El ‘más menor’ de los múltiplos y el ‘más mayor’ de los divisores

–No se puede, Sal –dijo Ven.

–Espera, Ven, yo creo que sí –respondió el gafotas.

–Pero nunca serán igual de altas –insistió el pequeño — ¿No ves que los cubos de números son más pequeños que los cubos de letras?

–Que eso no impoooooorta… –contestó el gafotas.

–¡Anda que no! –siguió Ven con la regla en la mano –¡Mira! Los de letras miden 9 centímetros y los de números solo miden 6 centímetros de lado.

–Pero, bueno… –Mati acababa de llegar –¿Qué pasa aquí? Cuánto jaleo…

–Hola, Mati –la saludó Sal –. Vamos a construir dos torres gemelas con los cubos, una de letras y otra de números, para demostrar que las mates son tan importantes como las letras –el gafotas guiñó un ojo.

–Pero es imposible, porque los cubos de letras son más grandes que los de números –añadió su hermano con retintín.

Mati20Min_39p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–Hola, Ven –saludó la pelirroja –No, ¿por qué dices que es imposible?

–Porque los de letras miden 9 centímetros y los de número 6 –contestó el pequeño cada vez más enfadado.

–Vamos a pensar un poco –propuso ella –Si hacemos una torre con 8 cubos de letras, ¿cuánto medirá?

–72 centímetros… –dijo Ven con cansancio.

–Eso es, Ven –dijo Mati –9 por 8, es decir, un múltiplo de 9, ¿no?

–Pues claro –contestó Ven mirando a Mati por el rabillo del ojo.

–Y si hacemos una torre con 10 cubos de números, ¿cuánto medirá? –siguió preguntando ella.

–60… –respondió Ven.

–Ajá, un múltiplo de 6, ¿no? –les preguntó.

–Sí  –respondió el gafotas con interés.

–Luego el problema que tenemos que resolver es encontrar un número que sea, a la vez,  múltiplo de 9 y múltiplo de 6 –les dijo –. Un múltiplo común a 9 y 6.

–Ya lo tengo –gritó el gafotas –Basta poner 6 cubos de letras y 9 cubos de números, y medirán 54 centímetros las dos torres ¡Guay!

–Muy bien, Sal –dijo Mati mientras Ven dudaba entre enfurruñarse por haber perdido la disputa y alegrarse porque el problema tenía solución –Ahora os pregunto, ¿se pueden hacer dos torres gemelas más pequeñas que esas con cubos de 6 y 9 centímetros de lado?

Los niños se quedaron muy serios, Gauss ladró para disimular y empezó a perseguir a una mosca imaginaria. Él es así.

–Ni i-d-e-a –acabó admitiendo Ven.

–Se trataría de encontrar el menor múltiplo que tienen en común 6 y 9, ¿no? –dijo Mati –Lo que se suele llamar mínimo común múltiplo de 6 y 9, y que se escribe así: mcm (6,9).

–¿Y eso cómo se hace, Mati? –preguntó enseguida Sal impaciente.

–Hay otras formas de hacerlo –les contó –, pero a mí me resulta más fácil calcularlo usando el máximo común divisor, ¿os acordáis?

–Sí, sí –dijo Sal –. Nos lo contaste. Se hacía con el algoritmo de Euclides, ¿no?

–Efectivamente, cielo –dijo Mati –Pues bien, el mínimo común múltiplo de 2 números se puede calcular dividiendo el producto de esos dos números entre el máximo común divisor de estos.

mcm_1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–Vamos a calcular el mcm(6,9) –les propuso –.Para ello vamos a calcular primero MCD(6,9) usando el algoritmo de Euclides.

–¡Vale! –dijeron los dos hermanos a la vez.

mcm_2

 

 

 

 

 

 

 

 

 

–Ea, pues ya lo tenemos –les dijo la gafotas.

mcm_3

 

 

 

 

–¡Claaaaaro! –exclamó Sal –Basta con poner 2 cubos de letras y 3 de números, ¡era muy fácil!

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven.

–¿Veis? Era posible –dijo Mati guiñando un ojo –Os voy a proponer ahora aun acertijo. Imaginaos que vuestros padres os dan paga cada semana, cada 7 días; vuestros abuelos os dan paga cada 14 días y yo os doy una paga cada 35 días…

–Ojalá –dijo Ven con una sonrisa pícara.

Si os damos las 3 pagas hoy por primera vez –les dijo —¿cuándo volveremos a daros los 3 la paga a la vez?

Los niños se quedaron pensando muy serios,  hasta que Sal dijo:

–¿Hay que calcular el mínimo común múltiplo de 7, 14 y 35?

–¡Muy bien! –dijo Mati.

–¿Y cómo calculamos el mínimo común múltiplo de 3 números? –preguntó Ven.

–Pues agrupando, convenientemente, por parejas –respondió Mati –, así:

mcm_8

 

 

 

 

 

 

 

 

–Calculamos primero mcm(7,14) –les dijo.

mcm_9

 

 

 

 

 

–Nos sale 14 –continuó la pelirroja –. Ahora tendríamos que calcular mcm(14, 35) 

 

mcm_10

 

 

 

 

–¡Es 70! –dijo Sal de pronto.

–Así que no volverán a coincidir las 3 pagas hasta dentro de 70 días –concluyó Mati.

–¡Hala, qué morro! –se quejó el pequeño.

–Pero si era todo ficticio, Ven… –se burló el gafotas.

–Con este método para calcular el mínimo común múltiplo –les contó Mati —evitamos tener que factorizar en primos, que puede ser muy complicado. Pensad, por ejemplo, que si queremos descomponer en factores primos el número 7663, el primer factor primo que  tiene es 79, y para llegar hasta él hemos tenido que probar con muchos primos antes…

–Jo, pues sí que es difícil factorizar… –se quejó Ven.

–Venga, el último acertijo –les dijo Mati —Ahora tenemos 25 bolitas rojas, 15 bolitas azules y 45 bolitas verdes. Queremos hacer collares exactamente iguales sin que sobren bolitas, ¿cuántos collares como máximo puedo hacer?

Los niños se volvieron  aquedar muy serios. Finalmente Ven preguntó:

–¿Hay que hacer el mcm(25, 15, 45)?

–No, no –dijo Mati –Si queremos que todos los collares sean iguales, todos tienen que tener el mismo número de bolitas rojas, ¿no?

Los niños asintieron con la cabeza. Gauss también.

–Por lo tanto –siguió la pelirroja –,  tenemos que dividir el número de bolas rojas entre el número de collares y, si no queremos que sobren bolas rojas, el número de collares debe ser un divisor del número de bolas rojas, de 25, ¿verdad?

Sal y Ven volvieron a asentir. Gauss también, es muy novelero.

–Lo mismo ocurre con las bolas azules –continuó ella –por lo que el número de collares debe ser divisor de 15.

–Y también divisor de 45… –apostilló Sal –por las bolitas verdes.

–Eso es –dijo Mati –El número de collares debe ser un divisor común de 25, 15 y 45, y como queremos hacer el mayor número de colares posibles, será el MCD(25, 15, 45). Hacemos primero el MCD(45, 25)

mcm_6

 

 

 

 

 

 

 

 

 

–Y por último, el MCD(15,5)

mcm_7

 

 

 

 

 

 

 

 

 

 

–Ya tenéis, les dijo que el MCD(25, 15, 45) es 5 –continuó Mati –Así que podréis hacer como máximo 5 collares iguales.

–¡Claro! –exclamó Sal –Cada collar tendrá 5 bolitas rojas, 3 bolitas azules y 9 bolitas verdes.

–¡Qué chulo, Mati! –dijo Ven.

–¿Os gusta? –preguntó ella sonriendo –Pues el próximo día os enseñaré a sumar fracciones usando lo que aprendimos hoy.

–¡¡Guauuu!! –dijo Gauss que siempre tiene que ser el que diga la última palabra…

«Gráfica» es nombre de mujer

Mati20Min_38pPues sí, como ya nos descubrieron Mati y sus amigos el miércoles pasado, gracias  a la nueva edición de 20minutos para México, este blog tendrá nuevos amigos, o así al menos lo esperamos, al otro lado del Atlántico. Les damos a todos ellos un cálido abrazo de bienvenida y les invitamos a compartir el gusto por las Matemáticas en este rincón de la red. Como dice mi santo cuando da una charla en aquel país, si en algún momento utilizo la expresión ‘coger’ en alguno de mis artículos, en realidad quise decir ‘agarrar’. Bueno, y también cuando digo charla, quiero decir plática, que es como le llaman por allá.

Son muchos los lazos personales y profesionales que me unen a México, es por ello por lo que me hace especialmente feliz poder asomarme por allí también desde esta ventana. No es éste el sitio para hablar de los motivos personales, esto es un blog de Matemáticas, pero déjenme que les cuente que tengo un montón de familiares en este maravilloso país. México  los acogió con calor cuando la madre patria no los quería por sus ideas políticas… Ya saben de qué hablo.

Víctor Neumann-Lara

Víctor Neumann-Lara

A nivel profesional, tengo la suerte de trabajar en una disciplina que tiene un gran auge en ese país, la Teoría de Grafos, gracias, entre otras razones al empuje de un gran matemático, Víctor Neumann-Lara, que supo intuir la importancia que esta disciplina iba a tener en el desarrollo de la Informática y apostó fuerte por ella, impartiendo cursos, organizando coloquios y preparando a investigadores en el área. Ops, perdón… Víctor Neumann no los llamaba  grafos, sino  gráficas. Y así le llaman todos los investigadores mexicanos del área que he tenido el placer de conocer y/o el honor de trabajar con ellos ¿Por qué? Pues lo pregunté una vez a un colega mexicano y me contó que Víctor decía que eran unos objetos de una belleza tal que debían tener un nombre femenino. Y, oye, me gustó, pero reconozco que no he conseguido ningún avance en mi intento de que la comunidad española los llame así 😉 Posiblemente, porque usamos la palabra gráfica para referirnos a la representación de funciones o de datos estadísticos.

Pero además de su labor como matemático, Víctor era un apasionado del lenguaje, amaba las palabras, afirmaba necesitar leer poesía cada día. escribió y publicó poesía… le gustaba vivir, amaba la vida y lo demostraba.

Como dijo de él otro gran amigo mexicano, Javier Bracho, conocido como Roli,

“Él se hizo solo, vivió y enseñó con la convicción de que la vida es más importante que la ciencia; de hecho, ésta se da sólo cuando hay vida y él era un amante de la vida, disfrutaba todo intensamente y de cualquier cosa sacaba algo humano, profundo, filosófico.”

Este amante de la vida murió durante una plática en el XIX Coloquio de Teoría de las Gráficas, Combinatoria, y sus Aplicaciones, que él organizaba cada año,  mientras se disponía a cambiar una transparencia (acetato) cayó desplomado, frente a una comunidad científica que lo adoraba, el 26 de Febrero de 2004. Desde 2005 dicho coloquio lleva oficialmente su nombre como reconocimiento a su ingente aportación en el área.

No quiero terminar con tristeza esta entrada, es por eso que os recomiendo que echéis un vistazo a estos vídeos maravillosos que Tito Eliatron nos trajo en su blog hace un tiempo, en el que miembros del Instituto de Matemáticas de la Universidad Autónoma de México nos explican qué hace hoy en día un matemático. Y como podréis ver, el espíritu de Neumann sigue en el aire, si escucháis en ese vídeo a Roli (Javier Bracho) o a Luis Montejano diciendo frases como ésta:

 

 

¡Viva México!

–A mí me da un poco de vergüenza, Sal…

–Pero, ¿por qué, Ven? Ahora tendremos más amigos aún –dijo Sal con una sonrisa de oreja a oreja.

–No, si ya, si lo sé –añadió el pequeño –, pero ¿y si no les gustan las mates?

–¿Cómo no les va a gustar las mates, Ven? –protestó el gafotas –Si Mati nos contó que tenía un montón de amigos  mexicanos matemáticos…

–Muchos y muy buenos –afirmó Mati mientras se acercaba a nuestros tres amigos — ¿De qué estáis hablando, chicos?

–¡Hola, Mati! –la saludó Sal.

–Hola, Mati –añadión Ven –. Es que nos hemos enterado de que ahora desde México, en http://www.20minutos.com.mx/ pueden visitar nuestro blog…

–Pero, ¡eso es estupendo! –exclamó la pelirroja –Adoro México tengo muchos amigos y familiares en el país.

Mati20Min_38p

–Te lo dije, Ven –apostilló Sal.

–¿Y es verdad que les gustan las mates? –preguntó el pequeño.

–Claro, les gustan mucho, ¡muchísimo! –confirmó ella –. Desde hace muchos, muchísimos años… ya los aztecas alrededor de los años 1543 y 1544 a.C. tenían un sistema de aritmética para la medición de sus terrenos agrícolas muy, muy avanzado… ¡y muy curioso!

–¿Curioso? –preguntó Sal –¿Por qué curioso?

–Pues porque, por ejemplo –les contó –usaban símbolos para sus medidas como corazones, manos o flechas.

–¡Cómo mola! –dijo Ven.

–Y esos símbolos, Mati –siguió preguntando el gafotas –¿qué representaban? ¿Operaciones?

–No, no –dijo ésta –Eran unidades de medida para estimar la cantidad de tierra que poseía cada agricultor y poder calcular así los impuestos que debían pagar por ellas.

–No me entero… –se quejó Ven.

–Los aztecas por aquella época tenían una unidad de medida –siguió Mati –, el tlalquahuitl, que equivalía, aproximadamente a 2,5 metros…

–¿¿El qué?? –preguntó Ven con la carita muy arrugada.

–El tlalquahuitl –repitió ella no sin esfuerzo –. Pero cuando medían los lados del terreno, a veces se encontraban con trozos que no llegaban a medir un  tlalquahuitl. Por ello, tenían unas símbolos que indicaban fracciones de esa unidad de medida, entre otros, como os he dicho,  un corazón, una mano o una flecha.

–¿Eso es un corazón, Mati? –preguntó Ven extrañado.

–Sí, eso parece según lo que he podido leer en el trabajo de María del Carmen Jorge y Jorge y Barbara Willians –les dijo.

–¿Y qué fracción representa cada símbolo de estos? –preguntó el gafotas.

–Pues parece que, según ese trabajo, el corazón representa 2/5 de un tlalquahuitl, la flecha sería 1/2 de tlalquahuitl y la mano 3/5 de tlalquahuitl.

–Cómo mola… –exclamó Ven.

–Sí, es alucinante –añadió ella –que tuvieran un sistema métrico tan elaborado hace tantísimos años… Fijaos en esta otra imagen de aquella época recogida en el Códice Vergara

–¿Qué significan esos puntos y rayitas, Mati? –quiso saber Sal.

–Cada raya representa 1 tlalquahuitl, le llamaremos T al tlalquahuitl. para que sea más cortito; cada  punto representa 20 T –les dijo ella — Las 4 rayitas con techo, representan al número 5. Así, si medimos en el campo más a la derecha tendremos: 20 T (el puntito) + 3 por 5 (las rayitas agrupadas de 5 en 5) + 2 rayitas sueltas. En total, 37 T.

azteca_4

 

–¡Tomaaaaaaaaaaaaaa! ¡Está padrísimo!–gritó Ven.

–¿Os atrevéis a medir los otros campos? –les retó.

Los niños se pusieron manos a la obra y escribieron:

azteca_5

 

–Pero bueno… –dijo Mati –Veo que habéis entendido perfectamente la aritmética azteca…

–Un poco, sí –aceptó Sal no sin ruborizarse.

–Pues aún tenían otros símbolos para indicar cantidades siguió Mati –como podéis ver en esta imagen:

–Pues parece que sí que a nuestros amigos mexicanos les gustan las mates –añadió Ven.

–Ya os lo dije -respondió ella –¿Qué os parece si les damos la bienvenida?

–Bienvenidos a nuestro rincón a todos nuestros amigos que nos leen desde México –dijo Sal muy solemne –Podéis ver nuestra presentación aquí.

–¡VIVA MÉXICO! –grito Ven con pasión, provocando que Gauss saliera corriendo despavorido corriendo.

 

Yo te doy el Sol y la Luna

Todo blog que hable de matemáticas que se precie tiene que tratar tarde o temprano la paradoja de Banach-Tarski. Por favor: no se marchen después de oír eso de «la paradoja de Banach-Tarski», lo que sigue os puede parecer curioso y absolutamente contraintuitivo, pero está demostrado y por tanto se sabe que es cierto.

Un puzzle que es un clásico y del que existen muchas variantes es el Tangram; en dicho juego, un cuadrado está dividido en varias piezas y dichas piezas podemos recomponerlas hasta formar otras figuras.

descarga

Evidentemente en el Tangram las piezas tienen una forma muy simple, pero lo que Banach y Tarski probaron en 1926 fue que se puede hacer un Tangram muy, muy especial a partir del cubo. Efectivamente, podemos dividir el cubo macizo en cinco subconjuntos o piezas de tal forma que podemos mover dichas piezas y podemos formar ¡dos cubos macizos con exactamente el mismo volumen que el cubo inicial! Repito: podemos dividir un cubo en cinco trozos y recomponer esos trozos (no deformamos los trozos: seguirán con la misma forma original sin cambiar de forma, ni de tamaño en todo el proceso) hasta obtener dos cubos idénticos al original.

El problema está que si alguien no se cree el resultado, tendrá que leerse la demostración (que no es sencilla) y ver que es correcta para convencerse, ya que los conjuntos (las piezas del tangram), no se pueden ni describir ni ver de manera simple, digamos que son subconjuntos de puntos muy extraños del cubo inicial (aún hay más ya que se demuestra que existen dichos conjuntos, pero no se construyen explícitamente). Pero a mi lo que me encanta es una variante de esta paradoja que nos dice no que podemos construir no dos cubos idénticos al original sino que partiendo de una esfera de cualquier tamaño, podemos dividirla en trozos y reagrupar dichos trozos hasta conseguir otra esfera de otro tamaño cualquiera; esto es: podemos tomar una esfera del tamaño de un guisante, dividirla en trozos y recomponer dichos trozos hasta conseguir una esfera del tamaño de la Luna o del Sol.

luna-lago1

Así podemos decir: «tú dame un guisante y yo te daré la Luna y el Sol».

xlarge_duplashrinkerAlgo curioso es que esta paradoja ha hecho su aparición en una de las series de dibujos animados en los que las matemáticas están más presentes: Futurama. Efectivamente en dicha serie se muestra un duplicador-reductor de Banach-Tarski, por desgracia, dicho duplicador no se puede construir realmente ya que las divisiones de la esfera son tan enrevesadas que parecerían más un conjunto muy disperso de puntos, además, es necesario usar puntos matemáticos, esto es: objetos de dimensión cero, cosa que en nuestro mundo físico es imposible.

 

 

Podemos encontrar una explicación más detallada de esta paradoja en esta entrada del blog Tio Petrus, o aún mas detallada en la Wikipedia en inglés donde aparece incluso un esbozo de la demostración.

 

La vuelta al mundo con una cuerda

–¡He vuelto a ganar! ¡He vuelto a ganar!

–Esta pista está mal, no puede ser, Sal –se quejó el pequeño.

–Nada, nada –respondió el gafotas –.Te gano con los dos coches, Ven, no seas mal perdedor.

–Pues, ya no juego más, ea –apostilló este –. Estoy cansado de ser siempre el segundo.

–Huy, como Erastótenes... –Mati acababa de llegar.

–¿¿Quién?? –preguntó Ven con la cara arrugada como una pasa.

–Erastótenes –dijo ella –. Era un conocido matemático, astrónomo, poeta, geógrafo y filósofo griego.

–¿Y jugaba al Scalextric, Mati? –preguntó Sal con cara de pícaro.

–No, no –dijo Mati sonriendo –, pero algunos historiadores aseguran que se le conocía con el sobrenombre de Beta,  por la segunda letra del alfabeto griego, porque ocupó el segundo lugar en todas las ramas de la ciencia que cultivó.

–Pobre… –se lamentó Ven –Como yo con esta pista maldita…

–Bueno –continuó la pelirroja –, a este señor se le recuerda como el primer hombre que fue capaz de dar una aproximación de la longitud de un meridiano de la Tierra en el año 240 a.C.

Mati20Min_37

–Qué tío… –murmuró Ven.

–¿Cómo lo hizo, Mati? –preguntó enseguida Sal.

— Eratóstenes había leído o le habían comentado que el 21 de Junio el Sol estaba sobre la vertical de Siena (la actual Asuán): el Sol llegaba hasta el fondo de los pozos más profundos y comprobó que en Alejandría eso no era así, sino que los palos clavado verticalmente daban una sombra de algo más de 7º (aproximadamente 1/50 de la circunferencia), así que si la distancia entre Asuán y Alejandría era de 5000 estadios (medida de longitud en aquel entonces), el meridiano tendría que medir 250000 estadios. Aquí surge una polémica porque no se sabe exactamente a cuánto corresponde uno de los estadios de Eratóstenes; parece lo lógico suponer que era el estadio egipcio (él vivía en Egipto) que corresponde con 157,2 metros lo cual da una longitud del meridiano de 39300 kilómetros que está muy cerca del valor verdadero que es de 40.008 km aproximadamente.

 

–¡QUÉ TÍO! –volvió a repetir Ven.

–Pero ahora os voy a proponer un reto –anunció Mati –Ya sabéis cómo se mide la longitud de una circunferencia: si conocemos el radio de la circunferencia, r, podemos conocer también su longitud gracias a π:

L= 2π x r

–Sí. sí, me acuerdo, me acuerdo –interrumpió el pequeño.

–Vamos a redondear la longitud del círculo del Ecuador con 40000 kms, aunque en realidad serían 40,008 kms –siguió ella –. Eso nos daría que el radio de la Tierra es 6366197,723675813 metros. solo tenemos que dividir 40000000 entre 2π. Ahora imaginad  que ponemos una cuerda muy apretadita alrededor del Ecuador, una cuerda de 40000 km.

–Vaya cuerda…

–Ahora le añadimos 6 metros más de longitud a esa cuerda… –continuó Mati.

–¿Solo 6 metros? –preguntó el gafotas.

–Sí, solo 6 metros –confirmó ella –Ahora la cuerda no está apretadita en el Ecuador, ¿verdad? ¿cuánto diréis que se separa de la Tierra?

–No se notaría nada, Mati –dijo Sal.

–Sí, eso nos dice la intuición, pero vamos a medirlo –les propuso:

40000006 = 2π x r

..y entonces el radio que nos sale es 6366198,678605472 metros, ¡casi un metro se separa esa cuerda de la Tierra!

–¡¡¡Toma, toma, toma!!! ¡Cómo mola! –gritó Ven.

–Es alucinante… –añadió sal casi sin voz.

–Lo es, sin duda –dijo Mati –. A veces nuestra intuición nos falla. Pero, bueno, ¿me enseñáis vuestros regalos? Aparte de esta pista tan molona, claro.

–Mejor, Mati –dijo Ven enseguida –. Estoy cansado de ser el Beta de esta familia…

 

¿Está usted de broma, Sr. Feynman?

Entre los lectores de este blog sé que se encuentra algún físico, por ello me produce cierto temor acercarme a su terreno, aunque sea tangencialmente pero es que hoy me gustaría hablar sobre algo relacionado con Richard Feynman. Sé que hablar de Feynman en un blog puede resultar complicado ya que se han contando ya miles de anécdotas sobre él (en este mismo blog se contó algo sobre su controvertida actuación en la Comisión Rogers); pero para quien no lo recuerde, Feynman fue un físico americano, premio Nobel de su disciplina que poseía una marcada personalidad. La lectura de su libro «¿Está usted de broma, Sr. Feynman?» es una actividad ciertamente relajante y estimulante.

Mi pregunta a mis amigos físicos es: ¿sabéis dónde está el punto de Feynman?

No, no los busquéis en nada relacionado con la electrodinámica cuántica, ni en sus diagramas, ni siquiera se llama así ningún punto de la Luna o Marte:

 

El punto de Feynman está en el número π, más concretamente, es el conjunto de seis decimales de π que comienza a partir del decimal 762. Y, de hecho, el que se le llame a dicho conjunto de decimales por su nombre, refleja, de alguna manera, la personalidad de dicho físico, su carácter bromista y sus ánimos de disfrutar con curiosidades y cosas que llamaran la atención. Y es que el decimal 762 de π es 9 y el 763 también 9 y el 764 y así hasta el 767 son todos 9. Antes de dicho decimal, ningún dígito se repite seis veces (ni siquiera cinco o cuatro veces). Feynman, conociendo dicha curiosidad, decía que le gustaría memorizar los decimales de π hasta dicho punto y para poder terminar de recitarlos diciendo «…nueve, nueve, nueve, nueve, nueve, nueve, y así en adelante«. Sugiriendo que π es racional… Él era así, los físicos tienen estas cosas 🙂

Efectivamente, los números reales se pueden dividir en dos grandes grupos en función de su representación decimal: los que a partir de cierto decimal se repite un conjunto de decimales de forma periódica e indefinida (los racionales) y los que no (los irracionales). Los racionales se llaman así porque siempre se pueden expresar como una fracción de dos números enteros (racional viene de ración o fracción), mientras que eso es imposible con los irracionales. Ejemplos notables de irracionales son la raíz cuadrada de muchos números (como 2, 3, 5, 6, etc.) y otros números notables de las matemáticas como e (el número de Euler), la razón aúrea y π.  Así que, efectivamente, Feynman lo que pretendía era gastar una broma sugiriendo la racionalidad de  π. (Mati describió en esta mateaventura los distintos conjuntos numéricos que forman los números reales)

Los que me conocen saben que los físicos no me caen mal y que incluso llego a tener cierta amistad con alguno de ellos, pero sí que he de decir que la broma de Feynman tiene un fallo fundamental en el que es difícil que caiga un matemático (por ser físico se lo vamos a perdonar): en la representación decimal de un número que hemos acordado ningún número acaba en una sucesión infinita de nueves. Por ejemplo, el número 0.9999999… se suele representar de otra forma, es más conocido como 1. Para convencerse de que son el mismo número, basta con hacer 1-0.9999999…=0 y pasando 0.9999999… al otro lado de la igualdad obtenemos que 1=0.9999999… (Mati también explicó esta igualdad al principio de esta mateaventura)

Si alguien quiere conocer más curiosidades sobre los decimales de π o el propio punto de Feynman, puede consultar la correspondiente entrada de la Wikipedia o esta nota del blog Gaussianos.

Una de camellos

–¡Hala! Sí que debe ser incómodo venir desde tan lejos encima de un camello, ¿no?

–Bueno, Ven… En realidad no vienen de tan lejos, no creas…

–¡Anda que no, Sal! ¡Vienen de Oriente!

–Esto… –el gafotas dudó un rato –No sé cómo decirte esto, Ven, pero…

–¿Os cuento un acertijo sobre camellos? –interrumpió rápidamente Mati.

–Siempre que no nos jorobes mucho… –contestó Ven con cara de pícaro.

–Vale, Mati, ya veo –dijo Sal guiñando el ojo a su amiga.

–Veréis –empezó a contarles ella –Hace mucho, muchísimo años, en un país muy lejano, un noble anciano estaba a punto de morir…

–Pobre… –interrumpió el pequeño.

–Era un anciano muy, muy mayor –continuó ella –Justo antes de morir le dijo a sus 3 hijos:

Hijos míos, lo único que os dejo de herencia son mis 17 camellos a los que he cuidado con el máximo cariño y que tanto me han ayudado en esta vida. Sólo os pediré algo, que el mayor de vosotros, que tiene muchos hijos se quede con la mitad; el mediano que está esperando un hijo se quede con la tercera parte, y tú, el más joven, con la novena parte de la herencia.

El hijo pequeño, que era el más hábil con los cálculos protestó:

Pero, padre…

Déjalo descansar –le pidió el hermano mediano —Haremos lo que nos pide, ha sido un buen padre.

-¿No os dais cuenta de que es imposible dividir la herencia como nos pide? –insistió el pequeño, pero el padre ya había muerto.

–¡Toma! ¡Es verdad! –exclamó Ven –17 no se puede dividir por 2, porque no es par, ni por 3 porque sus cifras suman 8 que no es múltiplo de 3, ni por 9 porque la suma de sus cifras tampoco es múltiplo de 9… ¡vaya tela!

–Muy bien, Ven –dijo Mati –.Veo que recuerdas lo que os conté sobre divisibilidad.

–Espero que la solución no sea partir uno de los camellitos a trocitos, ¿verdad, Mati? –preguntó Sal un poco angustiado.

–No, no fue esa la solución, sigo:

Pasados unos días tras la muerte del padre, se hallaban los 3 hermanos tomando un té a la sombra de un árbol cuando vieron acercarse en un camello a una sabia del lugar, a la que todos reconocían enseguida por su larga melena de color rojo…

–¡¡Eras tú, Mati!! –gritó el pequeño.

–No, yo aún no había nacido –dijo ella guiñando un ojo y continuó:

Después de que le hubieron contado la historia, aquella sabia, de nombre Matim, les dijo lo siguiente:

–Os regalo mi camello, yo puedo apañarme sin él. Así tendréis 18 camellos, que es un número divisible por 2, por 3 y por 9.

Los 3 hermanos aceptaron el regalo de Matim y con este nuevo animal decidieron darle la mitad, 9 camellos,  al mayor, un tercio, 6 camellos, al mediano y la novena parte, 2 camellos, al hermano pequeño.

–Para, para, Mati –pidió el gafotas –. 9 + 6 + 2 son 17 camellos, ¡sobra uno!  ¿Qué hicieron con él?

–Se lo devolvieron a Matim y le dieron las gracias por la ayuda –respondió la pelirroja.

–¿Cómo es posible, Mati? –preguntó Sal –¿Cómo pudo sobrar un camello?

–Muy simple, Sal –dijo esta –Con ese reparto, el de un medio, más un tercio más un noveno, siempre sobrará.

–¿Por qué? –preguntó rápidamente el pequeño.

–Pues porque esas fracciones –siguió ella –no suman 1

–¿Cuánto suman esas fracciones, Mati? –preguntó el gafotas.

–Vamos a multiplicar la primera de ellas por 9, numerador y denominador para que no cambie; la segunda por 6 y la tercera por 2 y las sumamos:

 

–¿Veis? -les dijo –Nos queda 17 partido por 18 y eso no es 1. El noble anciano no sabía demasiadas matemáticas…

–Ya, ya veo –dijo Sal.

–A mí me da pena el hijo pequeño –añadió Ven –. Solo se quedó con 2 camellos…

–Creo que no –dijo Mati –, me contaron que quedó fascinado por la inteligencia de Matim y que tuvieron 3 camellos…

–¡Toma, toma, toma! ¡Como los reyes! –interrumpió Ven.

–Sí, pero Matim y su esposo –continuó la gafotas –los usaron para regalar matemáticas a los niños de las aldeas de la zona, pasando pueblo por pueblo con sus camellos.

–Qué bonito es el amor… –exclamó Ven con un suspiro.

–Y las matemáticas –añadió Sal con un guiño.

Pongamos las cartas boca arriba

Hoy es el último día del año, así que seguramente a muchos les tocará cena familiar, repaso de tópicos y discusión de en qué cadena se ven las campanadas. Para esos momentos, no están mal cierto arsenal de chistes o pasatiempos y me gustaría proponer uno que puede hacer pasar buenos ratos, porque su solución parece imposible y, sin embargo, es bien simple:

Ingredientes: una baraja de cartas (da igual española o francesa, incluso da igual el que no esté completa: digamos que al menos 30 cartas estaría bien) y gente con ganas de aceptar un reto.

Preparación: se cogen diez cartas del mazo (da igual que se vean, da igual que todos sepan cuales son: se pueden escoger las diez primeras, por ejemplo) y se les da la vuelta de tal forma que todas las cartas del mazo estén mirando hacia la mesa y esas diez hacia el techo. Ahora se meten esas diez cartas en el mazo de tal forma que sigan estando al revés que las otras y a continuación podemos cortar y mezclar las cartas tanto como queramos. Al final del proceso tendremos una baraja con la mayoría de las cartas mirando hacia la mesa y diez cartas perdidas entre todas que están mirando hacia arriba.

El reto: miramos fijamente al cuñado más odiado, a ese que se cree tan listo y le proponemos que con los ojos vendados sea capaz de realizar la siguiente operación: dividir el mazo original en dos mazos de cartas, digamos que mazo A y mazo B  y conseguir que tanto el mazo A como el mazo B tengan el mismo número de cartas boca arriba.

Si nuestro cuñado no es capaz de cumplir el reto, nosotros podemos decir que lo vamos a cumplir no solo con los ojos cerrados, sino sin tocar las cartas y dándole instrucciones a ese niño de cinco años que hay en todas estas reuniones, para que sea el niño el que complete el reto y así el escarnio sobre el odiado cuñado sea más completo.

En este vídeo explico qué es lo que hay que hacer, así puedes pensar un rato para tratar de encontrar la solución y no la desvelo directamente aquí; pero lo que sí dejaré sin responder es la razón por la que siempre funciona: son matemáticas muy elementales y me gustaría que pensarás en ellas y que des la explicación en los comentarios.

¡Ah! Se me olvidaba lo más importante:

 

¿Y si divido infinito entre infinito?

–Me encantan las luces de Navidad –exclamó Ven con los ojos llenos de reflejos de colores.

–Sí, son las noches más bonitas del año… –añadió Sal –Bueno, y las de verano cuando vemos en la playa las Perseidas.

–Es verdad, Sal –dijo el pequeño –, pero en Navidad las luces son de todos los colores.

–¿Por qué solo ponemos estas luces tan  bonitas en Navidad, Mati? –preguntó el gafotas.

–Parece que su origen podría encontrarse en la época romana, en unas fiestas llamadas los Saturnales –les dijo –que eran muy populares porque en dichas fiestas los esclavos recibían más privilegios que en ninguna época del año. Como las fiestas coincidían con el final de los días más cortos del año, por el solsticio de invierno, lo entendían como el triunfo de la luz sobre la oscuridad y lo celebraban a la luz de velas y antorchas.  Fue la popularidad de estas fiestas entre los romanos la que facilitó que los cristianos la asimilaran al nacimiento de su líder para que éstos, los romanos, pudieran convertirse a su religión sin renunciar a sus fiestas alrededor del solsticio.

–Pues sí que es el triunfo de la luz sobre la oscuridad –siguió Ven –, ¡han puesto infinitas luces este año!

–Hala, Ven –protestó Sal –, ya estás exagerando, no puede haber infinitas luces porque no hay infinitas calles y una calle no puede tener infinitas luces.

–Me estás liando… –se quejó Ven agachando su cabecita.

–Mira Ven, si hay un número finito de calles –continuó su hermano con cariño –, por ejemplo, 100 y hubiese infinitas luces en la ciudad, habría en cada calle infinito dividido entre 100 luces en cada calle, y si divides infinito entre un número sale infinito, ¿no?

–¿¿Sí?? –el pequeño abrió los ojos de para en par –¿Infinito dividido entre un número sale infinito?

–Eso es –confirmó Mati –, aunque realmente, infinito no es un número, es un concepto, pero si una cantidad crece mucho, acercándose al infinito, podemos decir que la división entre esa cantidad y un número fijo, se acerca también a infinito.

–No entiendo –confesó el pequeño Ven.

–A ver –dijo Mati –, pensemos en las siguientes divisiones: en el denominador siempre tenemos 100 y los numeradores van aumentando muy rápido, de forma que podemos decir que el numerador tiende a infinito y que , por lo tanto, estas divisiones se están a acercando a ∞ dividido por 100, ¿no?

 

–Vamos ahora a calcular el valor de esas divisiones –continuó Mati –. La primera sale 1, la segunda sale 100, la tercera sale 10000, y si siguiéramos aumentando el numerador, el resultado iría aumentando tendiendo a ∞:

–Claaaaro… –se asombró el gafotas.

–Por eso podemos decir, con muchas comillas,  que ∞ dividido por un número es ∞ –les contó.

–¡Toma! –se alegró el pequeño.

–Ahora vamos a mirar estas divisiones en las que hemos hecho lo contrario –continuó la pelirroja –, hemos dejado fijos los numeradores y hemos ido aumentando los denominadores, para  que sean ellos los que tiendan a infinito:

–¿Hacemos las cuentas, Mati? –preguntó el gafotas.

–Adelante, chicos.

–La primera da 1 otra vez –mascullaba Sal –, la segunda da 0,01… la tercera 0,001…

–Eso es, y si siguiésemos aumentando el denominador hasta el infinito, ¿qué pasaría? –les preguntó.

–Que nos saldría casi 0, ¿no, Mati?

–Eso es, Sal, muy bien.

 

–¡Eres el mejor! –dijo Ven a su hermanito.

–Los dos sois geniales –Mati guiñó un ojo –. Por esto, podemos decir, con muchas muchas comillas,  que cualquier número dividido entre ∞ es igual a 0.

–¿Y si divido infinito entre infinito? –preguntó Sal.

–¡Pues 1! –gritó Ven asustando al pobre Gauss.

–Bueno, bueno… –dijo Mati misteriosa –. Vamos a investigar un poco, ¿queréis?

–¡¡Sí!! –gritaron los dos hermanitos.

–Si ponemos en el denominador  ∞  y hacemos crecer los numeradores como en el primer ejemplo –les dijo Mati –, podríamos decir que esas divisiones tenderán a ∞ dividido por ∞, ¿no?

 

–Sí, sí, claro –dijo Ven muy serio.

–Pero al calcular el valor de las divisiones –continuó ella –, como un número dividido entre ∞ hemos dicho que vale 0, tenemos:

–O sea –dijo Ven –que ∞/∞ es igual que 0,  ¿verdad, Mati?

–O no… –respondió ella misteriosa –. Vamos a darle la vuelta a a las divisiones, en el numerador ∞ y el denominador creciendo muy rápido:

 

–¿Qué pasa al calcular el valor de estas divisiones? –les preguntó.

–Infinito dividido por un número es infinito… –decía Sal –. Todas dan como resultado infinito.

–Ajá –confirmó Mati.

–¡Ahí va! –se extrañó Ven –Ahora resulta que ∞/∞ también puede ser infinito…

–¿Cómo sabemos si ∞/∞ es 0 o es infinito?

–U otra cosa, ¿no? –dejó caer Mati misteriosa.

–¿¿Otra cosa?? –exclamó Ven –¡¡Imposible!!

–Fijaos en las siguientes divisiones –les propuso –, ahora hacemos crecer mucho tanto el denominador como el numerador… por lo tanto, también crecerían hasta ∞/∞, ¿no?

 

–¡Toma, claro! –dijo Ven muy afectado.

–Pues, calculad ahora el valor de las divisiones –les retó —, a ver qué pasa…

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven de pronto –¡Ahora resulta que ∞/∞ es igual que 3/4!

–Entonces, Mati –preguntó Sal —Si te preguntan cuánto es ∞/∞, ¿qué responderías?

–Que no lo sé, que depende… que es un valor indeterminado, que depende cómo se acerquen al infinito el numerador y el denominador… –les dijo –Es hermoso no saber cómo va a terminar todo en esta vida, ¿no creéis?

–Pues… –dudó Ven y añadió –Sí, es hermoso, a mí me gustan las sorpresas.

 

 

Un problema muy particular

La luna rielaba en el lago en una cálida madrugada a la orilla del Como, en esa norteña Italia tan alejada de algunos tópicos,  comenzaban a oírse los cantos de las primeras cigarras, mientras tanto, una joven pareja se abrazaba ajena a todo y a todos, consumando su amor, sus anhelos…

Creo que me acabo de despistar por completo, si no recuerdo mal esto era un blog de matemáticas, así que tengo que cambiar el tercio completamente: bueno pues aquí va un clásico problema de ecuaciones, puede que alguno de vosotros lo conozca, pero me parece muy representativo del razonar matemático, de intentar extraer el máximo de conclusiones a partir de los datos disponibles. Aquí va:

«En cierto momento, una madre es 21 años mayor que el niño y dentro de 6 años, ella será 5 veces mayor que él. La pregunta es: ¿Dónde está el padre?»

Naturalmente la respuesta a la anterior pregunta dependerá de quién lea el problema y oscilará entre «cualquiera sabe: estará en el bar con los amigotes mientras la mujer se ocupa de todo» al más razonable de «ni idea».

Lo curioso es lo que hace un matemático si recibe dicho problema; dirá: «veamos qué conclusiones podemos extraer a partir de los datos disponibles, llamemos X a la edad de la madre e Y a la del niño. Evidentemente por la  primera afirmación sabemos que X=Y+21 y de la segunda extraemos que X+6=5(Y+6). Si sustituimos la X obtenida en la primera igualdad en la segunda ecuación obtenemos: Y+21+6=5(Y+6) o lo que es igual: 21+6-30=5Y-Y, resolviendo nos queda Y=-3/4».

Llegados a este punto la primera tentación es decir que los datos estaban equivocados que la edad del hijo no puede ser negativa, que no puede tener -3/4 años, pero si lo pensamos un poco igual descubrimos alguna pista de dónde estaba el padre de la criatura en ese preciso instante.

La solución (muy fácil a esta altura: que nadie se dé demasiado mérito) en los comentarios.

Por cierto, se me olvidaba: ¡FELICES FIESTAS A TODOS! ¡¡¡¡Muuuuuuuuuuuuak!!!!

Fractal de Sierpinsky

PS: evidentemente este no es un problema original nuestro, sino que constituye todo un clásico, así que no hemos podido averiguar su autor, si alguien conoce algo cierto al respecto, sus comentarios también serán bien recibidos.