BLOGS

Entradas etiquetadas como ‘regla y compás’

Seguimos redondeando…

Anteriormente en Mati, una profesora muy particular…

En el capítulo de hoy…

–Ya está –afirmó Ven –Una circunferencia perfecta, con centro en el punto (2,1) y radio 3. Todos los puntos de esta circunferencia están a distancia 3 del punto (2,1)

–Muy bien, Ven –dijo Mati –Te ha quedado perfecta.

 

–Es que he aguantado con fuerza el compás –añadió el pequeño orgulloso.

–Entonces, Mati –preguntó el gafotas –Si queremos saber si un punto está dentro o fuera de la circunferencia, por ejemplo el (4,3), lo pintamos y miramos si está dentro, encima o fuera, ¿no?

–Sí, Sal –respondió Mati –Ésa es una forma, pero no es la única. Se puede saber sin dibujar el punto.

–¿Sin dibujar? –preguntó rápidamente Ven –Tengo que dibujar el punto para medir la distancia al centro de la circunferencia y saber si está dentro o fuera.

–No, no hace falta usar la regla –insistió la pelirroja.

–Entonces, Mati –quiso saber Sal –¿Cómo podemos saber si un punto está dentro o fuera de la circunferencia, Mati?

–O sobre la circunferencia… –añadió su hermano.

–¿Recordáis cuando hablamos de las ecuaciones de la recta? –les preguntó.

–Sí –contestó Sal –La ecuación de la recta era como una una contraseña que deben cumplir los puntos para estar sobre ella, ¿no?

–Eso es –dijo Mati –Pues de la misma manera, podemos encontrar la ecuación de la circunferencia, que será como una contraseña que nos permitirá saber si un punto está sobre la circunferencia, en el interior de ésta o fuera.

–¿Nos la enseñas? –pidió el pequeño con cara de niño buenísimo.

–Con mucho gusto –respondió la gafotas guiñando un ojo –Para ello tenemos que recordar cómo se calcula la distancia entre dos puntos en el plano, como vimos cuando estudiamos las coordenadas cartesianas. Si tenemos dos puntos en el plano, (a, b) y (c, d) calculamos su distancia, que escribiremos como d((a,b), (c,d)), usando el teorema de Pitágoras.

–Para ello dibujamos un  triángulo rectángulo en el que la distancia que queremos calcular es la hipotenusa, y para el que sabemos calcular la longitud de los dos catetos. La longitud del  cateto vertical es la diferencia entre las segundas coordenadas de los puntos, y la del horizontal  es la diferencia entre las primeras coordenadas de éstos.

–Y gracias a Pitágoras tenemos –anunció Mati muy teatrera.

–¿Y ahora, Mati? –preguntó Ven impaciente.

–Ahora vamos a escribir la ecuación de la circunferencia de centro (2, 1) y radio 3 –anunció la pelirroja –A ver, ayudadme, ¿qué le vamos a exigir a un punto (x,y) para que pueda estar sobre esta circunferencia?

–Que esté a distancia 3 del (2,1) –dijo el gafotas.

–Eso es –confirmó ella –Pero ya sabemos escribir la distancia entre (x, y) y (2,1) con una fórmula, la escribimos así.

 

 

–Ahora para que no salgan raíces cuadradas en la ecuación que a alguna gente les da mucho miedo –bromeó Mati –elevamos al cuadrado en los dos lados de la ecuación. En la izquierda desaparece la raíz cuadrada, y en la derecha, nos queda 9.

–Pero si con el método que nos enseñaste para calcular raíces cuadradas es muy fácil… –dijo Sal.

–¿Y para qué sirve la ecuación, Mati? -preguntó Ven.

–Pues para saber –dijo ella —si, como preguntaba Sal, el punto (4,3) está sobre ella.

–¿Cómo? –insistió el pequeño.

–Sustituyendo en la ecuación x por 4 e  y por 3, y comprobando si obtenemos 9. Si no sale 9, el punto (4,3) no está sobre la circunferencia.

–No, no está, sale 8 –dijo Ven.

–Muy bien –dijo Mati –Y sin mirar el dibujo, ¿sabéis si está dentro o fuera de la circunferencia?

Los niños se quedaron pensando un rato, al cabo del cual Sal dijo:

–Creo que está dentro, Mati. Porque la distancia de (4,3) a (2,1) será la raíz cuadrada de 8, que debe ser menor que 3, que es la raíz de 9, y eso significará que (4,3) está más cerca de (2,1) que los puntos que están sobre la circunferencia, por lo tanto, está dentro.

–Muy bien, Sal –dijo Mati –Todos los puntos  (x,y) que al sustituir en la ecuación den un resultado menor que 9 estarán dentro de la circunferencia, los que den mayor que 9, estarán fuera.

–¡Toma, toma, toma! ¡Cómo mola! –dijo Ven.

–¡Me encanta las ecuaciones! –dijo Sal –Las de las rectas, las de la circunferencia, y las de los sospechosos… 

Un asunto redondo

–¿Eso es Marte, Ven?

–¿Qué pasa, Sal? Está casi perfecto…

–¿Perfecto? Marte es una esfera

–No, no lo es, me lo dijo Mr. Green. Se parece más a una elipse.

–Ya, pero es casi redondo, dibuja un círculo, por Gauss…

La mascota gruñó un poco, pero con cierto orgullo, le gustaba llevar el nombre del Príncipe de las Matemáticas.

–Eso he hecho, un círculo, Sal –Ven empezaba a enfadarse.

–¿Un círculo? Eso más que un círculo ¡parece una patata!

–¿¿Una patata?? –la carita de Ven se iba encendiendo cada vez más.

–Bueno, bueno, bueno… –Mati acababa de llegar –¿Estáis preparando alguna comida con patatas?

–Hola Mati –la saludó Sal –No, estamos haciendo un mural con Marte y el Curiosity para el colegio, queremos contarles a todos lo que nos contó Mr. Green, y Ven ha hecho un círculo que parece una patata.

El pequeño Ven arrugó su carita completamente, maś enfadado que nadie en el mundo. Gauss se puso junto a él y frunció el ceño también.

–Hombre, Sal, una patata, una patata… no es –dijo la pelirroja –Pero si queréis, os enseño a dibujar círculos, o mejor dicho, circunferencias.

–¿No es lo mismo, Mati? –preguntó Ven desfrunciendo un poco el ceño.

–No, la circunferencia es la línea curva y cerrada, con la propiedad de que todos los puntos sobre ella están a la misma distancia del centro –contestó ella –El círculo está formado por todos los puntos encerrados por la circunferencia que tienen la propiedad de que están a una distancia del centro de la circunferencia menor o igual que el radio.

–¿Qué radio, Mati? –preguntó Ven muy serio.

–Una circunferencia, es una curva cerrada en la que todos los puntos de la misma están a la misma distancia de un punto determinado, que llamamos centro. Pues bien, el radio de la circunferencia es esa distancia, la de cualquier punto de la circunferencia al centro.

–Ah, ya.. –acepto el pequeño.

–Además del radio –siguió Mati –hay otros elementos en la circunferencia, y en el círculo, que tienen nombre propio. Por ejemplo, el diámetro.

–¿Qué es el diámetro, Mati? –preguntó el gafotas.

–Un diámetro de una circunferencia es un segmento uniendo dos puntos de ésta que pasa por el centro.

–¿Y si el segmento no pasa por el centro, Mati? –preguntó Sal.

–En ese caso, a ese segmento se le llama cuerda –dijo ésta.

–Bueno, Mati –intervino Ven impaciente –¿Nos enseñas a dibujar círculos o circunferencias?

–Claro, Ven –respondió ella — ¿Cómo quieres que sea? ¿Qué circunferencia quieres dibujar?

–¿Cómo? Una –dijo el pequeño.

–Pero hay muchas formas de definir una circunferencia –continuó Mati –Por ejemplo, podemos definir una circunferencia diciendo cuál es su centro y su radio. Para ello, solo hay que elegir en qué punto colocamos el centro y abrimos el compás tanto como nos indica el radio.

–O bien –siguió ella –Podemos definir una circunferencia eligiendo el centro y un punto que esté sobre la circunferencia.

–Ah, ya sé –interrumpió Sal –Pinchas en el centro y abres el compás hasta el punto que quieres que esté en la circunferencia.

–Eso es, sí –afirmó ella.

–¿Y si quieres que la circunferencia pase por 2 puntos? –preguntó Ven.

–En ese caso, depende –dijo Mati –Si esos dos puntos son los extremos de un diámetro de la circunferencia buscada, hay una única circunferencia con esa propiedad. Para ello, calculamos el punto medio del segmento que une los dos puntos, y ése será el centro. Para el radio, basta con pinchar sobre el centro y abrir hasta cualquiera de los 2 puntos iniciales.

–¡Mola! –exclamó Ven.

–¿Y si los 2 puntos no son extremos de un diámetro, Mati? –preguntó Sal.

–En ese caso –respondió ella –Hay infinitas circunferencias que pasan por esos dos puntos.

–¡¡Sí, claro!! –dijo Ven –¡Qué bruta!

–¡Jajajajajajajajajajaja! –la pelirroja no pudo reprimir una carcajada –Que sí, chico de poca fe, pero te lo voy a demostrar –y añadió guiñando un ojo –Me gusta que desconfíes de lo que no te demuestran.

–¡Venga, demuéstralo! –pidió Ven con una sonrisa de oreja a oreja.

–Dibuja dos puntos en la libreta –le pidió Mati y Ven los dibujó –Ahora dibujaremos la mediatriz entre esos 2 puntos.

–¿¿Cómo?? –preguntó Sal.

–Muy fácil –anunció la pelirroja –Para calcular la mediatriz entre los puntos A y B, primero pinchamos en A y hacemos un círculo grandote; después pinchamos con esa misma apertura en B y hacemos otro círculo; estos dos círculos, se cortan en 2 puntos. Basta con unir esos dos puntos y tendremos la mediatriz AB, y de paso, el punto medio entre A y B, que será donde a mediatriz corte al segmento AB.

 

–¿Y? –preguntó el gafotas.

Cualquier punto sobre la mediatriz AB está a la misma distancia de A que de B –les dijo –Si pincho con el compás en cualquier punto de la mediatriz y abro, por ejemplo, hasta A, puedo dibujar un círculo que pasará por A y por B.

 

 

–¡Ajá! –aceptó el pequeño.

–Pues bien, Ven –siguió ella –Puedes hacerlo en cualquier punto de la mediatriz, ¡y son infinitos!

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven entusiasmado.

–Claaaaro… –añadió Sal con los ojos abiertos de par en par.

–¿Y si tenéis 3 puntos? ¿Cuántas circunferencias pensáis que podáis encontrar pasando por los 3? –preguntó Mati a los niños.

–¡¡Infinitísimas!! –gritó Ven levantando los brazos.

–¿Infinitas? –dijo Sal mirando a su hermano por encima de sus gafas.

–No, menos –dijo Mati.

–¿Infinito menos 100? –dijo Ven con sonrisa pícara.

–Infinito menos 100 es infinito, Ven –dijo el gafotas.

–Ya lo sé –respondió éste.

–Pues no, la respuesta es … –dijo Mati e hizo una pausa dramática –Sólo una.

–Mati… –dijo Ven con cara de desconfiado –Eso tendrás que demostrarlo.

–Con mucho gusto –dijo ella mientras hacía una graciosa reverencia –Dibuja 3 puntos en el papel, A, B y C.

Los niños dibujaron los 3 puntos como les pidió Mati, ella les dijo:

–Ahora pintad las mediatrices AB, BC y AC.

Los niños las pintaron con su regla y compás.

–¿Veis que las tres se cortan en un punto? –les preguntó.

–¡Ajá! –dijo Ven.

–Pues ése es el único punto que está a la misma distancia de los 3 a la vez –les dijo –Por lo tanto, es el centro de la única circunferencia que pasa por los 3 puntos.

 

–¡Tomaaaaaaaaaa! –dijo Ven.

–Es verdad –aceptó Sal.

–Además –continuó Mati –Si pintéis el triángulo ABC, ese punto se llama circuncentro del triángulo ABC, por ser el centro de la circunferencia que rodea al triángulo.

–¡Qué guay! –exclamó Ven.

–Oye, Ven, por cierto –añadió Sal –¿Por qué no usas el compás para dibujar Marte?

–Ya te he dicho que no es esférico, Sal, ¡es  elipsoidal! –protestó Ven.

–Ya,  pero parece más una esfera que una patata…

 

 

Y dale con Tales…

Anteriormente en Mati, una profesora muy particular…

–Sí –corroboró la pelirroja –Y si los pegáis por los ángulos C1, C2, C3 y C4 , también.

–¡Cómo mola, Mati! –Sal estaba entusiasmado.

–Voy a buscar cartulina de colores –dijo Ven.

–Estupendo –añadió Mati –Otro día seguiremos hablando de Tales…

–Oye, Sal, ¿esto de Tales no te recuerda a lo que nos contó Mati en la playa?

–¿A qué te refieres, Ven?

–A cuando nos enseñó a calcular la altura de la silla del socorrista.

–Ummmm… -el gafotas se quedó pensando –puede ser, sí…

–Efectivamente, Ven –confirmó Mati que acababa de llegar –Es la misma idea.

–¡Hola, Mati! –dijeron los dos hermanos a la vez.

–¡Guau! –dijo Gauss, no estaba para muchas conversaciones.

–Hola, chicos –respondió ella –La idea que usamos aquel día en la playa es la misma que, según cuenta Herodoto, usó Tales para medir la pirámide de Keops.

–¿La pirámide de qué? –preguntó Ven con los ojos apretados.

–La gran pirámide de Guiza, una de las siete maravillas del mundo, que está en Egipto –les contó Mati.

 

–¡Toma! –se asombró el pequeño –¿Y cómo lo hizo , Mati?

–Pues usando su teorema –dijo la pelirroja y le guiñó un ojo –Tales pensó que cuando su sombra midiera lo mismo que él, los rayos de Sol estarían formando un ángulo de 45 grados con su cabeza y con la cima de la pirámide, y por lo tanto, la altura de la pirámide sería igual a la sombra de la misma en ese instante.

–En ese caso –continuó Mati — si llamamos h a la altura de Tales y s a la sombra del mismo, cuando s sea igual a h, los rayos de Sol forman un ángulo de 45 grados en la cabeza de Tales. Y como los rayos de Sol son paralelos unos con otros, el rayo de Sol en la cima de la pirámide también forma 45 grados y por lo tanto H es igual a S. Sólo hay que medir S para conocer H, porque estamos mirando triángulos semejantes.

–¿Cómo sabes que son semejantes, Mati? –preguntó Sal.

–Pues porque la suma de todos los ángulos internos de un triángulo es 180 grados –empezó a decir la gafotas –Como H y S forman 90 grados, igual que h y s, y el Sol forma 45 grados en la cabeza y en la cima, el ángulo que forma el Sol con el suelo en los 2 casos, tiene que ser de 45 grados; con lo cual, los tres ángulos son iguales.

–¡Toma. toma. toma! ¡Cómo mola! –Ven estaba entusiasmado.

–¿Y cómo podía Tales medir su sombra? –preguntó Sal receloso –Si se agachaba a medirla, ya no podía medirla… ¿Tenía un ayudante?

–Hay varias versiones –dijo Mati –Algunas hablan de que en realidad usó un bastón, pero hay otras que dicen que Tales pintó un círculo de radio su altura y se puso en el centro; cuando su sombra tocara el círculo, ya sabía que era tan larga como su altura.

–¡Es verdad! –Sal respiró tranquilo.

–¡Me encanta Tales! –gritó el pequeño saltando provocando que nuestro Anubis particular ladrara del susto.

–Pues no se vayan todavía, aún hay más –anunció cómicamente Mati.

–¿Qué más, Mati? –preguntó Sal intrigado.

–Pues, por ejemplo –anunció Mati –gracias a este teorema de Tales podemos dividir un segmento en el número de partes iguales que queramos. usando sólo regla y compás.

–¿¿Sí?? –preguntó el pequeño –¿¿Cómo??

–Ya veréis –dijo la pelirroja –pintamos un segmento en nuestro cuaderno, ¿en cuántas partes iguales queréis dividirlo?

–¡En 5! –gritó Ven.

 

–Bien –siguió ella –ahora pintamos otro segmento formando un ángulo, el que queramos, con el segmento AB. 

 

–¿Y ahora? –preguntó el gafotas.

–Ahora abrimos el compás, con la medida que queráis, y marcamos 5 veces sobre el segmento AC

 

 

–Ahora sólo tenemos que unir la última marca –les dijo Mati –con el extremo B

 

 

–…y trazar paralelas a ese segmento por las otras 4 marcas –terminó de decir Mati.

 

–¡Toma, toma, toma! –el pequeño Ven estaba emocionado.

–Sí que mola, Tales, sí –corroboró el gafotas.

–Otro día os enseñaré a conseguir oro con él… –anunció Mati misteriosa.

–¿¿Cómo?? –preguntaron los niños a la vez.

–Otro día…

 

 

Solo con regla y compás

–Mira, Sal, este año yo también llevo compás –dijo Ven muy alegre.

–Hala, Ven, ya eres mayor –dijo Sal.

–¡Ya podré dibujar círculos perfectamente! –respondió el pequeño –Los planetas me van a salir chulísimos…

–Pero, Ven, el compás es para las clase de Matemáticas… –añadió el gafotas.

–Ya, pero si lo llevo en la mochila, también lo podré usar en Conocimiento del Medio para dibujar el Sol, ¿no?

–Supongo que sí –dijo Sal –pero yo sólo lo uso en Mates…

–Efectivamente, chicos –Mati acababa de entrar –Se pueden hacer muchas Matemáticas sólo con una regla y un compás.

–¡Hola, Mati! –la saludaron los dos niños.

–¿Has visto, Mati? –dio Ven eufórico –¡En tercero ya llevamos compás! ¡Y regla!

–Ya puedes hacer Matemáticas al estilo de la antigua Grecia –respondió la pelirroja –Como en tiempos de Euclides…

–Ese Euclides, ¿es el mismo que nos contaste para calcular el máximo común divisor?

–Efectivamente, Sal –le contestó ella.

–Ese Euclides sí que era listo, ¿no? –dijo Ven boquiabierto.

–Sí, ciertamente, era bastante listo, como vosotros –Mati les sonrió.

–Y aparte de dibujar círculos, ¿qué más se puede hacer con un compás, Mati? –preguntó Sal ansioso.

–Huy, muchísimas cosas… –les dijo –De hecho, en aquellos tiempos, los matemáticos pensaban que sólo las construcciones que se podían hacer con regla y compás eran elegantes. Además eran una regla y un compás ideales…

–¿Por qué ideales? –interrumpió Ven –¿Mejor que el mío? ¿Has visto bien el mío?

–No, Ven, ideales en el sentido de que no tenían que existir como tales –siguió Mati –La regla era infinita y no tenía marcas…

–¿Como las reglas de Golomb? –interrumpió Sal.

–No exactamente –dijo ella –La regla de los griegos no tenían ninguna marca.

–Y el compás, ¿qué tenía de ideal? –quiso saber Ven.

–Pues que se cerraba al separarse del papel –les dijo –No tenía memoria para recordar las aperturas que había hecho…

–Toma, qué complicado todo… –resopló el pequeño.

–A lo mejor sí es un poco complicado para vosotros, aún –siguió Mati –Pero si queréis, os cuento como usar vuestra regla y vuestro compás como si fuera una especie de calculadora.

–¡Toma, toma, toma! ¡Vale! –gritó Ven entusiasmado.

–¿Aunque no sean ideales? –dudó el gafotas.

–Aunque no sean ideales –respondió la pelirroja –¿Te apetece, Sal?

–Pues claro –respondió él con una sonrisota.

–Os enseñaré primero a sumar sólo con la regla  –les anunció –Decidme dos números.

–8 y 9 –dijo Ven –Nuestras edades.

–Pues, muy bien –empezó a decir Mati –Ya veréis qué fácil, sólo hay que dibujar un segmento que mida 8 y a continuación, uno que mida 9, y medir el segmento resultante.

 

–Jo, pero es más rápido sumar, Mati –protestó el pequeño.

–Ya, si sabes hacerlo, sí –dijo ella –pero con este método no hace falta saber sumar…

–Eso sí… –terminó aceptando Ven.

–Y si queréis restar 9 menos 8 –les dijo –Dibujáis primero el segmento de 9 y en el punto en el que termina, dibujamos el de 8, pero en sentido contrario. Medimos lo  que queda del primer segmento, es el resultado de 9 -8.

 

 

–¿Y si hacemos 4 menos 9? –preguntó Sal.

–En ese caso –dijo Mati –el resultado será todo lo que sobresalga del segmento de longitud 4 pero le ponemos un signo menos delante.

–Qué chulo… -exclamó Sal –Se parece a lo los saltitos que nos contaste aquella vez.

–Pues sí –respondió la pelirroja guiñando un ojo –Es que estamos haciendo lo mismo.

–¿Se puede multiplicar también, Mati? –preguntó Ven impaciente.

–Pues, claro, cielo –le anunció ella –Y ahora vamos a usar el compás.

–¡¡Mola!! –contestó el pequeño.

–¡Multiplica 3 por 5 con la regla y el compás, Mati! –le pidió Sal.

–Vamos allá –les dijo –Pintamos un segmento de longitud 1 y otro de longitud 3 formando un ángulo.

–¿Cuánto tiene que medir el ángulo? –preguntó el gafotas.

–Da igual –respondió ella –A continuación del segmento de longitud 1, dibujamos el segmento de longitud 5.

 

 

–Ahora –siguió Mati –Dibujamos, en rojo, la recta que une los otros extremos de los segmentos de longitud 3 y 1, y vamos a prolongar, con lápiz, la semirrecta que contiene al segmento de longitud 3.

 

 

–Necesitamos dibujar ahora –continuó la pelirroja –Una recta paralela a la roja, que pase por el otro extremo del segmento de longitud 5, el que no está pegado al segmento de longitud 1.

–¿Paralela? –preguntó Ven.

–Eso es, Ven –dijo ella –Una recta con la misma dirección, con el mismo vector, pero que pase por el extremo libre del segmento verde. Vamos a usar para ello el compás.

–¡Mola! –dijo Ven y le dio el suyo.

–Pinchamos con el compás en el extremo libre del segmento verde –les dijo –y abrimos el compás lo suficiente para que el arco de círculo que dibujemos corte en 2 puntos distintos a la recta roja, P y Q. Estos dos puntos, por lo tanto, están a la misma distancia del extremo verde libre.

 

–Muy bien, chicos, seguimos. Vamos a llamarle A al extremo verde libre del segmento de longitud 5 –continuó la gafotas –Ahora, elegimos otro punto sobre la recta roja, P’, a la misma distancia de Q que  P.  Abrimos el compás desde A hasta P y  dibujamos dos arcos, uno con centro en Q y otro con centro en P’, que se cortarán en 2 puntos. Elegimos el que esté más cerca de A y le llamamos O.

 

 

–¿Y ahora, Mati? –preguntó Sal intrigado.

–Pues, nada –respondió ésta –Ya lo tenemos, la recta que pasa por A y por O, es paralela a la recta roja, y va a cortar a la semirrecta que dibujamos en lápiz en un punto que llamaremos C.

–¿Y? –siguió preguntando el gafotas.

–Que si llamamos B al extremo libre del segmento de longitud 3, el resultado de 3 por 5, es la longitud del segmento entre B y C.

 

–¡Toma. toma, toma! –exclamó el pequeño Ven.

–¡¡Es chulísmo! –gritó Sal –¿Se puede dividir?

–Claro –respondió Mati –¿Os enseño?

–¡Sí! –gritaron a la vez.

–Vamos a dividir 8 entre 4 –les propuso.

–Sale 2 –dijo Ven.

–Ya, Ven –añadió su hermano –Pero vamos a verlo con dibujos…

–Ahora pintamos dos segmentos de longitud 4 y 8 –les dijo –formando un ángulo, cualquiera, y marcamos una unidad de longitud sobre el segmento del denominador, esto es, el de 4. Dibujamos también una línea roja que una los extremos libres de los 2 segmentos.

 

 

–Ahora lo que queremos es una paralela a la línera roja que que pase por la marca del 1.

–¿Lo hacemos otra vez con compás, Mati? –preguntó Sal.

–Claro –contestó ella — Pinchamos sobre 1 y dibujamos un arco que corte a la línea roja en dos puntos, P y Q. Después, elegimos otro punto sobre la línea roja, Q’, a la misma distancia de Q que el punto P.

 

 

–Pinchamos en 1, abrimos hasta P, y dibujamos dos arcos con esa apertura, uno pinchando en Q y otro pinchando en Q’, que se cortarań en 2 puntos. Elegimos el más cercano al 1 y le llamamos O.

 

 

–Pues ya lo tenemos –anunció Mati –La recta que pasa por 1 y O es paralela a la recta roja…

–¿¿¿Y??? –preguntó Ven.

–Pues que el resultado de dividir 8 entre 4 –respondió ella –es la longitud de segmento que va desde A hasta B en este dibujo

 

–¡Wow! –Sal estaba emocionado.

–Alucinante… –dijo Ven con los ojos brillantes.

–Lo es –admitió ella –Y todo gracias a un  Teorema de Tales.

–¿Qué es el teorema de Tales, Mati? –quiso saber Sal.

–Os lo cuento el próximo día –dijo ella –Y os enseñaré también más cositas con regla y compás.