Archivo de la categoría ‘Física’

Blockchain, tierras raras, aceleradores de partículas… El CSIC lleva la actualidad científica a la Feria del Libro

Por Mar Gulis (CSIC)

¿Sabes cómo funcionan el bitcoin y otras criptomonedas? Si quieres algunas pistas, el martes 11 de junio en la Feria del Libro de Madrid David Arroyo, Jesús Díaz y Luis Hernández presentarán su libro Blockchain. Los autores explicarán al público los entresijos de esta tecnología y sus aplicaciones en la denominada criptoeconomía.

Como cada año, investigadores e investigadoras del CSIC acudirán a esta emblemática cita para dar a conocer los últimos libros publicados en las colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ (CSIC-Catarata), que acercan la ciencia al público general. El mismo día 11, además de criptoeconomía, se hablará del futuro de la óptica; el LHC, el mayor acelerador de partículas del mundo; y las tierras raras, 17 elementos químicos omnipresentes en las sociedades tecnológicamente avanzadas y, sin embargo, poco conocidos.

El 12 de junio, la investigadora Pilar Ruiz Lapuente se ocupará de la energía oscura, del posible final “frío y estéril” del cosmos y de otras cuestiones relacionadas con la astrofísica que aborda en su libro La aceleración del universo. En la misma jornada tendrán cabida temas como la tabla periódica de los elementos químicos, el albinismo y otras mutaciones genéticas o el papel de las áreas protegidas en la sostenibilidad ambiental.

En total, el CSIC y la editorial Los Libros de la Catarata, presentarán ocho obras de divulgación a través de las intervenciones de sus propios autores.

Estas son las coordenadas

Las presentaciones se realizarán los días 11 y 12 de junio, a partir de las 12:30 horas, en el Pabellón Bankia de Actividades Culturales, situado en las proximidades de los jardines de Cecilio Rodríguez del parque de El Retiro. De acceso libre, estas citas son una oportunidad para escuchar y plantear preguntas a los protagonistas de la ciencia.

Quienes busquen actividades para público más joven, el sábado 8 de junio tienen además una cita en el Pabellón infantil. Allí, investigadores del CSIC que han participado en la obra Descubriendo la luz. Experimentos divertidos de óptica realizarán demostraciones para niños y niñas. Las sesiones, de entrada libre y una duración de 15 minutos, se prolongarán desde las 12:30 hasta las 15:00 horas.

Y si la prioridad es llevarte tu libro con dedicatoria incluida, pásate por la caseta del CSIC (número 19) o la de Los Libros de la Catarata (número 336). Durante toda la feria, los autores de las novedades editoriales estarán en firmando ejemplares.

La información de las firmas se puede consultar aquí.

Ni estrellas ni planetas, ¿qué son las enanas marrones?

Por Mar Gulis (CSIC)

En los sesenta, nadie las había observado, pero Shiv S. Kumar predijo su existencia y las llamó enanas negras. En 1975, la astrofísica Jill Tarter las denominó enanas marrones, su nombre definitivo, dado que el término de Kumar también podía referirse a otros objetos estelares. Tarter no iba desencaminada al intuirlas marrones, sin embargo, estos cuerpos celestes suelen tener en realidad un color parecido al magenta o morado. Pero, más allá de su color, ¿sabes qué es una enana marrón?

Las enanas marrones son objetos subestelares que se encuentran a caballo entre las estrellas y los planetas. Un cuerpo celeste con composición similar a la solar y con masa mayor que 75 veces la masa de Júpiter sería una estrella, mientras que uno por debajo de esta masa (entre 65-75 masas) sería una enana marrón. No obstante, hay que tener en cuenta otros factores para determinar ante qué objeto nos encontramos. Una de las principales peculiaridades de la enana marrón es que en su núcleo no se llega a alcanzar, de manera estable, la temperatura de fusión necesaria para la quema de hidrógeno, como ocurre en una estrella, y en su lugar se quema deuterio.

Ilustración de una enana marrón. / NASA/JPL-Caltech

Ilustración de una enana marrón. / NASA/JPL-Caltech

Las características espectrales de las enanas marrones, como el pico de emisión centrado en longitudes de onda larga, la luminosidad o las temperaturas superficiales más bajas que las de una estrella, les otorgan precisamente ese color magenta o morado. En la clasificación espectral, las estrellas más calientes y luminosas tienen un color azul y a medida que se van enfriando, pasan al amarillo, al anaranjado y, por último, al rojizo. Después encontramos a las enanas marrones, que van del color rojizo al morado.

Primera enana marrón, primer exoplaneta

Teide 1 fue la primera enana marrón confirmada, gracias a un equipo español del Instituto de Astrofísica de Canarias, en 1995, el mismo año del descubrimiento del primer exoplaneta: 51 Pegasi b. ¿Coincidencia? La autora del libro Enanas marrones (Editorial CSIC – Los Libros de la Catarata), María Cruz Gálvez Ortiz, antes investigadora del Centro de Astrobiología (CSIC-INTA), explica las evidencias sobre las conexiones que existen entre ellas y los exoplanetas (planetas que se encuentran fuera del sistema solar), más allá de que coincidan en el momento del hallazgo.

Las enanas marrones también limitan en el rango de masa y temperatura con los planetas, e incluso presentan atmósferas similares. De hecho, algunos de los métodos empleados para descubrir enanas marrones han permitido dar con planetas extrasolares. En ambos casos, a pesar de la mejora y afinamiento de los instrumentos y técnicas de investigación en astrofísica, las teorías sobre su formación, el cálculo de sus edades y la naturaleza de sus atmósferas se encuentran todavía en desarrollo.

En cuanto a las enanas marrones, a pesar de que se conoce relativamente poco sobre ellas, en las últimas dos décadas se han identificado cerca de 2.000 (cifra que va en aumento). Respecto a los exoplanetas, son ya más de 3.000 confirmados (otra cifra que sigue creciendo), de los cuales alrededor de 20 son de tipo terrestre y se encuentran en una zona de habitabilidad. Como señala Gálvez Ortiz, desde que comenzó la búsqueda de planetas extrasolares, “uno de los objetivos principales ha sido encontrar un planeta similar a la Tierra en tamaño y composición y en condiciones similares, de tal manera que pudiera albergar vida”.

Los estudios están profundizando también en el hallazgo de planetas alrededor de enanas marrones y, por el momento, se han detectado casi una decena de objetos de masa planetaria orbitando estos cuerpos subestelares. La búsqueda sigue…

 

* Puedes leer más en el libro Enanas marrones (Editorial CSIC – Los Libros de la Catarata), de la colección ¿Qué sabemos de?

Henry Moseley, el joven que ordenó el rompecabezas de la tabla periódica

Por Mar Gulis (CSIC)

Moseley

Moseley (año 1910) en el laboratorio del Balliol-Trinity College poco después de su graduación. En su mano derecha sostiene un globo de vidrio grueso para bajas presiones que utilizaba en la medida del número atómico de gases.

A comienzos del siglo XX los avances en la comprensión de la estructura del átomo no solo removieron los cimientos de la física, sino también los de la química.

Sin ir más lejos, el creador de la tabla periódica, Dimitri Mendeleiev, creía que el hallazgo del electrón amenazaba sus postulados. Décadas antes, en 1869, el científico ruso había propuesto ordenar los 63 elementos químicos entonces conocidos en una particular disposición. En la primera formulación de su tabla periódica, muy distinta de la que conocemos en la actualidad, las columnas mostraban los elementos ordenados de menor a mayor según su peso atómico  –por ejemplo, berilio = 9,1 (su peso real es de 9,01); boro = 11 (10,81); carbono = 12 (12,01); etc.–, de tal forma que en las filas quedaban agrupados elementos que compartían propiedades químicas semejantes –por ejemplo, el litio, el sodio, el rubidio y el cesio, que junto al francio constituyen el grupo de los metales alcalinos–.

Tabla Mendeleiev

Tabla periódica propuesta por Mendeleiev en 1869.

La propuesta tuvo un tímido reconocimiento al inicio, pero fue haciéndose cada vez más popular a medida que fueron confirmándose muchas de sus predicciones. Mendeleiev había dejado huecos para ser completados con elementos aún no descubiertos, de los cuales no solo pronosticó acertadamente su existencia sino también algunas de sus propiedades. Esto fue posible porque fue una de las primeras personas en comprender que las propiedades químicas de los elementos se ‘repetían’ de forma periódica a medida que se incrementaba su peso atómico.

Sin embargo, Mendeleiev había trabajado con la idea de que el átomo era indivisible. En 1897 Joseph Thomson descubre el electrón y en 1911 Ernest Rutherford formula su famoso modelo atómico, en el que un número variable de electrones (de carga negativa) giran alrededor de un pequeño núcleo de carga positiva. ¿Cómo iban a afectar estos avances a la tabla periódica?

Contrariamente a lo que Mendeleiev creía, iban a perfeccionar sus teorías. También en 1911, antes de que se descubrieran los protones (de carga positiva) en el núcleo atómico, el físico aficionado Antonius van den Broek propuso en Nature que el orden de los elementos en la tabla periódica dependía del número de cargas positivas del núcleo o número atómico. Es decir, el hidrógeno ocupa el primer lugar de la tabla periódica porque solo tiene una carga positiva en el núcleo (hoy diríamos un protón) y, por tanto, su número atómico es el uno; el helio ocupa la segunda posición porque tiene dos cargas positivas (dos protones) y su número atómico es el dos; y así sucesivamente.

Sin embargo, fue Henry Moseley en 1913 quien logró probar esta hipótesis estudiando los espectros de rayos X de 50 elementos químicos. Moseley demostró que la frecuencia de los rayos X era proporcional (concretamente, la raíz cuadrada) al número atómico del elemento. Con este hallazgo, daba una justificación cuantitativa al concepto de número atómico y un apoyo fundamental al modelo atómico de Rutherford.

La utilización del número atómico para ordenar los elementos iba a resolver muchos problemas que habían traído de cabeza a quienes trabajaban en química hasta entonces. Por ejemplo, de acuerdo con su peso atómico, el níquel (58,693) debía situarse antes que el cobalto (58,933) en la tabla periódica; sin embargo, Mendeleiev había intercambiado sus posiciones para que resultaran más congruentes con sus propiedades químicas. La incoherencia desapareció cuando pudo conocerse que el número atómico del níquel era 28 y el del cobalto 27. Efectivamente, aunque el níquel pese un poco menos que el cobalto, tiene una carga positiva más en su núcleo, y por tanto puede agruparse junto a los elementos con los que compartía propiedades sin violar la ley periódica de Mendeleiev.

Tabla periódica moderna

Tabla periódica moderna, en la que los elementos aparecen ordenados según su número atómico.

Además, el número atómico permitió saber de forma inequívoca qué casillas faltaban por rellenar en la tabla periódica (43, 61, 72, 75, 85, 87 y 91) y la técnica de Moseley hizo posible identificar elementos de una forma mucho más rápida y certera. Hasta entonces las llamadas tierras raras, una denominación que engloba al escandio, el itrio y los quince elementos del grupo de los lantánidos, habían resultado enormemente difíciles de separar e identificar en el laboratorio. En el libro Las tierras raras (CSIC-Catarata), el investigador del CSIC Ricardo Prego cuenta que George Urbain, uno de los mayores expertos en este ámbito, viajó a Oxford en cuanto conoció el innovador trabajo de Moseley. Allí el francés le entregó una muestra que contenía una mezcla de tierras raras que le había llevado meses identificar con métodos químicos y desafió a su joven colega a intentarlo. Moseley tardó solo una hora en llegar al resultado de Urbain: la mezcla contenía erbio, tulio, iterbio y lutecio. La crisis de las tierras raras había quedado resuelta.

Mendeleiev murió en 1907, sin saber que la ‘intrusión’ de la física en la química no iba a contradecir sus planteamientos sino a darles un nuevo fundamento. Sus aportaciones siguen tan vigentes a día de hoy que la ONU ha declarado 2019 como Año internacional de la tabla periódica y de los elementos químicos precisamente porque se cumplen 150 años desde que Mendeleiev formulara por primera vez su sistema periódico. Moseley, que estuvo nominado tanto al Premio Nobel de Física como al de Química, falleció en 1915, a la temprana edad de 28 años, mientras luchaba con el ejército inglés en la famosa batalla de Galípoli. No pudo participar en los siguientes descubrimientos sobre la estructura del átomo, que seguirían revolucionando la física y la química.

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

Fibra óptica: cómo tus ‘mails’ pueden viajar a 200.000 km/s

Por Mar Gulis (CSIC)*

Cable de fibra óptica iluminado con un puntero láser / Hustvedt

Sabemos que la velocidad de la luz alcanza los 300.000 kilómetros por segundo en el vacío. Ese es el límite máximo que determinan las leyes físicas. Nada en el universo puede viajar más rápido. Por eso, el reto de las tecnologías de telecomunicaciones es alcanzar ese límite: lograr que la información, los millones de datos que intercambiamos cada día en mails, llamadas, compras on line y transacciones de todo tipo, ‘viajen’ a la velocidad de la luz.

De momento, la fibra óptica es la tecnología que más se ha acercado. A partir de la herencia del telégrafo y el teléfono, “los cables de fibra óptica han reemplazado a los hilos de cobre porque pueden transportar una mayor cantidad de datos y más deprisa que su contraparte electrónica”, explica el libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la Catarata). Aun así, las fibras ópticas tienen limitaciones. No pueden reproducir el vacío del espacio, donde, al no existir atmósfera, la luz se mueve sin resistencia, de ahí que a través de la fibra los datos viajen a ‘tan solo’ 200.000 kilómetros por segundo (la cifra es aproximada).

En las comunicaciones ópticas se envía información codificada en un haz de luz por un hilo de vidrio o de plástico muy procesado. “Este sistema fue originalmente desarrollado para los endoscopios en la década de los 50, con el objetivo de ayudar a los médicos a ver el interior del cuerpo humano sin necesidad de abrirlo. En 1960, los ingenieros encontraron una forma de utilizar esta misma tecnología para transmitir llamadas telefónicas a la velocidad de la luz”, continúa el libro.

Sin embargo, las leyes físicas que explican el funcionamiento de esta tecnología se descubrieron tiempo atrás. Ya en el siglo XIX, el físico irlandés John Tyndall demostró a la Royal Society en Londres que la luz podía viajar a través de un chorro de agua. En óptica, este fenómeno se conoce como reflexión interna, y se produce cuando un rayo de luz atraviesa un medio con un índice de refracción menor que el índice de refracción en el que este se encuentra. Así, el haz luminoso se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios, reflejándose completamente. La reflexión interna total solo se produce en rayos que están viajando de un medio de alto índice refractivo hacia medios de menor índice de refracción. Precisamente este principio explica la conducción de la luz a través de la fibra sin que haya fugas.

La reflexión total puede realizarse mediante el experimento de Tyndall. En la imagen, un puntero láser (a la dcha.) atraviesa el plástico del recipiente y el agua que hay en su interior, para ‘salir’ por el agujero realizado previamente en el recipiente. Al atravesar los dos medios, la luz queda confinada dentro del chorro viajando con su misma curvatura / Juan Aballe / CSIC-IOSA

Una fibra óptica está formada por un núcleo, que es por donde viajan las señales luminosas, y una cubierta o revestimiento transparente. Intuitivamente, cualquiera pensaría que la luz que transita por este tipo de hilos transparentes se saldría por los bordes. Sin embargo, los fotones (partículas elementales en que se puede dividir un rayo de luz) viajan por el núcleo de la fibra óptica rebotando contras sus paredes constantemente, como una pelota entre las paredes de vidrio de una pista de squash. De este modo el haz de luz  queda confinado y se propaga sin que se produzcan pérdidas de información. Esto es posible porque el material interno tiene un índice de refracción más grande que el material que lo rodea.

Ocurre algo parecido con el agua: si un haz de luz incide en un chorro de agua bajo un cierto ángulo, la luz quedará confinada dentro del chorro, viajando con su misma curvatura, tal y como demostró Tyndall en su experimento. La superficie agua-aire actuaría como un espejo en el que la luz se refleja y, por tanto, sigue la trayectoria del líquido. En una fibra óptica la luz viaja de forma similar: va rebotando por sus paredes internas, pero manteniendo la dirección del cable, sin detenerse y pudiendo recorrer miles de kilómetros en segundos.

 

*Este post se basa en varios fragmentos del libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la catarata), coordinado por María Viñas Peña.

¿Cómo funciona un espejismo? El misterio de la ‘fata morgana’

Por Mar Gulis (CSIC)*

Hace ya tiempo que las gentes de Reggio Calabria, ciudad costera del sur de Italia, están acostumbradas a ver imágenes surreales, que parecen espectros, cuando miran al horizonte. Sobre el mar, en la línea donde este parece juntarse con el cielo, pueden observarse embarcaciones navegando por encima del agua, como si estuvieran en suspensión.

Lo que ven los lugareños no es una alucinación ni una ilusión óptica, sino un espejismo, una visión real que se produce por la confluencia de varios factores. Hoy tenemos una explicación científica sobre esta anomalía, pero antiguamente marineros y navegantes sentían pánico cuando veían estas imágenes en alta mar, pues las atribuían a maldiciones o hechizos. Estos espejismos distorsionan la apariencia de los objetos situados en el horizonte, que son proyectados como si flotaran.

esquema espejismo

Esquema del proceso de formación de los espejismos. / Camilo Florian Baron

El fenómeno del que hablamos se conoce como ‘fata morgana’, una denominación que procede del latín y significa hada Morgana, en alusión a la hermana del legendario rey Arturo, que según la leyenda era un hada cambiante. El espejismo, frecuente en el estrecho de Mesina, hace que las personas vean cosas donde no las hay debido a la existencia de distintas capas de aire con densidades diferentes. Como resultado, los rayos de luz se refractan, pero quien ve el espejismo no percibe esas diferentes capas, y de ahí el desconcierto.

Para entenderlo, hay que acudir a la óptica. El libro Descubriendo la luz (Editorial CSIC – Los Libros de la Catarata) explica cómo se produce la ‘fata morgana’. “Los espejismos son fenómenos asociados a la propagación de la luz en medios no homogéneos, donde el índice de refracción varía continuamente con la altura y, por tanto, la luz describe trayectorias curvas. Dichas curvas presentan una concavidad en la dirección de aumento del índice de refracción. Es decir, la luz se curva hacia el medio (agua, aire, etc.) con mayor índice de refracción”. En otras palabras, en un espejismo la luz ‘se dobla’ al atravesar las capas de aire a distinta temperatura. Como resultado, “la posición real del objeto está sujeta a la interpretación humana, ya que la formación de la imagen está condicionada por la refracción de la luz”.

Fenómeno de la fata morgana. / Wikimedia commons

Fenómeno de la fata morgana. / Wikimedia commons

Los espejismos pueden clasificarse en inferiores y superiores. La ‘fata morgana’ que alucina a los habitantes y turistas de la costa meridional de Sicilia es un ejemplo de espejismo superior. Como explica el libro Descubriendo la luz, “este se produce cuando el índice de refracción disminuye con la altura, algo que suele darse en zonas frías, donde la capa de aire próxima al suelo es muy fría y es más densa que las capas superiores”. Precisamente lo que sucede en el mar, donde generalmente el agua está a menor temperatura que el aire, produciendo un enfriamiento de las capas de aire más próximas a la superficie del agua. De este modo cambia su densidad y, por tanto, la forma en la que los rayos de luz se refractan. El resultado es el espejismo, bajo la apariencia de barcos que flotan sobre el mar o elementos en el horizonte como islas, acantilados o témpanos de hielo, con siluetas alargadas que les dan una apariencia fantasmal. Estos efectos suelen ser visibles por la mañana, después de una noche fría.

* Este texto está inspirado en los contenidos del libro Descubriendo la luz. Experimentos divertidos de óptica (Editorial CSIC – Los Libros de la Catarata), coordinado por María Viñas, investigadora del Instituto de Óptica del CSIC.

¿Pueden existir estrellas y galaxias de antimateria?

Por Beatriz Gato Rivera y Mar Gulis (CSIC)*

Quizás lo más distintivo de la antimateria es que al entrar en contacto con la materia se aniquilan la una a la otra produciendo una gran cantidad de radiación. Si se pudiera almacenar un gramo de antimateria –algo imposible con la tecnología actual–, al entrar en contacto con la materia generaría una deflagración equivalente a más de dos veces la bomba atómica que asoló Hiroshima en 1945.

La física de partículas y la cosmología han llegado a la conclusión de que en el Big Bang se crearon idénticas cantidades de materia y antimateria que, solo unos breves instantes después, se aniquilaron casi totalmente entre sí. Algo sucedió, sin embargo, justo antes de la Gran Aniquilación para que se generara un ligerísimo excedente de partículas sobre antipartículas, el cual bastó para que el universo material pudiese tomar forma y llegar a existir tal como lo conocemos. En efecto, de las observaciones se deduce que por cada protón primordial –originado en el Big Bang– que sobrevivió, miles de millones sucumbieron a la extinción, junto a la misma cantidad de antiprotones primordiales.

aniquilación de un antiátomo

Aniquilación de un átomo de antihidrógeno observada por el detector ATHENA en 2002. / CERN

Sin embargo, no es posible descartar que haya sobrevivido una pequeñísima cantidad de antimateria primordial en nuestro universo observable, quizás un antiprotón por cada decena de millones de protones. En este caso no es impensable que pudieran existir estrellas e incluso galaxias pequeñas de antimateria, como predicen algunos modelos teóricos propuestos por varios grupos de investigación, siempre que estas estuviesen suficientemente aisladas de la materia –y lo cierto es que en el universo hay regiones extremadamente vacías–. De confirmarse esta circunstancia tampoco sería inimaginable que orbitando dichas antiestrellas existieran antiplanetas habitados por seres vivos e incluso civilizaciones tecnológicas, compuestos todos ellos por antimateria.


¿Qué es la antimateria?

Para comprender mejor las consecuencias de esta posibilidad, hay que entender qué es la antimateria. En un sentido amplio, la antimateria puede considerarse como el reverso de la materia o como una imagen especular de la misma respecto a varios ‘espejos’. Como sabemos por experiencia propia, cuando nos miramos en un espejo el rostro que vemos no es nuestro rostro sino que tiene intercambiados los lados derecho e izquierdo. Del mismo modo, las partículas de antimateria tienen sus propiedades opuestas respecto a las de las partículas de materia. Esto se refiere solo a aquellas propiedades que admiten valores opuestos, ya que las propiedades que no admiten valores opuestos son idénticas para las partículas y sus antipartículas. Por ejemplo, el electrón y su antipartícula, el positrón, con la misma masa y el mismo espín, tienen valores opuestos de la carga eléctrica, la carga débil y la carga leptónica.

Todas las partículas elementales tienen su antipartícula, aunque hay partículas que son sus propias antipartículas. Es el caso del fotón –la partícula de luz– o del bosón de Higgs. Se da la curiosa circunstancia de que la única antipartícula con nombre propio es el positrón –“electrón positivo”–, así denominado por Carl Anderson tras descubrirlo en 1932. Las demás antipartículas se denominan como las partículas ordinarias pero anteponiendo el prefijo anti.

Al igual que las partículas, las antipartículas pueden dar lugar a estructuras más complejas, como átomos de antimateria, que están constituidos por las antipartículas de los átomos de materia. En su núcleo, en lugar de protones (de carga eléctrica +1) y neutrones, compuestos todos ellos por quarks, hay antiprotones (de carga eléctrica -1) y antineutrones, compuestos por antiquarks –los quarks y sus antiquarks tienen valores opuestos de la carga fuerte, la carga débil, la carga eléctrica y la carga bariónica–. Orbitando alrededor del núcleo, en lugar de electrones (de carga eléctrica -1), encontramos positrones (de carga eléctrica +1).

átomo y antiátomo

A la izquierda, un átomo de helio. A la derecha, uno de antihelio.


Antimateria primordial y antimateria secundaria

Estamos conviviendo constantemente con la antimateria y con los productos de su aniquilación con la materia. Por una parte, una lluvia incesante de partículas de materia y de antimateria, producidas por las colisiones de los rayos cósmicos con los átomos de nuestra atmósfera, cae sobre la superficie terrestre y nos alcanza. Es más, neutrinos y muones muy energéticos (y sus antipartículas) atraviesan casas y edificios.

Por otra parte, las mismas estrellas producen antimateria en grandes cantidades en sus hornos nucleares en forma de positrones. Y sucede que la aniquilación de estos con los electrones del plasma del interior produce parte de la luz y del calor que emiten. En el caso del Sol, aproximadamente un 10% de la luz visible que irradia proviene de tales aniquilaciones.

Además, algunas sustancias radiactivas naturales que abundan en compuestos orgánicos, como el Potasio-40, emiten positrones, los cuales se aniquilan de inmediato con los electrones de su entorno. Esto hace, por ejemplo, que un plátano mediano emita cada 24 horas 15 positrones, aproximadamente, provenientes de los núcleos radioactivos de los átomos de Potasio-40.

La inmensa mayoría de las partículas de antimateria con las que convivimos y que observamos es antimateria secundaria, pues se ha creado en colisiones entre partículas de materia ordinaria o en procesos astrofísicos conocidos muy energéticos, como las reacciones nucleares en el interior de las estrellas. Pero, como decíamos, cabe la posibilidad de que todavía haya en el universo partículas de antimateria primordiales.

El experimento AMS (Alpha Magnetic Spectrometer), instalado en la Estación Espacial Internacional, se afana por encontrar indicios de tal posibilidad, escudriñando el espacio en busca de núcleos de antiátomos. Si encontrase un solo antinúcleo mayor que el de antihelio, como un núcleo de antilitio o antiberilio (con tres y cuatro antiprotones respectivamente), esto constituiría un gran acontecimiento, pues indicaría que la antimateria primordial no desapareció totalmente, ya que estos núcleos no se pueden producir en nuestro universo material, a diferencia del núcleo de antihelio. Pero si el experimento AMS encontrase un solo antinúcleo aún mayor, como un núcleo de antiboro o anticarbono (con cinco y seis antiprotones respectivamente), este hallazgo sería la prueba definitiva de la existencia de antiestrellas, pues estos antinúcleos solo podrían haberse generado en los hornos de las capas más profundas de estas.

AMS2

Simulación del detector AMS2 montado en la Estación Espacial Internacional. / NASA-JSC

Civilizaciones extraterrestres de antimateria

Ahora dejemos volar nuestra imaginación y vayamos hacia el futuro, a una época en la que pudiéramos realizar viajes intergalácticos de forma eficiente; por ejemplo, a través de atajos espacio-temporales o por otras dimensiones. Supongamos que descubrimos una estrella de antimateria, porque emite antineutrinos en lugar de neutrinos, y que al acercarnos avistamos todo un sistema planetario con algunos planetas localizados en la zona de habitabilidad. Así que decidimos enviar señales que denoten su procedencia inteligente, y con este propósito elegimos unas secuencias de flashes de luz láser con los números impares: 1, 3, 5, 7, 9…

Si nos encontramos lo suficientemente cerca de estos antiplanetas, por ejemplo a tan solo dos horas luz de distancia, nuestras señales tardarán dos horas en llegar a su destino. Imaginemos entonces que, para nuestro asombro, unas seis horas después recibimos una respuesta inteligente, consistente en otras secuencias de flashes de luz láser, pero esta vez con los números pares: 2, 4, 6, 8…

¡Nuestras señales han sido interceptadas por seres inteligentes de una civilización tecnológica!, y nos envían acuse de recibo utilizando señales similares aunque no idénticas, para que no las confundamos con un eco de nuestras propias señales. Con gran entusiasmo, esta vez les enviamos un vídeo amistoso enseñándoles la Tierra y sus gentes, al que nos responden con otro vídeo amistoso enseñándonos su planeta e invitándonos a visitarlo, como se deduce de su lenguaje no verbal y sus gesticulaciones.

Obviamente, estos seres ignoran que nosotros somos de antimateria en relación a la materia de la que ellos y su mundo están constituidos. Pero nosotros sí sabemos que ellos lo son, en relación a la nuestra. Así que no podemos aceptar la invitación y hemos de restringir nuestro contacto al intercambio de ondas electromagnéticas exclusivamente. Nada de recepciones oficiales, ni de intercambios de obsequios: la aniquilación mutua estaría asegurada.

 

* Beatriz Gato Rivera es investigadora del CSIC en el Instituto de Física Fundamental y autora del libro Antimateria (Editorial CSIC-Los libros de la Catarata).

El fondo cósmico de microondas, la fotografía más antigua del universo

Galaxia Andrómeda. / Robert Gendler.

Por Pablo Fernández de Salas (CSIC)*

Cuando miramos al cielo nocturno, la mayoría de lo que vemos es un manto negro con algunas estrellas dispersas. Por eso, siempre nos han dicho que el universo está prácticamente vacío.

Sin embargo, en el interior de una galaxia como la nuestra esto no es realmente cierto, ya que en el espacio que media entre las estrellas hay mucho polvo y nubes de gas molecular. Otra cosa distinta es lo que ocurre en el enorme espacio que por lo general separa las galaxias. Sin ir más lejos, Andrómeda, la galaxia más cercana a la Vía Láctea, se encuentra a nada menos que dos millones y medio de años luz. Si alguien nos enviara un mensaje desde allí, ¡tendríamos que esperar un mínimo de dos millones y medio de años para recibirlo! La cantidad de polvo y gas que hay en estas grandes distancias es ridículamente pequeña, y es por ello que decimos que el espacio intergaláctico se encuentra vacío. No obstante, estrictamente hablando, dicho espacio queda muy lejos de no contener nada.

Lo que llena el espacio intergaláctico está presente a lo largo y ancho de todo el universo. Se trata, principalmente, de fotones, las partículas que componen la luz. Comparten el espacio con otras partículas, como por ejemplo los neutrinos, pero los fotones son las más abundantes del universo. Concretamente, hay más de medio millón de fotones en el volumen que ocupa una botella de litro y medio en el ‘vacío’ cósmico. ¿Cómo es posible que, siendo fotones, no los veamos a simple vista?

Arno Penzias y Robert Woodrow Wilson bajo la antena que descubrió el fondo cósmico de microondas, en Holmdel, Nueva Jersey. / NASA.

La explicación la encontramos en su origen. Los fotones que pueblan el universo se conocen, en su conjunto, como el fondo cósmico de microondas, y son, además de los más abundantes del cosmos, también los más viejos. Proceden de una época en la que el universo tenía menos de medio millón de años. Trescientos ochenta mil años, siendo más precisos, frente a los casi catorce mil millones de años que tiene en la actualidad. ¡Apenas un día en la vida de un ser humano!

Estos fotones, creados cuando el universo era tan joven, sufrieron un proceso que se conoce con el nombre de desacoplamiento. Antes de que esto ocurriera, el cosmos era una especie de ‘sopa traslúcida’, conocida como plasma, en la que los fotones no duraban mucho, ya que se aniquilaban y creaban de nuevo sin descanso debido a sus frecuentes interacciones con electrones y núcleos de elementos ligeros. Sin embargo, cuando la temperatura descendió por debajo de los 3.000 grados, los electrones se hicieron suficientemente lentos como para que los núcleos los capturaran para formar átomos. Eso, a su vez, permitió que los fotones dejaran de chocar constantemente con esas partículas y pudieran emprender un viaje en solitario y en todas las direcciones hasta nuestros días.

satélite Planck

Representación artística del satélite Planck. /
ESA-AOES Medialab.

A lo largo de todos estos años que nos separan, estos fotones se han ido enfriando por culpa de la expansión del universo hasta alcanzar hoy una temperatura de 270 grados bajo cero. Paradójicamente, esto hace que calienten el universo, ya que si no estuvieran en todas partes la temperatura del cosmos se encontraría en el cero absoluto, a menos 273 grados.

Además de enfriarlos, la expansión del universo ha expandido la longitud de onda de estos fotones, por lo que ya no nos llegan en forma de luz –nuestros ojos no pueden verlos–, sino en forma de microondas –que no pueden ser ‘vistas’ pero sí detectadas–. La primera detección de este fondo cósmico de microondas fue realizada de forma más o menos fortuita por Arno Penzias y Robert Woodrow Wilson en 1964 con una descomunal antena. Ambos fueron galardonados con el Premio Nobel de Física.

Desde entonces la comunidad investigadora ha observado estos antiquísimos fotones con satélites como COBE, WMAP o Planck, y con experimentos situados en la superficie de la Tierra. Actualmente, la observación más precisa de las anisotropías del fondo cósmico se la debemos al satélite Planck, que tras cuatro años de operación nos ha permitido tomar la fotografía más antigua del universo.

Antisotropías

Anisotropías del fondo cósmico de microondas medidas por el satélite Planck. La fotografía más antigua del universo. / ESA-Planck Collaboration.

La imagen refleja las minúsculas variaciones –del orden de las cienmilésimas de grado– que existen entre estos fotones según la dirección de la que procedan. Estas pequeñas desviaciones, conocidas como anisotropías, constituyen una fuente de información maravillosa sobre nuestro universo, en especial en sus primeros años de vida. Por ejemplo, permiten estudiar las diferencias en la densidad del plasma cósmico cuando el universo tenía trescientos ochenta mil años, o características de los neutrinos y de la materia oscura ligadas con las propiedades estadísticas de dichas anisotropías, tareas que llevamos a cabo en el Instituto de Física Corpuscular (IFIC, centro mixto del CSIC y la Universidad de Valencia) con datos preliminares obtenidos por el satélite Planck.

 

* Pablo Fernández de Salas es investigador en el Instituto de Física Corpuscular (centro mixto del CSIC y la Universidad de Valencia).

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

La feria Ciencia en el Barrio reúne a 500 adolescentes para divulgar la ciencia

Por Mar Gulis (CSIC)

Abderrahim y Anás salen a explicar una estratigrafía arqueológica que acaban de realizar en su instituto para entender las huellas del tiempo en el paisaje. Una investigadora del CSIC, María Ruiz del Árbol, les ha explicado cómo hacerlo previamente. Estamos en el Instituto de Educación Secundaria (IES) María Rodrigo, en el Ensanche de Vallecas, y es la primera vez que reciben una visita de este tipo. Sus profesores y el director del IES no salen de su asombro; estos chicos no se implican en actividades académicas y menos científicas. Hasta que cambia su contexto de aprendizaje.

Motivar y generar curiosidad es uno de los objetivos de Ciencia en el Barrio, un proyecto del CSIC que, con el apoyo de la FECYT, trata de llevar actividades de divulgación científica a distritos de Madrid que no contaban con esta oferta. Este viernes, 16 de marzo, estudiantes procedentes de Usera, Carabanchel, Villaverde, Puente de Vallecas, Hortaleza y San Blas-Canillejas replican los talleres realizados previamente con personal investigador del CSIC en sus Institutos de Educación Secundaria (IES) en la Feria Ciencia en el Barrio, en el IES Arcipreste de Hita, en Entrevías, convirtiéndose así en divulgadoras y divulgadores por un día.

A las 10.00 de la mañana, el salón de actos del Arcipreste era un hervidero. Cerca de 500 adolescentes procedentes de nueve institutos madrileños deambulaban de un lado a otro buscando un stand, probando microscopios, preparando el material para hacer una extracción de ADN, ordenando los utensilios para hacer una cata de chocolate…La oferta de la feria es sumamente variada: hasta las 14.00, sus protagonistas van a acercarse a la ciencia a través de experimentos sobre los orígenes de la vida en el universo, la microelectrónica o la nanotecnología; y también mediante  talleres para aprender matemáticas con la vida de las abejas, ‘cocinar’ con polímeros, realizar catas de chocolates, pruebas olfativas o aplicar conocimientos arqueológicos al barrio.

Desde 2016, el Área de Cultura Científica del CSIC ha organizado en cada uno de los institutos participantes talleres experimentales, conferencias, clubes de lectura, y exposiciones sobre temas de actualidad científica, además de visitas guiadas a centros de investigación punteros. El programa está dirigido a estudiantes de 4º de la ESO, pero el resto del alumnado y la comunidad educativa y vecinal también pueden participar en algunas de las actividades.

Ciencia en el Barrio constituye una iniciativa pionera en la ciudad. Hasta el momento más de 2.500 personas han participado en un centenar de actividades que han permitido desmontar ideas falsas sobre las y los científicos, favorecer el contacto directo entre los jóvenes y el personal investigador, así como reforzar vocaciones científicas e inspirar otras nuevas.