BLOGS

Julio es un buen mes para una revolución…

La libertad guiando al pueblo en Julio de 1830

Había una vez un gobierno absolutista que gobernaba sólo para los más ricos y para el clero;  un rey Borbón que insultaba constantemente a los demócratas de su país; leyes que indemnizaban a los ricos por sus pérdidas pero que iban condenando al pueblo a perder lo que habían conseguido: libertad, igualdad…ya saben…

Cuentan que un consejo de ministros, presidido por el Borbón, aprobó en julio una serie de decretos que afianzaban la crueldad del gobierno… Cuentan que el pueblo se cansó, encolerizó viendo como unos pocos, muy pocos comparados con ellos, intentaban abolir y suprimir todo su bienestar social… Cuentan que aquel mes de julio hubo una gran revolución…

Efectivamente, hablo de la Revolución de Julio. Fue en Francia y fue en 1830. Eran otros tiempos…

La libertad, ese ruiseñor con voz de gigante, despierta a los que duermen más profundamente… ¿Cómo es posible pensar hoy en algo, excepto en luchar por ella? Quienes no pueden amar a la humanidad todavía pueden, sin embargo, ser grandes como tiranos. Pero ¿cómo puede uno ser indiferente?

Ludwig Boerne, 14 de febrero de 1831

¿Que por qué me acuerdo hoy de esto? Pues está claro, porque entre los revolucionarios de aquel mes de Julio tan lejano estaba Évariste Galois, matemático francés que a pesar de su corta vida, murió a los 20 años, dejó tras de sí una contribución fundamental en varias ramas de las Matemáticas: la Teoría de Galois ¿Qué otra cosa si no me iba a recordar una revolución en pleno mes de julio?

Aunque no se conocen con exactitud los detalles que rodean la muerte de Galois, parece que no murió por su carácter rebelde, antieclesiástico y antimonárquico. No. Eso le sirvió para ser expulsado de la École Normale Supérieure y para pasar unos mesesitos a la sombra. Galois murió en un duelo, todo muy romántico como corresponde a un buen matemático, al que asistió una mañana de mayo de 1832, sabiendo que iba a morir, puesto que, según parece, enfrente estaría un oficial, republicano como él, con fama de ser un gran tirador. Pobre Évariste… ¿Fue un duelo por amor? Tampoco se puede afirmar con rotundidad porque aquella noche, consciente de que era su última noche, Galois escribió tres cartas. En una de ellas, a dos amigos suyos:

París, 29 de mayo de 1832

Mis buenos amigos,

He sido provocado por dos patriotas. … Me ha sido imposible rehusarme. Les pido perdón por no haberles advertido a ninguno de ustedes. Pero mis adversarios me hicieron prometer por mi honor el no prevenir a ningún patriota. Su tarea es muy simple: demostrar que me he batido a pesar de mí es decir, después de haber agotado todos los medios que cabían, y decir si soy capaz de mentir, mentir, incluso por las cosas más triviales.

Guarden mi recuerdo, ya que la suerte no me ha dado suficiente vida para que la patria sepa mi nombre.

Muero, su amigo,

E. GALOIS

Esto podría inducir a pensar que fueron motivos simplemente políticos los que llevaron al joven matemático francés aquella mañana al estanque cercano a la Rue de la Glacière a encontrar la muerte. Pero en otra de las cartas que escribió, ésta a sus compañeros republicanos, el joven Galois decía:

París, 29 de mayo de 1832

Ruego a los patriotas, amigos míos no me reprochen por morir de otra manera que por el país. Muero víctima de una infame coqueta y dos incautos. Es dentro de una calumnia insignificante que se extingue mi vida.

¡Oh! ¡Por qué morir por tan poca cosa, morir por algo tan despreciable!

Pongo al cielo por testigo de que fue constreñido y forzado que cedí a una provocación que traté de evitar por todos los medios.

Me arrepiento de haber dicho una verdad odiosa a hombres tan poco capaces de escucharla con serenidad.

Pero al final dije la verdad. Llevo a la tumba una conciencia libre de mentira, libre de sangre patriota.

Me hubiera gustado dar mi vida por el bien público.

Perdón para aquellos que me mataron, son de buena fe.

E. Galois

Esa infame coqueta, según se ha podido descubrir a partir de unas cartas encontradas a Galois, pudo ser Stéphanie-Félicie Poterin du Motel, hija del médico que regentaba la pensión en la que se alojaba nuestro protagonista. Hay quien  señala que ella tenía novio y que fue su novio el oficial que acabó con la vida de Évariste…¿quién sabe? No es pequeña la controversia alrededor de la muerte de este matemático rebelde y romántico.

Pero había una tercera carta que es la responsable de que hoy estemos hablando de Évariste Galois, la carta que escribió a Will-Auguste Chevalier, pidiéndole que mostrase sus trabajos a Gauss y Jacobi, los únicos matemáticos que según Galois podrían entenderlos, una carta testamento que daría lugar a la Teoría de Galois.

Vamos a intentar explicar algo de este trabajo.

Resolver ecuaciones ha sido y es fundamental para todas las ciencias o tecnologías. Todos los estudiantes se enfrentan a las ecuaciones de primer grado y, posteriormente, a las de segundo grado. Y todos han de saber que las soluciones de la ecuación (de segundo grado) se expresan en la fórmula:

¿Y si en vez de una ecuación de segundo grado tratamos de resolver una ecuación de tercer, de cuarto grado? Pues desde el siglo XVI se conocen soluciones a este tipo de ecuaciones (naturalmente necesitan, en su expresión raíces cúbicas o cuartas).

Aquí una pequeña digresión: en un libro muy recomendable A history of pi de Petr Beckmann (ignoro si existe traducción al castellano) se cuenta que cincuenta años antes de que el italiano Cardano publicara la solución a la ecuación de cuarto grado en 1545, un español Pablo (o Paolo) Valmes había encontrado dicha solución y por ello fue condenado a morir en la hoguera por el Inquisidor General Tomás de Torquemada ya que:

Es el deseo de Dios que esa solución sea inaccesible al entendimiento humano.

Bien es verdad que dicha historia no ha podido ser corroborada por otros investigadores, por lo que la dejaremos sólo en una curiosa (y representativa) leyenda. Volvamos a las ecuaciones, que me despisto y me enfado…

Como ya se ha dicho, se sabía cómo resolver las ecuaciones hasta grado cuarto desde el siglo XVI, pero las de grado cinco o superior se resistían. Hasta  1824, en este año,  Abel demostró que existen ecuaciones de grado mayor o igual a cinco que no se podían resolver mediante una fórmula que envolviera a los coeficientes de la ecuación ligados por operaciones algebraicas como suma, producto, división o raíces (de cualquier grado), lo que técnicamente se conoce resolver una ecuación por radicales. Sin embargo, otras ecuaciones sí que podían ser resueltas por ese método. Aquí es donde aparece la teoría de Galois que consigue, entre otras cosas, determinar exactamente qué ecuaciones pueden ser resueltas por radicales.

Dentro de la teoría de ecuaciones, he investigado bajo qué condiciones las ecuaciones son resolubles por radicales: esto me ha da dado la ocasión de profundizar esta teoría y de describir todas las transformaciones sobre una ecuación, aún si no es soluble por radicales. 

Carta de E. Galois a su amigo Chevalier

Se refiere a otros radicales, no a los jóvenes que como él se revelaban contra la autoridad ante la injusticia…

Pero  la teoría de Galois también puede ser utilizada para determinar qué construcciones pueden ser llevadas a cabo con regla y compás: un problema de geometría que se remonta a la Grecia clásica. Por ejemplo, con la teoría de Galois se puede probar que el problema de la trisección del ángulo (dividir un ángulo cualquiera en tres ángulos iguales) no puede resolverse usando sólo regla y compás.

De mis tiempos de estudiante en la facultad de Matemáticas recuerdo el comentario jocoso, y con mucha mala leche, de “menos mal que lo mataron, si no, no aprobaríamos nunca la teoría de grupos” Evidentemente, entonces y ahora, lamento la muerte de este  ilustre matemático que con 20 años ya fue capaz de elaborar toda una teoría con tanta trascendencia en las Matemáticas, la Física, la Informática… Pero también en estos días, no puedo evitar añorar el espíritu revolucionario y la valentía  de aquel estudiante que participó activamente en la revolución de su pueblo contra un gobierno de unos pocos que les oprimía y que cuando estaba a punto de morir, tras el citado duelo, dijo a su hermano Alfred:

No llores, necesito de todo mi coraje para morir a los veinte años.

En fin… como también escribió Évariste la noche antes de morir:

Después de esto habrá, espero, gentes que encontrarán provechoso descifrar todo este lío.

Él hablaba de ecuaciones…

9 comentarios

  1. EL JUANCA “EL FRATRICIDA” NO MERECE NI LA GUILLOTINA PORQUE ES UN PERSONAJE INDIGNO PARA PERDER EL TIEMPO CON ÉL.

    16 Julio 2012 | 11:10

  2. Dice ser Salvador

    Julio es mes de revoluciones, pero también de contrarevoluciones. Recordar el 18 de julio de 1936.

    16 Julio 2012 | 11:17

  3. Dice ser farruco

    Si no me equivoco, la revolucion francesa fue en 1789, no en 1830.

    Saludos.

    16 Julio 2012 | 11:57

  4. Dice ser farruco

    Perdon, esa era otra 🙂

    16 Julio 2012 | 12:12

  5. Dice ser Alberto

    @farruco En esta entrada se habla de la revolución de Julio de 1830 que fue en la que participó Galois (no había nacido en la otra) http://es.wikipedia.org/wiki/Revoluci%C3%B3n_de_1830

    Por cierto, y totalmente offtopic: es penosa la entrada de Galois en la wikipedia española, con multitud de datos falsos (todo el asunto del duelo parece inventado por el que lo redactara, no hay más que contrastar con las versiones en inglés o francés mucho más fiables).

    Como siempre: fantástica entrada.

    16 Julio 2012 | 12:14

  6. Dice ser Sicoloco del castin de Foolyou

    A coger un palo y darle en la cabeza a los responsables de la ruina.

    16 Julio 2012 | 12:46

  7. Dice ser ANTONIO LARROSA

    La última revolución en Europa fue la de España de julio de 1936 a abril de 1939 desde entonces no ha parado de haber contrarrevoluciones una tras otra (Berlin Oriental 1953, Poznán, Polonia 1956, Hungría 1956, Checoslovaquia 1968, Europa Oriental 1989-1991, etc.

    Es evidente que el espíritu de casi todos los 800 millones de habitantes del territorio europeo no es el de levantarse en armas sino el del aburguesamiento.

    Clica sobre mi nombre

    16 Julio 2012 | 13:00

  8. This is a great inspiring article.I am pretty much pleased with your good work.You put really very helpful information. Keep it up. Keep blogging. Looking to reading your next post.

    23 Julio 2012 | 10:35

  9. I was very pleased to find this site. I wanted to thank you for this great read!! This is a very informative post, it helps me more.

    26 Julio 2012 | 10:52

Los comentarios están cerrados.