en el caso de Mercurio –el próximo será en noviembre 2019– y cada 1000 años en el caso de Venus –habrá que esperar a 2117 para ver el siguiente–.

 

¿Por qué hay tan pocos eclipses de Sol si la Luna pasa por delante de él cada 28 días?

Un dato importante es que no basta con que los cuerpos estén en conjunción (es decir, que se encuentren en la misma posición proyectada sobre el plano de su órbita) para que se produzca uno de estos fenómenos: los cuerpos, además, deben estar debidamente alineados. Eso explica que no tengamos un eclipse de Sol y otro de Luna más o menos cada 28 días, cada vez que la Luna pasa por delante del Sol (luna nueva) o detrás de la Tierra (luna llena). Los eclipses son eventos poco frecuentes porque la órbita de la Luna está inclinada un poco más de 5 grados con respecto al plano de rotación de la Tierra, de forma que la mayoría de las veces que los astros están en conjunción no se alinean de forma necesaria para que ocurran estos fenómenos.

De igual manera, no siempre que Marte está en conjunción con el Sol se produce una ocultación (Marte pasa por detrás del Sol) porque su órbita tiene una ligera inclinación de casi 2 grados con respecto a la eclíptica. Tampoco en el caso de Mercurio, con 7 grados de inclinación de su órbita, ocurre un tránsito o una ocultación cada vez que se produce una conjunción con el Sol.

conjunción mercurio

Ejemplos de posibles conjunciones de Mercurio. En el caso A) no se produce tránsito, en el caso B), sí porque están además alineados. / Luis Cuesta.

Los tránsitos, claves en la ‘caza’ de exoplanetas

Los tres eventos que hemos visto han servido a lo largo de la historia para determinar parámetros fundamentales en astronomía. Por ejemplo, los tránsitos sirvieron para obtener la primera medida bastante aproximada de la distancia entre la Tierra y el Sol, parámetro en el que se basan todas las medidas de distancia al resto de objetos en el universo. Las ocultaciones, por su parte, han servido para determinar la forma, posibles satélites e incluso la atmósfera de varios planetas menores del Sistema Solar, como Plutón. En estos casos, lo que se ha observado es la ocultación de estrellas por estos cuerpos.

Eclipse anular de sol de visto cerca del horizonte. / Juan Pedro Gómez Sánchez.

Eclipse anular de sol de visto cerca del
horizonte. / Juan Pedro Gómez Sánchez.

Hasta ahora hemos hablado sobre todo de eventos dentro de nuestro Sistema Solar pero los tránsitos, ocultaciones y eclipses también se producen en estrellas lejanas. Las estrellas dobles eclipsantes son un buen ejemplo y han servido para detectar los primeros agujeros negros. Pero por lo que destacan sobre todo los tránsitos es por su importancia en la búsqueda de vida en el Universo más allá de la Tierra. En los últimos años han sido la herramienta que ha permitido detectar la mayor parte de los exoplanetas que conocemos.

El efecto es similar al que se da en los tránsitos de Mercurio o Venus por delante del Sol: el exoplaneta, mucho más pequeño que su estrella, no la oculta completamente y únicamente produce una ligera disminución en la luz observada cuando pasa por delante. A partir de esta variación periódica del brillo se puede determinar la órbita del astro y su tamaño. En algunos casos, cuando ha sido posible observar también el tránsito secundario (cuando el exoplaneta pasa por detrás de la estrella), se ha podido estimar además la masa del exoplaneta y su temperatura. Además, en ciertos casos, se ha podido evidenciar la presencia de una atmósfera alrededor del exoplaneta estudiando la luz de la estrella que la atraviesa (algo parecido a lo que sucede con la luz que tiñe de rojo nuestro satélite durante un eclipse de luna).

Curva de luz de la estrella WASP-3 durante el tránsito de su exoplaneta. / Luis Cuesta.

Curva de luz de la estrella WASP-3 durante el tránsito de su exoplaneta. / Luis Cuesta.

Gracias a esta técnica ya se han encontrado varios planetas muy parecidos a la Tierra en tamaño, aunque todavía no con condiciones adecuadas para la vida tal y como se da en la Tierra. La ventaja del estudio de estos tránsitos es que se reproducen en cada paso del exoplaneta y permiten mejorar los resultados repitiendo sistemáticamente las observaciones. Pero, además, es seguro que el avance de las técnicas de observación nos llevará a encontrar gemelos de la Tierra con condiciones propicias para la vida. Determinar realmente su existencia en esos exoplanetas es otra cuestión pues aún no se ha dado con un identificador inequívoco de vida; es otro camino por recorrer en astrobiología.

 

* Luis Cuesta es astrofísico y se dedica a la promoción y divulgación de la ciencia.

Kepler o cómo detectar una mosca posada en el Empire State a 30 km

Por Mar Gulis (CSIC)

afsdfasdf

Momento del lanzamiento de Kepler en 2009 / NASA / S. Joseph / K. O’connell

A las 10:49 del 6 de marzo de 2009 la NASA lanzó al espacio, desde Cabo Cañaveral (Florida), el telescopio Kepler. Situado a unos 120 millones de kilómetros de la Tierra, este sofisticado instrumento se diseñó para identificar planetas similares al nuestro orbitando alrededor de estrellas parecidas al Sol y en torno a la zona de habitabilidad de las mismas. En un principio, Kepler apuntó “única y exclusivamente a una pequeña región del firmamento, tomando imágenes cada 30 minutos de alrededor de 150.000 estrellas”, tal y como explicaron David Barrado y Jorge Lillo, del Centro de Astrobiología (CSIC-INTA).  Pero después de varios fallos y de no poder apuntar con precisión a esa área, se entró en la denominada fase K2. Así, “Kepler realiza ahora campañas de tres meses en las que apunta a una región determinada, pero siempre en lo que se denomina la eclíptica, el plano de la órbita de la Tierra”, puntualiza Barrado.

Según estos investigadores, “la precisión del telescopio Kepler es tal que puede detectar disminuciones en el brillo de una estrella del orden de 10 partes por millón”. Para que cualquiera pueda entender estas cifras, ponen el siguiente ejemplo: la sonda sería capaz de detectar, “a una distancia de 30 kilómetros, una mosca posada en una de las ventanas del emblemático edificio Empire State”. Y es esa asombrosa precisión la que permite a Kepler obtener datos que sirven para constatar la existencia de cientos o incluso miles de planetas con tamaños y características semejantes a los de la Tierra.

Estos complejos cálculos se llevan a cabo de la siguiente manera: al medir con exactitud “las variaciones en el brillo de cada astro, se pueden detectar objetos que, al pasar por delante del mismo (como ocurre en los eclipses de Sol), lo oculten parcialmente y produzcan estos descensos de luminosidad. Este es el llamado método de los tránsitos”, afirman Barrado y Lillo. Eso mismo sucede en nuestro sistema solar cuando Mercurio o Venus se proyectan sobre el sol. Como su tamaño es mucho menor que el de nuestro astro, obviamente seguirá siendo de día, pero si se efectúan mediciones con la instrumentación adecuada, se apreciará una disminución del brillo estelar. Con los exoplanetas –aquellos planetas que están fuera de nuestro sistema solar– se procede de la misma manera y, en función de lo grande que sea esa disminución y de cuánto dure, “podemos obtener parámetros del planeta como su radio, el periodo de su órbita o la distancia a la que está de su estrella”, añaden. En general, cuando más pequeño sea el planeta (su masa), más difícil será detectarlo y confirmar su existencia.

Pese a la complejidad de estas mediciones, el pasado mayo los responsables del telescopio Kepler anunciaron el descubrimiento de 1.284 nuevos exoplanetas, el doble de los conocidos hasta la fecha. El hallazgo fue el resultado de un segundo análisis de los datos captados por Kepler en julio de 2015, que señalaban ya unos 4.302 candidatos a planetas. Los científicos emplearon un método estadístico que calcula la probabilidad de que cada planeta detectado exista realmente, es decir, que las señales captadas por el telescopio sean de naturaleza planetaria, y no causadas por estrellas u otros cuerpos celestes. Según los datos obtenidos, que fueron publicados en The Astrophysical Journal, hay más de un 99% de posibilidades de que esos 1.284 planetas sean reales, mientras que los restantes son solo candidatos probables o bien señales que habrían producido otros fenómenos astrofísicos, según la propia NASA.

afdasf

Ilustración de la NASA del telescopio Kepler / NASA

Aunque Kepler finalizará su misión en 2018, se prevé que para entonces el equipo de investigadores que trabaja con él habrá elaborado una especie de censo o catálogo de planetas en nuestra galaxia, la Vía Láctea. Kepler ha supuesto un punto de inflexión porque antes de su lanzamiento no se sabía si los exoplanetas eran algo frecuente o una rareza galáctica. “Ahora sabemos que podría haber más planetas que estrellas”, afirmó en mayo Paul Hertz, otro científico de la NASA.

No solo eso. Ya hay evidencias de que de los 1.284 planetas detectados, unas cuantas decenas podrían ser rocosos y de un tamaño similar al de la Tierra. De ellos, la comunidad científica subraya que nueve orbitan en la denominada zona habitable, es decir, la distancia adecuada respecto a su estrella para permitir que tengan agua líquida en la superficie. Así, desde el lanzamiento de Kepler en 2009, se ha constatado la existencia de 21 planetas con esas características. Son los exoplanetas más parecidos a la Tierra y con más posibilidades a albergar algún tipo de vida.

Si se extrapola el número de planetas detectados hasta la fecha a la población de estrellas conocidas, las cifras resultantes apabullan: podrían existir decenas de miles de millones de planetas ‘habitables’ en toda la Vía Láctea.

Como señalan Barrado y Lillo, “si hace solo 10 años era difícil afirmar si seríamos capaces de detectar planetas similares a la Tierra, ¿cuáles serán los siguientes logros de la ciencia en el campo exoplanetario?”. Dado que los planetas del sistema solar no están solos en el universo, tal vez, dicen, “el hallazgo de un gemelo de la Tierra, en cuanto a condiciones y habitabilidad, no esté tan lejos”.