Una inmensidad fría y estéril: ¿Será así el final del universo?

Por Mar Gulis (CSIC)

A finales del siglo pasado, la mayor parte de la comunidad científica pensaba que el cosmos iría frenando poco a poco su expansión debido a la acción de la gravedad. Algunos incluso creían que, luego, el universo comenzaría a contraerse de forma progresiva hasta terminar concentrado en un punto, que señalaría el final del espacio-tiempo. En ese caso el final del cosmos sería una gran implosión o Big Crunch, algo semejante a una película al revés del Big Bang.

remanante supernova

Remanente de una explosión de supernova termonuclear. / NASA.

Con el objetivo de medir la desaceleración del universo, en los años 90 dos equipos científicos independientes (el High-z Supernova Search Team y el Supernova Cosmology Project) se propusieron determinar la velocidad de alejamiento de galaxias situadas a diferentes distancias. Lo hicieron observando supernovas termonucleares, también conocidas como supernovas de tipo Ia.

Estas estrellas en explosión se forman a partir de enanas blancas, objetos muy densos en los que acaban convertidas la mayoría de las estrellas tras perder su combustible nuclear. Cuando una enana blanca absorbe materia de una estrella cercana –o se funde con otra enana blanca– y su masa supera en 1,44 veces la masa del Sol, se alcanza el denominado límite de Chandrasekhar. En ese momento “la enana se contrae con rapidez y esto da lugar a la ignición termonuclear explosiva de la mezcla de carbono y oxígeno de la que está formada”, explica Pilar Ruiz Lapuente, investigadora del CSIC e integrante del Supernova Cosmology Project.

Las supernovas termonucleares constituyen un excelente patrón para medir distancias, ya que es posible calibrar su luminosidad con una gran precisión. Es como si observásemos a lo lejos una bombilla cuya potencia en vatios conocemos previamente: midiendo el brillo con el que su luz llega a nuestros ojos podemos saber a qué distancia se encuentra. Otra ventaja de estas supernovas es que son muy brillantes. “Mientras que con las cefeidas [estrellas cuya luminosidad también puede calibrarse] solo podemos ir a distancias de algunos millones de años-luz, con las supernovas podemos alcanzar miles de millones de años-luz: la supernova que más lejos se ha observado, por el momento, está a 12 mil millones de años-luz”, señala Ruiz Lapuente en su libro La aceleración del universo (CSIC-Catarata).

En 1998 los dos equipos presentaron sus impactantes conclusiones: las supernovas más lejanas observadas se encontraban entre un 10 y un 15% más distantes de lo esperado. Estos resultados, confirmados y reforzados después por otras investigaciones, acreditan que el universo, en lugar de desacelerar su expansión, está expandiéndose a un ritmo cada vez mayor.

El misterio de la energía oscura

Si tiramos una moneda al aire, esperamos que más tarde o más temprano comience a caer por efecto de la gravedad. Si en lugar de eso, empezase a alejarse de nosotros a mayor velocidad, pensaríamos que hay un componente que está contrarrestando la acción de la gravedad. La causa de que el universo siga el mismo patrón que la moneda del ejemplo y se expanda aceleradamente es lo que se conoce como energía oscura.

Todavía no se ha podido precisar la naturaleza física de la energía oscura, pero la mayoría de los datos actuales apuntan a que es una energía intrínseca al espacio-tiempo: una energía del vacío cuya presencia relativa aumenta a medida que el espacio-tiempo se expande. Así, aunque en los inicios del universo la energía oscura habría constituido una pequeña parte de toda la masa-energía del universo, en la actualidad constituye un 73% de la misma. El también investigador del CSIC Alberto Casas aclara que “la razón es que la densidad de materia va disminuyendo a medida que el universo se expande, ya que la misma cantidad de materia se va diluyendo en un espacio cada vez mayor. Pero la energía oscura está asociada al propio espacio, por lo que su densidad no disminuye.”

En concreto, las observaciones muestran que el universo no siempre se ha expandido de forma acelerada: hace más de 5.000 millones de años –la edad del cosmos se estima en unos 13.700 millones de años­– las galaxias estaban reduciendo el ritmo al que se alejaban unas de otras; pero, llegado ese momento, empezaron a distanciarse a un ritmo cada vez mayor. Todo indica que el espacio-tiempo había alcanzado una dimensión en la que la energía oscura se hizo dominante con respecto al resto de componentes del universo, y que fue entonces cuando sus efectos antigravitatorios comenzaron a notarse.

Gráfica energía oscura

En el centro, esquema de la historia del universo que refleja cómo la proporción de energía oscura ha ido aumentando con el tiempo. Arriba a la izquierda, visión de cómo se produce una supernova de tipo Ia en un sistema binario: la enana blanca absorbe materia de la estrella cercana hasta alcanzar el límite de Chandrasekhar (1,44 veces la masa del Sol) y muere en una explosión de supernova. / Nobel Prize Foundation

 

De ser así la energía oscura habría venido a resucitar la constante cosmológica de Albert Einstein. Cuando el físico alemán formuló su ecuación original del campo gravitatorio estaba convencido de que el universo ni se contraía ni se expandía, sino que era estático. Sin embargo, se percató de que “según su ecuación el cosmos perdería ese equilibrio y pasaría a contraerse bajo la acción de la gravitación”, señala Ruiz Lapuente. Por eso, introdujo la constante cosmológica en la ecuación, un término que actuaba como una ‘antigravitación’ que mantenía al universo en equilibrio.

En 1931 el ‘padre’ de la teoría de la relatividad tuvo que aceptar la evidencia de que el universo estaba en expansión. Eso hacía innecesaria la constante cosmológica, idea a la que renunció públicamente afirmando que había sido uno de los errores más importantes de su vida. Ahora vemos que quizás Einstein no estaba tan desencaminado: si la energía oscura es realmente una energía del vacío como la descrita –esta hipótesis todavía necesita confirmarse–, vuelve a ser necesario introducir la constante cosmológica en su ecuación. Esta vez no como factor de equilibrio del universo, sino como responsable de su expansión acelerada.

Malos tiempos para la cosmología

Todo ello tiene importantes implicaciones a la hora de predecir el destino del universo. Según Ruiz Lapuente, “si, en efecto, se confirma que la constante cosmológica es la causa de esta aceleración, esto significa que el universo seguirá expandiéndose de forma acelerada. Su materia será cada vez más dispersa e incapaz de formar galaxias y sistemas estelares. Además, lo que exista irá perdiendo conexión causal paulatinamente y no se podrían transferir señales de un punto del universo a otro. El panorama que surge es el de un universo que va apagando sus luces al acabarse la vida de las estrellas y va enfriándose hacia un final de una inmensidad fría y estéril”.

Casas, autor del libro El lado oscuro del universo, ahonda en esta idea: “Las pocas dece­nas de galaxias que forman el Grupo Local, pequeño cúmulo al que pertenece la Vía Láctea, continuarán ligadas por atrac­ción gravitatoria. Es decir, nuestro Grupo Local permanecerá unido, pero el resto de miles de millones de galaxias actual­mente visibles se alejarán de nosotros cada vez a mayor velo­cidad (de forma exponencial). Cuando el universo tenga 100.000 millones de años, la luz que nos llegará del resto de galaxias será tan débil y estará tan desplazada hacia el rojo, que se volverán invisibles a todos los efectos.”

“Sin embar­go, todavía habrá estrellas durante cientos de miles de millo­nes de años. Es decir, que podemos imaginar observadores inteligentes en esa época futura. A ellos les parecerá que el universo consiste en unas pocas galaxias que flotan en un océano de espacio totalmente vacío, exactamente como les parecía el universo a los astrónomos alrededor del año 1900. Además, no verán la expansión del universo (ya que no verán galaxias distantes alejándose) y no podrán detectar la propia energía oscura, principal responsable de la situación. En consecuencia, no podrán aprender del universo lo que hemos aprendido noso­tros (a menos que les dejemos algún tipo de testimonio que pudiera llegar hasta ese futuro extraordinariamente lejano, algo difícil de concebir). No será una época muy buena para hacer cosmología, esta es más divertida”, añade el investigador del CSIC.

“Los otros cúmulos de galaxias que vemos en el cielo actual formarán también sus propios universos-isla, totalmente desgajados unos de otros. Más allá de aquella época, las estrellas terminarán de consu­mir su combustible (hidrógeno y otros elementos ligeros) y se apagarán. Literalmente, la desolación final será absoluta. ¿Hubiera preferido usted el apoteósico final del Big Crunch?”, concluye Casas.

Para saber más:

Escribe aquí tu comentario





    Normas para comentar en 20minutos.es

    • Antes de enviar su comentario lee atentamente las normas para comentar en 20minutos.es.
    • Esta es la opinión de los internautas, no la de 20minutos.es.
    • No está permitido verter comentarios contrarios a las leyes españolas o injuriantes.
    • Nos reservamos el derecho a eliminar los comentarios que consideremos fuera de tema.
    • Por favor, céntrate en el tema.
    • Algunos blogs tienen moderación previa, ten paciencia si no ves tu comentario.

    Información sobre el tratamiento de sus datos personales

    En cumplimiento de lo dispuesto en el Reglamento (UE) 2016/679 del Parlamento Europeo y del Consejo de 27 de abril de 2016 relativo a la protección de las personas físicas en lo que respecta al tratamiento de datos personales y a la libre circulación de estos datos, y Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales le informamos que los datos de carácter personal que nos facilite en este formulario de contacto serán tratados de forma confidencial y quedarán incorporados a la correspondiente actividad de tratamiento titularidad de 20 MINUTOS EDITORA, S.L, con la única finalidad de gestionar los comentarios aportados al blog por Ud. Asimismo, de prestar su consentimiento le enviaremos comunicaciones comerciales electrónicas de productos y servicios propios o de terceros.

    No está permitido escribir comentarios por menores de 14 años. Si detectamos el envío de comentario de un usuario menor de esta edad será suprimido, así como sus datos personales.

    Algunos datos personales pueden ser objeto de tratamiento a través de la instalación de cookies y de tecnologías de tracking, así como a través de su acceso a esta web desde sus canales en redes sociales. Le rogamos consulte para una más detallada información nuestra Política de Privacidad y nuestra Política de Cookies.

    Los datos personales se conservarán indefinidamente hasta que solicite su supresión.

    Puede ejercer sus derechos de acceso, rectificación, supresión y portabilidad de sus datos, de limitación y oposición a su tratamiento, así como a no ser objeto de decisiones basadas únicamente en el tratamiento automatizado de sus datos, cuando procedan, ante el responsable citado en la dirección dpo@henneo.com

    Le informamos igualmente que puede presentar una reclamación ante la Agencia Española de Protección de Datos, si no está satisfecho con en el ejercicio de sus derechos.