Entradas etiquetadas como ‘tierras raras’

Henry Moseley, el joven que ordenó el rompecabezas de la tabla periódica

Por Mar Gulis (CSIC)

Moseley

Moseley (año 1910) en el laboratorio del Balliol-Trinity College poco después de su graduación. En su mano derecha sostiene un globo de vidrio grueso para bajas presiones que utilizaba en la medida del número atómico de gases.

A comienzos del siglo XX los avances en la comprensión de la estructura del átomo no solo removieron los cimientos de la física, sino también los de la química.

Sin ir más lejos, el creador de la tabla periódica, Dimitri Mendeleiev, creía que el hallazgo del electrón amenazaba sus postulados. Décadas antes, en 1869, el científico ruso había propuesto ordenar los 63 elementos químicos entonces conocidos en una particular disposición. En la primera formulación de su tabla periódica, muy distinta de la que conocemos en la actualidad, las columnas mostraban los elementos ordenados de menor a mayor según su peso atómico  –por ejemplo, berilio = 9,1 (su peso real es de 9,01); boro = 11 (10,81); carbono = 12 (12,01); etc.–, de tal forma que en las filas quedaban agrupados elementos que compartían propiedades químicas semejantes –por ejemplo, el litio, el sodio, el rubidio y el cesio, que junto al francio constituyen el grupo de los metales alcalinos–.

Tabla Mendeleiev

Tabla periódica propuesta por Mendeleiev en 1869.

La propuesta tuvo un tímido reconocimiento al inicio, pero fue haciéndose cada vez más popular a medida que fueron confirmándose muchas de sus predicciones. Mendeleiev había dejado huecos para ser completados con elementos aún no descubiertos, de los cuales no solo pronosticó acertadamente su existencia sino también algunas de sus propiedades. Esto fue posible porque fue una de las primeras personas en comprender que las propiedades químicas de los elementos se ‘repetían’ de forma periódica a medida que se incrementaba su peso atómico.

Sin embargo, Mendeleiev había trabajado con la idea de que el átomo era indivisible. En 1897 Joseph Thomson descubre el electrón y en 1911 Ernest Rutherford formula su famoso modelo atómico, en el que un número variable de electrones (de carga negativa) giran alrededor de un pequeño núcleo de carga positiva. ¿Cómo iban a afectar estos avances a la tabla periódica?

Contrariamente a lo que Mendeleiev creía, iban a perfeccionar sus teorías. También en 1911, antes de que se descubrieran los protones (de carga positiva) en el núcleo atómico, el físico aficionado Antonius van den Broek propuso en Nature que el orden de los elementos en la tabla periódica dependía del número de cargas positivas del núcleo o número atómico. Es decir, el hidrógeno ocupa el primer lugar de la tabla periódica porque solo tiene una carga positiva en el núcleo (hoy diríamos un protón) y, por tanto, su número atómico es el uno; el helio ocupa la segunda posición porque tiene dos cargas positivas (dos protones) y su número atómico es el dos; y así sucesivamente.

Sin embargo, fue Henry Moseley en 1913 quien logró probar esta hipótesis estudiando los espectros de rayos X de 50 elementos químicos. Moseley demostró que la frecuencia de los rayos X era proporcional (concretamente, la raíz cuadrada) al número atómico del elemento. Con este hallazgo, daba una justificación cuantitativa al concepto de número atómico y un apoyo fundamental al modelo atómico de Rutherford.

La utilización del número atómico para ordenar los elementos iba a resolver muchos problemas que habían traído de cabeza a quienes trabajaban en química hasta entonces. Por ejemplo, de acuerdo con su peso atómico, el níquel (58,693) debía situarse antes que el cobalto (58,933) en la tabla periódica; sin embargo, Mendeleiev había intercambiado sus posiciones para que resultaran más congruentes con sus propiedades químicas. La incoherencia desapareció cuando pudo conocerse que el número atómico del níquel era 28 y el del cobalto 27. Efectivamente, aunque el níquel pese un poco menos que el cobalto, tiene una carga positiva más en su núcleo, y por tanto puede agruparse junto a los elementos con los que compartía propiedades sin violar la ley periódica de Mendeleiev.

Tabla periódica moderna

Tabla periódica moderna, en la que los elementos aparecen ordenados según su número atómico.

Además, el número atómico permitió saber de forma inequívoca qué casillas faltaban por rellenar en la tabla periódica (43, 61, 72, 75, 85, 87 y 91) y la técnica de Moseley hizo posible identificar elementos de una forma mucho más rápida y certera. Hasta entonces las llamadas tierras raras, una denominación que engloba al escandio, el itrio y los quince elementos del grupo de los lantánidos, habían resultado enormemente difíciles de separar e identificar en el laboratorio. En el libro Las tierras raras (CSIC-Catarata), el investigador del CSIC Ricardo Prego cuenta que George Urbain, uno de los mayores expertos en este ámbito, viajó a Oxford en cuanto conoció el innovador trabajo de Moseley. Allí el francés le entregó una muestra que contenía una mezcla de tierras raras que le había llevado meses identificar con métodos químicos y desafió a su joven colega a intentarlo. Moseley tardó solo una hora en llegar al resultado de Urbain: la mezcla contenía erbio, tulio, iterbio y lutecio. La crisis de las tierras raras había quedado resuelta.

Mendeleiev murió en 1907, sin saber que la ‘intrusión’ de la física en la química no iba a contradecir sus planteamientos sino a darles un nuevo fundamento. Sus aportaciones siguen tan vigentes a día de hoy que la ONU ha declarado 2019 como Año internacional de la tabla periódica y de los elementos químicos precisamente porque se cumplen 150 años desde que Mendeleiev formulara por primera vez su sistema periódico. Moseley, que estuvo nominado tanto al Premio Nobel de Física como al de Química, falleció en 1915, a la temprana edad de 28 años, mientras luchaba con el ejército inglés en la famosa batalla de Galípoli. No pudo participar en los siguientes descubrimientos sobre la estructura del átomo, que seguirían revolucionando la física y la química.

¿Conoces las tierras raras? Son 17 y algunas te acompañan cada día

Por Mar Gulis (CSIC)*

¿Has oído hablar del europio? ¿Y del gadolinio? ¿O quizá te suene el neodimio? Si alguna de tus respuestas es afirmativa, seguramente querrás saber más de estos y otros elementos de las tierras raras. Si no has escuchado nunca esos nombres, te sorprenderá averiguar que el europio está presente en tus billetes de euro para evitar falsificaciones, que el gadolinio se inyecta a los pacientes durante las resonancias magnéticas para detectar un cáncer, o que el neodimio entra en contacto con nuestras orejas cuando usamos auriculares. El investigador del CSIC Ricardo Prego Reboredo cuenta estas y otras muchas curiosidades en su libro Las tierras raras (Editorial CSIC-Los libros de la Catarata), donde se remonta a los primeros hallazgos de estos elementos químicos.

Fue a finales del siglo XVIII cuando, en el pequeño pueblo de Ytterby (Suecia), se abrió una mina para extraer feldespato, un mineral utilizado en la industria cerámica y del vidrio. Prego relata que un joven teniente del ejército sueco, Karl Arrhenius, visitó la mina y se fijó en un extraño trozo de roca negra que parecía carbón. Tras muchas vicisitudes y los trabajos de varios químicos, a partir de ese trozo de mineral se aislaron por primera vez varios elementos de las tierras raras: itrio, terbio y erbio. Pese a los avances, en el siglo XIX aún reinaba el desconcierto entre los mineralogistas y químicos que investigaban los nuevos elementos químicos y trataban de descifrar sus propiedades para ubicarlos en la tabla periódica. Tuvo que comenzar el siglo XX para que pudiera completarse “el mágico número de 17 elementos” de esta curiosa familia química: escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio. Según la Unión Internacional de Química Pura y Aplicada, todos ellos, excepto el escandio y el itrio, pertenecen al grupo de los lantánidos, situados en la parte inferior de la tabla periódica.

 

Este año se conmemora el 150º aniversario de la creación de la tabla periódica por el científico ruso Dimitri Mendeleiev. La Asamblea General de la ONU ha proclamado 2019 como el Año Internacional de la Tabla Periódica / Tximitx

En cualquier caso, no fue hasta después de la II Guerra Mundial cuando se avanzó en las aplicaciones de estos minerales. Desde entonces, la utilización de las tierras raras -denominadas así porqueen un principio los minerales que las contenían eran muy escasos y, además, todos ellos había que buscarlos en Escandinavia- se ha multiplicado exponencialmente, utilizándose en medicina y todo tipo de procesos industriales y desarrollos tecnológicos. Por ejemplo, el cerio aún se usa en cremas para el tratamiento de quemaduras, y también en catalizadores. El escandio forma parte de aleaciones empleadas para fabricar componentes de la industria aeroespacial. Uno de los elementos menos abundantes es el tulio, demandado como fuente de radiación en equipos de rayos X portátiles y láseres de estado sólido. El neodimio, el holmio y el disprosio son necesarios en algunos tipos de cristales de láser. Igualmente han sido exitosos los antiinflamatorios basados en compuestos con samario, y, en general, son varias las tierras raras utilizadas en la fabricación de teléfonos móviles, ordenadores, baterías, imanes y electrodomésticos.

Desde los años 60, las transformaciones económicas y tecnológicas han ido de la mano de la explotación de estos minerales, hoy considerados esenciales para las tecnologías del futuro. He aquí la paradoja: dependemos de ellos, pero pocas personas los conocen. “Las tierras raras están omnipresentes en nuestra sociedad de alta tecnología hasta el punto de que se podría hablar de una Edad de las Tierras Raras con la misma propiedad que lo hacemos de las edades de Bronce o de Hierro”, explica Prego. “Sin embargo, esos elementos químicos no ocupan portadas en los periódicos”, agrega.

Desde el centro superior, en el sentido de las agujas del reloj: praseodimio, cerio lantano, neodimio, samario y gadolinio / Peggy Greb, US department of agriculture

La atención mediática podría aumentar, pues son minerales estratégicos para los Estados. Tanto es así que su explotación genera crisis económicas y tensiones geopolíticas entre países. Ese ‘lado oscuro’ de las tierras raras tiene distintas ramificaciones; por ejemplo, su utilización por la industria militar para la fabricación de los misiles teledirigidos. Pero quizá sea la dimensión ambiental la más preocupante. Aunque los elementos de las tierras raras se emplean en las denominadas tecnologías verdes (en la fabricación de aerogeneradores, paneles fotovoltaicos, coches eléctricos o iluminación LED), su extracción y procesamiento provocan graves impactos ambientales. Precisamente por ello, en Galicia, donde hay una importante concentración, Prego no ve de momento factible su explotación.

Las tierras raras se extraen de minas a cielo abierto –China concentra la mayor producción– a través de procesos en los que se emiten gases contaminantes a la atmósfera, se utilizan agresivos productos químicos y se filtran aguas residuales a ríos y lagos. A partir de ahí, puede darse el círculo vicioso que ya conocemos: deterioro del entorno natural y la producción agroalimentaria, problemas de salud en las zonas afectadas y desplazamientos masivos de población. Pero todo esto daría para varios post.

 

* Este post se basa en varios fragmentos del libro Las tierras raras (CSIC-Los libros de la Catarata), escrito por el investigador Ricardo Prego Reboredo, del Instituto de Investigaciones Marinas de Vigo.