Entradas etiquetadas como ‘vida alienígena’

La radiación estelar, un arma de doble filo para la vida en otros planetas

La semana pasada, dos científicos del Instituto Carl Sagan de la Universidad de Cornell publicaban un interesante estudio con una conclusión sugerente: la alta irradiación estelar que reciben algunos de los exoplanetas descubiertos no sería un obstáculo para la supervivencia, ya que la Tierra logró engendrar vida a pesar de que en sus comienzos también estaba sometida a un elevado nivel de radiación del Sol.

En su estudio, publicado en Monthly Notices of the Royal Astronomical Society, Lisa Kaltenegger y Jack O’Malley-James cuentan que Proxima-b, un planeta rocoso en la zona habitable de Proxima Centauri (una de las estrellas del sistema estelar más cercano a nosotros, Alfa Centauri), recibe 30 veces más radiación ultravioleta (UV) que la Tierra actual y 250 veces más bombardeo de rayos X.

En su día, estos datos desinflaron las expectativas de encontrar vida allí, ya que estos niveles de radiación se consideraban demasiado hostiles. Algo similar ocurre con otros exoplanetas potencialmente habitables que también orbitan en torno a enanas rojas, estrellas pequeñas, poco brillantes y templadas que suelen tener un comportamiento temperamental.

Kaltenegger y O’Malley-James han construido modelos de simulación computacional del ambiente de radiación UV en los cuatro exoplanetas habitables más próximos, Proxima-b, TRAPPIST-1e, Ross-128b y LHS-1140b, y con distintas composiciones atmosféricas para imponer diferentes grados de protección frente a los embates de sus estrellas, todas ellas enanas rojas. Al mismo tiempo, los dos investigadores simularon también las condiciones a lo largo de la historia de la Tierra, desde hace 3.900 millones de años hasta hoy.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Ilustración de un planeta habitable en la órbita de una estrella enana roja. Imagen de Jack O’Malley-James/Cornell University.

Los resultados muestran que incluso en las peores condiciones atmosféricas y de irradiación, los exoplanetas analizados soportarían niveles de UV inferiores a los que experimentaba nuestro planeta hace 3.900 millones de años, cuando posiblemente la vida comenzaba a dar sus primeros pasos; unos primeros pasos que llegaron increíblemente lejos. «Dado que la Tierra temprana estaba habitada, mostramos que la radiación UV no debería ser un factor limitante para la habitabilidad de los planetas», escriben los investigadores. «Nuestros mundos vecinos más cercanos permanecen como objetivos interesantes para la búsqueda de vida más allá de nuestro Sistema Solar».

El estudio de Kaltenegger y O’Malley-James es sin duda un argumento a favor de que la vida pueda progresar en entornos más hostiles de lo que solemos imaginar (aunque no aborda otras agresiones como los rayos X). De hecho, sus implicaciones van aún más allá de lo que los autores contemplan, porque la radiación es una causa de variabilidad genética, el sustrato sobre el que actúa la evolución. La radiación mata, pero también muta: puede generar esporádicamente ciertas variantes genéticas que casualmente resulten en individuos mejor adaptados y en el primer paso hacia nuevas especies. Otro estudio reciente muestra que el sistema TRAPPIST-1 puede estar sometido a un intenso bombardeo de protones de alta energía; y una vez más, esto puede ser tan dañino para la vida como generador de diversidad.

Sin embargo, al leer el estudio es inevitable regresar al viejo problema, el principal: sí, la vida puede perdurar, pero para ello antes tiene que haber surgido. ¿Y cómo?

Hasta que un experimento logre reproducir a escala acelerada el fenómeno de la abiogénesis –un término elegante para referirse a la generación espontánea en tiempo geológico, la aparición de vida a partir de la no-vida–, o hasta que un algoritmo de Inteligencia Artificial sea capaz de simular el proceso, seguimos completamente a oscuras.

La especiación es un fenómeno continuo y abundante. La eclosión de seres complejos a partir de otros más sencillos es algo que ha ocurrido infinidad de veces a lo largo de la evolución, incluso cuando se ha hecho borrón y cuenta nueva, como pudo ser el caso de la biota ediacárica hace 542 millones de años. Pero todas las pruebas apuntan a que en 4.500 millones de años la vida solo ha surgido una única vez. Y lo cierto es que aún no tenemos la menor idea de cómo ocurrió.

Lo cual nos lleva una vez más a la misma idea planteada a menudo en este blog, y es que si la abiogénesis ha sido un fenómeno tan inconcebiblemente extraordinario y excepcional en un planeta también inusualmente raro —como conté recientemente aquí–, defender la abundancia de la vida en el universo es más un deseo pedido a una estrella fugaz que un argumento basado en ciencia. Al menos, con las pruebas que tenemos hasta ahora.

Esta ausencia de pruebas obliga a los defensores de la profusión de la vida en el universo a explicar por qué no tenemos absolutamente ninguna constancia de ello. Y a veces les empuja a esgrimir teorías que llegan a rayar en lo delirante. Como les contaré el próximo día.

¿Un universo rebosante de vida? ¿O la Tierra sí es un lugar especial?

La vida es un fenómeno bastante improbable. Sí, ya sé, ya sé. Se preguntarán de dónde sale esta afirmación. Realmente no es tal, sino solo una hipótesis. Pero una que hasta ahora tiene más apoyos a favor que la contraria.

Es lógico que la visión humana al respecto esté normalmente sesgada hacia el lado contrario, dado que nosotros estamos aquí y apenas conocemos otro lugar. Ningún ser humano ha pisado jamás otro planeta, y solo 12 han caminado sobre otro cuerpo celeste. Así que nos guiamos intuitivamente por lo único que conocemos: un planeta rebosante de vida.

Pensemos en alguien que ha vivido su existencia alejado de la civilización, que un día viaja a la ciudad, compra un billete de lotería y le toca el gran premio. Sin duda pensaría que es enormemente fácil, dado que desconoce las reglas del sorteo y las posibilidades de ganar. En términos de la lotería galáctica de la vida, nosotros, los agraciados, solemos pensar que los planetas habitados deben de ser inmensamente comunes en el universo, aunque en realidad no tengamos la menor idea de cuáles son las reglas concretas de la aparición de la vida ni la probabilidad real de que ocurra.

A esta idea común de que la vida debe de ser tan omnipresente en el cosmos como lo es en nuestro planeta –donde se encuentra incluso en los entornos más hostiles, desde los polos a los desiertos, pasando por los volcanes y las fosas oceánicas– han contribuido los astrofísicos, quienes durante décadas nos han hecho calar la idea de que la Tierra no es un lugar especial.

De hecho, esta visión empezó a incubarse cuando Copérnico se cargó el geocentrismo, y ha venido expandiéndose con las evidencias de que ni nuestro planeta, ni nuestro sistema solar, ni nuestra galaxia tienen esencialmente nada especial que los distinga de otros muchos millones, desde el punto de vista puramente astrofísico. A menudo se dice que la Tierra es solo un suburbio más de un sistema solar suburbial más en una galaxia suburbial más. Todo lo cual ha llevado a muchos físicos a encogerse de hombros: si en la Tierra hay vida, ¿por qué no en cualquier otro lugar?

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Imagen de la Tierra desde el espacio tomada por la misión Apolo 17 en 1972. Imagen de NASA.

Solo que esta visión es simplista. Y espero que se me entienda, no es un «simplista» con ánimo peyorativo. Es que la física es simplista por obligación. Había un viejo chiste sobre dos caballos de carreras, y un físico al que se le preguntaba cuál de los dos tenía más posibilidades de llegar primero a la meta. El físico decía: supongamos dos caballos totalmente esféricos y sin rozamiento…

Solo cuando los físicos comienzan a hundir los pies en el sucio cenagal de la química y la biología es cuando son realmente conscientes de que los caballos no son esféricos y sin rozamiento. O, como decía Carl Sagan, que «la biología es más parecida a la historia que a la física» porque «no hay predicciones en la biología, igual que no hay predicciones en la historia». Y de que tal vez la Tierra después de todo sí sea un lugar más especial de lo que predice la astrofísica.

Sagan era astrofísico, pero hundió los pies. Otro ejemplo es el australiano Charley Lineweaver, astrofísico reconvertido en astro-bio-geólogo. En realidad, no crean que los astrobiólogos tienen más respuestas. Los astrobiólogos son un poco como un equipo de bomberos forestales en el desierto, siempre esperando a poder entrar en acción. A la espera de ese momento, exploran las posibilidades teóricas analizando las condiciones más raras y extremas en las que puede llegar a surgir un incendio.

Pero cuando un físico como Lineweaver comienza a añadir capas de complejidad a esa noción simplista que aplica a la Tierra el principio de mediocridad, descubre que quizá nuestro planeta no sea realmente un suburbio tan mediocre. Lineweaver suele ilustrar sus planteamientos con lo que llama la falacia del planeta de los simios, en alusión a la idea de que el universo debe de estar lleno de especies inteligentes porque la evolución conduce a eso; en la saga clásica, el declive de los humanos dejaba el hueco para que los simios dieran ese salto evolutivo.

Pero para Lineweaver, existe un experimento natural que prueba cómo la evolución no conduce necesariamente a la aparición de una especie tecnológica inteligente. Es su propio país, Australia; un continente separado del resto durante 100 millones de años y en el que todo lo que logró la evolución, según sus propias palabras, fueron los canguros.

Lineweaver propone que existe un «cuello de botella gaiano» (según la idea de Gaia, la Tierra como un sistema vivo autorregulado), un momento de crisis en el que todo planeta con vida naciente deriva hacia la catástrofe climática cuando la propia biología no consigue modificar el ciclo de carbonatos-silicatos para imponer unas condiciones de habitabilidad estables. Es posible que esto sucediera en Venus y Marte, y según Lineweaver la Tierra podría ser un caso insólito que consiguió superar ese cuello de botella. Con lo cual este planeta no sería un ejemplo mediocre de lo que es la norma en el universo, sino una excepción, una anomalía, un raro caso de éxito donde todos los demás fallan.

Por supuesto, la idea de Lineweaver no deja de ser otra hipótesis sin demostración. Pero quien defienda esa visión del universo rebosante de vida debe enfrentarse a la incómoda realidad de que los datos disponibles apoyan más bien lo contrario: aquí no ha venido nadie más, y en los miles de mundos ya confirmados aún no hay nada que invite fuertemente a sospechar la existencia de vida.

Cierto es que tampoco hay nada que lo excluya. Pero aunque el descubrimiento de nuevos exoplanetas ha estado afectado por un sesgo impuesto por los propios métodos de observación –por ejemplo, es más fácil descubrir planetas supergigantes gaseosos, poco aptos para la vida–, la realidad es que una vez más la Tierra sí parece ser un lugar algo especial; entre miles de mundos ya descubiertos, no parece haber tantos similares al nuestro como en un principio podría pensarse.

Lineweaver ha aportado ahora un nuevo dato más en contra de esa percepción de la Tierra como un planeta mediocre, y por tanto en contra de la idea del universo rebosante de vida. El científico australiano y sus colaboradores, los astrofísicos Sarah McIntyre y Michael Ireland, han analizado la posibilidad de que los exoplanetas rocosos conocidos hasta ahora posean un campo magnético similar al de la Tierra. El motivo, escriben los investigadores en su estudio, es que «las evidencias del Sistema Solar sugieren que, a diferencia de Venus y Marte, la presencia de un potente dipolo magnético en la Tierra ha ayudado a mantener agua líquida en su superficie», y por tanto la vida.

Los investigadores no sostienen que la existencia de un campo magnético sea un requisito mínimo obligatorio para la vida, pero sí que aumenta sus posibilidades, al proteger el agua y la atmósfera del viento y la radiación estelar.

El resultado del estudio es que solo uno de los exoplanetas analizados, Kepler-186f, tiene un campo magnético mayor que el terrestre, «mientras que aproximadamente la mitad de los exoplanetas rocosos detectados en la región habitable de sus estrellas tienen un dipolo magnético insignificante», escriben los investigadores.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Representación artística de Kepler-186f. Imagen de NASA Ames/SETI Institute/JPL-Caltech.

Lineweaver y sus colaboradores se abstienen de concluir que sus datos descarten la posibilidad de vida en esos planetas, pero sí sugieren que la mayoría de los que se han descubierto en otros sistemas solares son probablemente menos hospitalarios para la vida que la Tierra. Y quien crea que hablar solo de vida basada en el agua y el carbono es reduccionista debería saber que, en realidad, es igualmente reduccionista proponer otras bioquímicas alternativas sin considerar sus numerosos e inmensos obstáculos, conocidos o no. En un futuro tal vez no lejano, es posible que los sistemas de Inteligencia Artificial puedan modelizar estas bioquímicas alternativas para tratar de obtener un veredicto sobre su plausibilidad real. Hasta entonces, son solo fantasías.

Pero en fin, al menos hay una buena noticia: Kepler-186f. Solo que, hasta ahora, ni siquiera los responsables del Instituto SETI (Búsqueda de Inteligencia Extraterrestre) albergan demasiadas esperanzas de que allí exista vida inteligente…

El objeto interestelar ‘Oumuamua no parece ser una nave alienígena

Si algún día un destructor imperial decidiera dejarse caer por nuestro Sistema Solar, ¿cómo lo reconoceríamos?

En primer lugar, los telescopios descubrirían un objeto inédito en la pantalla del firmamento. Las observaciones permitirían estimar su tamaño, pero sin la suficiente resolución como para poder determinar su aspecto detallado. Después, los cálculos mostrarían que su trayectoria y velocidad no se corresponden con las de un objeto en órbita alrededor del Sol o de otro cuerpo del sistema, lo que sugeriría que no se trata de un asteroide al uso. Tampoco se detectaría la coma típica de los cometas, e incluso tal vez los datos indicarían que su forma no es la habitual más o menos redondeada de un asteroide, sino una más extraña; por ejemplo, fina y alargada.

Así es precisamente la historia que arrancó el 19 de octubre de 2017, cuando el telescopio Pan-STARRS 1 de Hawái descubrió un objeto que pronto se reveló como algo fuera de lo común. Reuniendo las observaciones de otros telescopios, los astrónomos concluyeron que estaban ante el primer objeto interestelar jamás confirmado, un viajero procedente de fuera del Sistema Solar que casualmente atraviesa nuestro vecindario cósmico.

Para su nominación formal se inauguró una nueva categoría de objetos designados con la letra I, de «interestelar»: 1I/2017 U1. Para su nombre común se recurrió a la lengua hawaiana: ‘Oumuamua viene a significar algo así como «el primer mensajero de la lejanía». Los detalles se publicaron en la revista Nature en diciembre de 2017. Respecto a su extraña forma alargada, los investigadores escribían: «Ningún objeto conocido en el Sistema Solar tiene dimensiones tan extremas».

A la izquierda, ilustración de 'Oumuamua (ESO/M. Kornmesser). A la derecha, destructor imperial de Star Wars (20th Century Fox).

A la izquierda, ilustración de ‘Oumuamua (ESO/M. Kornmesser). A la derecha, destructor imperial de Star Wars (20th Century Fox).

La historia tiene un ilustre precedente en la ficción. Más o menos de este mismo modo comenzaba Cita con Rama, publicada por Arthur C. Clarke en 1973. En la novela, lo que inicialmente se detectaba como un asteroide resultaba ser una nave alienígena de forma cilíndrica. Con estos antecedentes, ¿cómo no pensar en la posibilidad de que ‘Oumuamua pudiera ser en realidad un objeto de fabricación artificial?

Esta posibilidad movilizó a los investigadores que trabajan en proyectos SETI, siglas en inglés de Búsqueda de Inteligencia Extraterrestre. En diciembre de 2017 el proyecto Breakthrough Listen, liderado por el magnate ruso Yuri Milner, anunció que se disponía a utilizar el observatorio de Green Bank, el lugar donde comenzó la exploración SETI en 1960, para tratar de captar alguna señal de radio procedente de ‘Oumuamua. Así lo anunciaban:

Los investigadores que trabajan en el transporte espacial a larga distancia han sugerido previamente que una forma de aguja o de cigarro es la arquitectura más probable para una nave interestelar, ya que minimizaría la fricción y el daño debido al gas y el polvo interestelar. Aunque un origen natural es lo más probable, actualmente no hay consenso sobre cuál puede ser ese origen, y Breakthrough Listen está bien posicionado para explorar la posibilidad de que ‘Oumuamua pudiera ser un artefacto.

Pero como era de temer, el rastreo terminó con las manos vacías. En enero los investigadores de Breakthrough Listen comunicaron sus conclusiones: si ‘Oumuamua emitía alguna señal de radio, debía ser con una potencia inferior a 0,08 vatios, lo cual sería 3.000 veces más débil que la emisión de la sonda de la NASA Dawn, como ejemplo elegido.

Pese a los resultados negativos del Breakthrough Listen, el Instituto SETI, en California, emprendió su propia búsqueda utilizando su instalación dedicada, la matriz de telescopios Allen. Los investigadores del SETI se apoyaban además en un intrigante estudio publicado el mes pasado por dos astrofísicos de Harvard, según el cual ‘Oumamua podía ser un objeto artificial. De acuerdo con los autores, la ligera aceleración inesperada del presunto asteroide sugería que podía tratarse de una nave impulsada por una vela solar. Los científicos aventuraban también que la trayectoria de ‘Oumuamua es demasiado rara para ser un objeto errante, y que en cambio se explicaría más fácilmente si alguien lo hubiera enviado intencionadamente a nuestro Sistema Solar.

Pero una vez más, la realidad ha pinchado el globo: esta semana el Instituto SETI ha informado del fracaso en la búsqueda de señales de radio. Según ha declarado Gerry Harp, el director del estudio: «No hemos encontrado tales emisiones, a pesar de una búsqueda muy sensible. Aunque nuestras observaciones no descartan de forma concluyente un origen no natural para ‘Oumuamua, son datos importantes de cara a evaluar su posible composición». El estudio completo se publicará el próximo febrero.

Por el momento, la cita con Rama deberá seguir esperando.

El ser humano no busca vida extraterrestre. Parte 3: pero algo está cambiando

El pasado mayo, el Congreso de EEUU aprobó un proyecto de ley de presupuestos que recomendaba a la NASA destinar 10 millones de dólares en los próximos dos años para «buscar firmas tecnológicas como transmisiones de radio para cumplir el objetivo de la NASA de investigar el origen de la vida, su evolución, distribución y futuro en el universo». Traducido, significa que por primera vez desde hace 26 años la búsqueda de inteligencia extraterrestre, lo que se conoce como SETI, podría recibir el apoyo de fondos públicos.

Según comentan en internet quienes entienden cómo funciona esta maquinaria burocrática en EEUU (o esta maquinaria burocrática en general), esto no significa aún que haya un cheque de 10 millones de dólares esperando a que la NASA lo recoja para comenzar a buscar civilizaciones alienígenas; la propuesta debe pasar por un proceso con varios puntos de control, en alguno de los cuales podría desviarse hacia el camino de la papelera.

Un fotograma de la película 2010: Odisea dos (1984) mostrando la evolución de la vida en Europa, la luna de Júpiter. Imagen de MGM / UA.

Un fotograma de la película 2010: Odisea dos (1984) mostrando la evolución de la vida en Europa, la luna de Júpiter. Imagen de MGM / UA.

Pero es un signo de que algo puede estar cambiando. Desde 1993, cuando un senador demócrata logró desmantelar el programa SETI de la NASA proclamando que se había acabado la temporada de caza de marcianos, los científicos que siguen convencidos de que haberlos, haylos, han seguido pegando la oreja al espacio sin desfallecer, sacando el dinero de debajo de las piedras para mantener vivos sus proyectos. Y en los últimos años han encontrado de repente unos aliados inesperados: los multimillonarios de internet.

Personajes como Elon Musk, Jeff Bezos, Paul Allen o Yuri Milner, todos ellos millonarios gracias a sus negocios tecnológicos, han irrumpido con más o menos ímpetu en el que solía ser el terreno de las agencias espaciales públicas y las instituciones de investigación, promoviendo y financiando ese tipo de ideas que antes ni siquiera se llevaban a la discusión por considerarse ilusorias, alocadas, peliculeras, casi infantiles. ¿Fundar una colonia en Marte? ¿Enviar un coche al espacio? ¿Mandar una flotilla de robots a la estrella más próxima?

El dinero manda, y cuando el ruso Milner pone 100 millones de dólares encima de la mesa con los que comprar horas de radiotelescopio para escuchar señales alienígenas, su proyecto Breakthrough Listen no solo se convierte en el programa SETI mejor financiado, sino que al mismo tiempo también contribuye a dar un empujón al resto de proyectos en marcha. Y con ello, a hacer estas investigaciones más presentes en los medios. Y con ello, a que el público sepa que existe un renovado interés en encontrar de una vez por todas a nuestros vecinos galácticos, si existen. Y con ello, a que los políticos empiecen a darse cuenta de que no quieren quedarse atrás.

Pero no todo el mérito es cosa de Milner y sus compañeros de golf. Frente a las anteriores reticencias de los científicos de verse de algún modo manchados por el estigma de los hombrecitos verdes, se diría también, aunque es una impresión personal, que cada vez son más los investigadores que han decidido abrir de nuevo esa oscura y polvorienta cripta de la vida extraterrestre para ver qué hay dentro.

Así, las ideas frescas y audaces crecen: el SETI óptico, que busca posibles señales láser en lugar de ondas de radio; el uso de algoritmos de Inteligencia Artificial para rastrear las estrellas; el intento de identificar firmas biológicas en las atmósferas de los exoplanetas lejanos o de llegar a deducir la existencia de una cubierta vegetal. La comunidad científica reúne a muchas de las mentes más brillantes de esta roca mojada. Y cuando se ponen a pensar, saltan chispas.

Ante todo este empuje de una nueva ciencia de búsqueda de vida alienígena, la primera respuesta de la NASA no se ha hecho esperar: en septiembre la agencia celebraba en Houston una reunión sobre firmas tecnológicas (Technosignatures Workshop), dedicada a debatir las perspectivas sobre posibles señales que puedan detectarse desde la Tierra y que puedan revelar la presencia de civilizaciones alienígenas. La idea es ampliar el enfoque clásico de los proyectos SETI, dedicados a la búsqueda de señales de radio u ópticas, para incluir también otros posibles signos de tecnologías avanzadas, como la construcción de enormes estructuras para cosechar la luz de las estrellas (lo que se conoce como esferas de Dyson) o incluso la existencia de exoplanetas con atmósferas contaminadas por la actividad tecnológica industrial.

Pero aquí no acaba este soplo de aires nuevos. Como ya conté aquí recientemente, en julio un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU instaba a la NASA a revisar sus políticas de protección planetaria, esa directriz que evita enviar misiones espaciales a lugares del Sistema Solar donde podría haber vida, por miedo a contaminarla con microbios terrestres agazapados en las sondas. Lo cual implica que por fin alguien se está dando cuenta de que, con políticas de protección planetaria tan estrictas, es imposible estudiar la presencia de vida en nuestro vecindario cósmico.

Ilustración artística de la superficie del exoplaneta TRAPPIST-1f. Imagen de NASA / JPL-Caltech.

Ilustración artística de la superficie del exoplaneta TRAPPIST-1f. Imagen de NASA / JPL-Caltech.

La última y magnífica noticia ha saltado esta semana: un nuevo informe de las Academias, encargado por la NASA a petición del Congreso, insta a la agencia espacial de EEUU a «expandir la búsqueda de vida en el universo y hacer de la astrobiología una parte integral de sus misiones». El organismo que aglutina toda la ciencia de EEUU pide a la NASA que «incorpore el campo de la astrobiología en todas las fases de futuras misiones de exploración», reconociendo que hasta ahora las misiones espaciales, incluso aquellas que incluyen objetivos astrobiológicos, «han tendido a estar más fuertemente definidos por perspectivas geológicas que por estrategias orientadas a la astrobiología».

Para ello, el informe recomienda tanto la búsqueda de firmas biológicas que puedan delatar formas de vida «similares a las terrestres», como también la investigación de «vida potencial que difiera de la vida como la conocemos», y que todo ello se aborde mediante la detección in situ, es decir, sondas espaciales equipadas con tecnologías de detección de vida en entornos como el subsuelo de Marte o los océanos en varias lunas del Sistema Solar.

Por otra parte, el informe recomienda también la puesta a punto de tecnologías que faciliten la investigación de la posible existencia de vida en lugares lejanos del universo a los que no se puede acceder con sondas espaciales, es decir, exoplanetas detectados mediante telescopios terrestres y orbitales.

Evidentemente, todo esto no va a llenar de astrobiología las misiones de la NASA de la noche a la mañana. Las agencias espaciales trabajan con planificaciones a plazos muy largos, y ya está bien definido y en marcha lo que va a ejecutarse en los próximos años, por lo que el cambio, si lo hay, será lento. Pero al menos parece un firme propósito para que la astrobiología deje por fin de ser el patito feo de las misiones espaciales. Y para que por fin podamos decir que el ser humano sí busca vida alienígena. La haya o no.

El ser humano no busca vida extraterrestre. Parte 2: en el espacio, setas y Rolex

En la historia de la exploración espacial se han lanzado más de 550 misiones al espacio, tripuladas o no, sin incluir satélites comerciales, de comunicaciones o aquellos destinados a la observación de la Tierra. De todas estas misiones, ¿saben cuántas han estado dedicadas a la búsqueda de vida extraterrestre?

Una.

En 1976, en pleno furor de la moda alienígena, aterrizaron en Marte las dos sondas gemelas Viking de la NASA, en la primera y hasta ahora única misión diseñada específicamente para buscar vida extraterrestre. Los responsables del proyecto crearon una serie de experimentos increíblemente astutos para determinar de forma indirecta si había microbios en Marte. Por entonces aún no existían las técnicas de secuenciación de ADN, y difícilmente había otra posibilidad más directa que intentar encontrar actividad metabólica en el suelo.

Imagen tomada por la sonda Viking 2 en Marte en 1976. Imagen de NASA.

Imagen tomada por la sonda Viking 2 en Marte en 1976. Imagen de NASA.

El problema es que los resultados de los experimentos de las Viking fueron inconcluyentes: ambas sondas detectaron lo que parecía actividad metabólica, pero en cambio no encontraron moléculas orgánicas, lo cual era contradictorio. Por ello se dejaron los resultados en suspenso, interpretando que la detección de actividad metabólica era un falso positivo.

Curiosamente, las últimas misiones a Marte han confirmado que sí existen moléculas orgánicas, por lo que se ha eliminado el obstáculo que en su día impidió concluir que hay vida marciana. Pero obviamente, nadie va a atreverse a sostener esta afirmación hasta disponer de nuevas pruebas más concluyentes, que con la tecnología actual serían posibles.

¿Por qué diablos entonces no se envían nuevas sondas con aparatos más modernos como amplificadores (PCR) o secuenciadores de ADN? Esta es una pregunta que algunos nos hacemos. Hoy el panorama de las misiones espaciales está dominado por físicos, químicos, geólogos, científicos planetarios… En las sondas que se envían al espacio no hay hueco para los astrobiólogos, que deben quedarse en casa estudiando cosas como los hábitats y microbios terrestres que podrían parecerse a los hábitats y microbios extraterrestres.

Por ejemplo, hace unos meses se produjo una curiosa situación cuando la NASA presentó en una charla nuevos datos sobre penachos de vapor que emergen desde el océano subglacial de Europa, la luna de Júpiter. El interés central del hallazgo era la posibilidad de que la química de estos penachos soporte la existencia de vida. Pero los ponentes responsables del estudio no hacían sino dar vueltas en torno a esta cuestión central, ya que entre ellos no había ningún astrobiólogo.

Una lección aprendida de las Viking es que buscar vida alienígena es una tarea complicada y confusa. Pero no parece suficiente motivo como para que desde entonces no se haya lanzado al espacio ni una sola misión con este propósito. De haberse seguido una línea constante y creciente de ensayo, error y mejora desde los años 70, y con las tecnologías disponibles ahora, probablemente hoy sería una tarea mucho menos complicada y confusa.

Por supuesto, son numerosas las misiones destinadas a buscar condiciones habitables: exoplanetas idóneos, moléculas orgánicas en el Sistema Solar, condiciones compatibles con la vida… Pero habitable no es lo mismo que habitado. Podría tocar un objeto frente a mí y deducir que es una jaula de hámster. Si sigo tocando dentro, podré encontrar un cuenco con comida, un recipiente con agua, una rueda… Llego a la conclusión de que es una jaula perfectamente habitable para un hámster. Pero no tengo la menor idea de si dentro hay realmente un hámster o no. Después de las Viking, ninguna misión ha ido equipada con los instrumentos necesarios para saber si en la jaula hay un hámster.

Pero si las complicaciones de la búsqueda del hámster no justifican el hecho de no intentarlo, en cambio hay otro motivo que sí basta para tirar a la basura cualquier propuesta que llegue a las agencias espaciales con la palabra “vida” en la línea donde dice “objetivos”: la protección planetaria.

La protección planetaria, de la que ya he hablado aquí en varias ocasiones, es una directriz que obliga a las agencias espaciales a evitar deliberadamente la intrusión en aquellos lugares en los que podría haber vida extraterrestre, por temor a contaminarla con los microbios terrestres que viajan camuflados como polizones en las sondas. La NASA ha reconocido explícitamente que evita aquellos lugares de Marte con mayor probabilidad de albergar vida.

Sin duda, la protección planetaria es una política muy juiciosa, responsable y respetuosa con los posibles ecosistemas extraterrestres. Y a la que algún día habrá que renunciar, o al menos matizar, si es que queremos llegar a saber si existe vida más allá de nuestras propias narices.

En resumen, todo esto recuerda a aquel chiste sobre los dos tipos que están buscando setas cuando uno de ellos encuentra un Rolex, a lo que el otro replica: ¿pero estamos a setas o a Rolex? El ser humano lleva ya décadas a setas; y si uno encuentra un Rolex por casualidad, sabemos que probablemente es un chiste.

Sin embargo, se diría que algo está cambiando. En los últimos tiempos parece existir un cierto caldo de cultivo que sugiere un cambio de rumbo, un cambio de aires. Quizá ya se está superando el sonrojo del fenómeno ovni; no es que hoy haya menos creyentes, pero ya ha quedado claro que es territorio de Cuarto Milenio y Año Cero, no de la realidad física. Quizá la avalancha de pruebas de habitabilidad ya acumuladas ha abierto boca para que ahora nos apetezca algo más sustancioso. Quizá ya estamos un poco cansados de no hacer otra cosa que recoger setas, y puede que ahora vayamos a Rolex. Mañana lo contamos.

El ser humano no busca vida extraterrestre. Parte 1: desde la Tierra

No existe ninguna misión espacial, activa ni planificada, dedicada a buscar vida extraterrestre. No ha existido desde 1976.

¿Sorpresa?

Quizá lo sea para aquellos anclados a esa idea de que el dinero derrochado en buscar hombrecitos (y mujercitas) verdes debería emplearse mejor en ayudar a los hombrecitos (y mujercitas) de otros muchos colores que tenemos aquí en la Tierra. Tranquilos: ese dinero del contribuyente terrícola supuestamente despilfarrado en buscar vida no terrícola sencillamente no existe.

Evidentemente, el hecho de que este gasto fuera inaceptable para muchos no es la razón de que no exista, o al menos no la única ni la más importante. Hay tantos gastos públicos en los que unos y otros no estamos de acuerdo que costaría decidir por dónde empezar. Ni siquiera la próxima instalación municipal que van a construir en nuestro pueblo/barrio/ciudad nos pone de acuerdo a todos. Y si existiera una casilla en la declaración de la renta para contribuir a la búsqueda de vida extraterrestre, algunos incluso la marcaríamos.

Suele ocurrir que, a muchos, la revelación de que no hay dinero público para buscar a E.T. les llega de sorpresa, tanto como la de que el ahorro de ese despilfarro no ha arreglado el mundo. Pero a otros, y esto es lo verdaderamente interesante, les resulta difícil aceptar que el ser humano renuncie a lo que es casi una obligación inherente al logro evolutivo de la inteligencia. Y muchos incluso no entienden qué llevan haciendo entonces por ahí durante tanto tiempo tantas misiones de exploración espacial, si no han estado haciendo (lo que ellos consideran) lo más importante.

¿Y qué hace entonces el proyecto SETI (siglas en inglés de, precisamente, Búsqueda de Inteligencia Extraterrestre)?, tal vez se pregunten (SETI utiliza telescopios terrestres, no misiones espaciales). Pero ¿qué hay de la búsqueda de exoplanetas habitables, que sí emplea telescopios orbitales? ¿Y qué hay de todas esas noticias sobre moléculas orgánicas e indicios de habitabilidad en otros lugares del Sistema Solar? Ahora iremos a todo eso. Pero para encontrar la explicación, que no es simple, debemos comenzar indagando en la historia de la búsqueda de vida extraterrestre.

El complejo de antenas Very Large Array, en Nuevo México (EEUU). Imagen de Hajor / Wikipedia.

El complejo de antenas Very Large Array, en Nuevo México (EEUU). Imagen de Hajor / Wikipedia.

Después de unos tímidos intentos previos (uno de ellos nada menos que de Nikola Tesla, pero esa es otra historia), el 8 de abril de 1960 el astrónomo Frank Drake y un puñado de colaboradores abrieron por primera vez la oreja de un gran radiotelescopio para escuchar si había alguien más ahí fuera. Entonces parecía una buena idea: dado que nunca se había hecho, se podría incluso haber apostado que al abrir el tubo comenzarían a entrar cientos o miles de señales de radio de civilizaciones lejanas.

Por otra parte, entre los años 60 y 80 el fenómeno ovni estaba sólidamente atornillado a la cultura popular, triunfando de tal modo que ni siquiera científicos como Carl Sagan se atrevían a descalificarlo por completo. La apuesta estaba caliente. Parecía cuestión de unos pocos años que el primer contacto acabara llegando por una vía u otra. Los proyectos SETI comenzaban a recibir generosos chorros de dinero público.

Pero no ocurrió nada. Salvo varias falsas alarmas, fenómenos naturales y alguna señal aún dudosa, los proyectos SETI solo encontraron un silencio sepulcral en el cosmos. El globo ovni acabó pinchado, cuando ni las investigaciones de los gobiernos ni las de una legión de aficionados lograron obtener ni una sola prueba concluyente, a pesar de que hoy todo ciudadano de a pie lleva una cámara de alta definición en el bolsillo durante cada momento de su vida. En 1993 el senador de EEUU Richard Bryan declaraba que se había acabado la “temporada de caza de marcianos a costa del contribuyente”; la ley promovida por Bryan cancelaba la financiación del programa SETI de la NASA.

La búsqueda de vida alienígena cayó en descrédito. Actualmente muy pocos científicos, si es que los hay, creen que el fenómeno ovni fuera otra cosa que lo que hoy llamamos un meme. Muchos de ellos continúan creyendo en la existencia de vida extraterrestre, pero ya no es trendy buscar alienígenas, e incluso puede ser un estigma.

Por supuesto, numerosos proyectos SETI continúan vivos y muy activos, pero aquí está el nudo: sostenidos únicamente con fondos privados y donaciones. Las instituciones implicadas compaginan esta especie de actividad extraescolar con otros proyectos más serios, que sí reciben financiación pública. Y muchos de los científicos, junto con numerosos voluntarios, se dedican a ello en sus ratos libres, casi como un hobby. Todo lo cual no puede llamarse precisamente un empeño del ser humano.

Continuará…

¿Microbios peligrosos en el espacio? Sí, pero los enviamos nosotros

Quien haya leído el libro de Michael Crichton La amenaza de Andrómeda (1969), o haya visto la película de Robert Wise (1971) o la más reciente miniserie coproducida por Tony y Ridley Scott (2008), recordará que se trataba de la lucha de un equipo de científicos contra un peligroso microorganismo alienígena que lograba abrirse paso hasta la Tierra a bordo de un satélite.

Un fotograma de 'La amenaza de Andrómeda' (1971). Imagen de Universal Pictures.

Un fotograma de ‘La amenaza de Andrómeda’ (1971). Imagen de Universal Pictures.

Otras muchas obras de ciencia ficción han explotado la misma premisa, sobre todo después del libro de Crichton; pero como obviamente a los productores de cine les aprovecha infinitamente más el aplauso del público que el de los biólogos, muchas de estas películas se llevan un suspenso morrocotudo en verosimilitud científica, e incluso en originalidad (los argumentos suelen ser cansinamente repetitivos).

No es el caso de la novela de Crichton, que se atrevió con el arriesgado planteamiento de basar su suspense en la sorpresa científica, y no en el susto fácil. Debido a ello la película de Wise no tiene precisamente el tipo de ritmo trepidante al gusto de hoy. La miniserie de 2008 trata de repartir algo más de acción, pero quien quiera seguir el hilo científico de la trama deberá añadir un pequeño esfuerzo de atención.

En un momento de la historia (¡atención, spoiler!), el gobierno de EEUU decide arrojar una bomba nuclear sobre el pueblo de Arizona donde comenzó la infección, con el propósito de erradicarla. Mientras el avión se dispone a disparar su carga, los científicos descubren de repente que las muestras de Andrómeda irradiadas en el laboratorio han proliferado en lugar de morir. El microbio es capaz de crecer transformando la energía en materia, y por tanto una explosión atómica no haría sino hacerle más fuerte: le serviría una descomunal dosis de alimento que lo llevaría a multiplicarse sin control. En el último segundo, la alerta de los científicos consigue que la bomba no se lance y logra evitar así un desastre irreversible.

Un fotograma de la miniserie 'La amenaza de Andrómeda' (2008). Imagen de A.S. Films / Scott Free Productions / Traveler's Rest Films.

Un fotograma de la miniserie ‘La amenaza de Andrómeda’ (2008). Imagen de A.S. Films / Scott Free Productions / Traveler’s Rest Films.

¿Simple ficción? Recientemente hemos conocido un caso que guarda un intrigante paralelismo con lo imaginado por Crichton: un microbio que se alimenta de aquello que debería matarlo. Pero lógicamente, no es una forma de vida extraterrestre, sino muy nuestra, tanto que está enormemente extendida por el suelo y el agua de la Tierra. Y es probable que también la hayamos enviado al espacio, y a los planetas y lunas donde nuestras sondas han aterrizado.

La historia comienza con la idea de Rakesh Mogul, profesor de bioquímica de la Universidad Politécnica Estatal de California, de lanzar un proyecto de investigación para que sus estudiantes pudieran curtirse en el trabajo científico y elaborar sus trabajos de graduación con algo que fuera ciencia real. Para ello, Mogul consiguió diversas cepas de la bacteria Acinetobacter que habían sido aisladas no en lugares cualesquiera, sino en algunos de los reductos más estériles de la Tierra: las salas blancas de la NASA donde se habían montado sondas marcianas como Mars Odyssey y Phoenix.

Estas salas funcionan bajo estrictos criterios de limpieza y esterilización. Cualquiera que entre a trabajar en ellas debe pasar por varias esclusas de descontaminación y vestir trajes estériles. Pero a pesar de los exigentes protocolos, un objetivo de cero microbios es imposible, y ciertas bacterias consiguen quedarse a vivir. Una de ellas es Acinetobacter, una bacteria común del medio ambiente y bastante dura que resiste la acción de varios desinfectantes y antibióticos, por lo que es una causa frecuente de infecciones hospitalarias.

Bacterias Acinetobacter al microscopio electrónico. Imagen de CDC / Matthew J. Arduino / Public Health Image Library.

Bacterias Acinetobacter al microscopio electrónico. Imagen de CDC / Matthew J. Arduino / Public Health Image Library.

Mogul y sus estudiantes cultivaron las cepas de Acinetobacter de las salas blancas en medios muy pobres en nutrientes, y observaron algo escalofriante: cuando este bicho no tiene qué comer y se le riega con etanol para matarlo (el alcohol normal de farmacia), ¿adivinan qué hace? Se lo come; lo degrada y lo utiliza como fuente de carbono y energía para seguir creciendo. Los resultados indican que la bacteria también crece en presencia de otro alcohol esterilizante, el isopropanol, y de Kleenol 30, un potente detergente empleado para la limpieza de las salas. Por último, tampoco se inmuta ante el agua oxigenada.

Pero dejando de lado las terribles implicaciones de estos resultados de cara al peligro de nuestras superbacterias aquí en la Tierra (esto ya lo he comentado recientemente aquí y aquí), el hecho de que estos microbios se aislaran en las salas de ensamblaje de sondas espaciales implica que estamos enviando microbios al espacio de forma no intencionada.

De hecho, esto es algo que los científicos conocen muy bien: como he contado aquí, regularmente se vigila el nivel de contaminación microbiológica de las sondas, y en casos como los rovers marcianos Curiosity, Opportunity y Spirit se han detectado más de 300 especies de bacterias; algunas, como las del género Bacillus, capaces de formar esporas resistentes que brotan cuando encuentran condiciones adecuadas.

La NASA trabaja con un límite de 300.000 esporas bacterianas en cualquier sonda dirigida a un lugar sensible como Marte, donde estas esporas podrían brotar, originar poblaciones viables y quizá sobrecrecer a cualquier posible especie microbiana nativa, si es que la hay. Esta cifra podría parecer abultada, pero en realidad refleja el mayor nivel de esterilidad que puede alcanzarse; suele hablarse de que cada centímetro cuadrado de nuestra piel contiene un millón de bacterias.

El rover marciano Curiosity en la sala blanca. Imagen de NASA / JPL-Caltech.

El rover marciano Curiosity en la sala blanca. Imagen de NASA / JPL-Caltech.

La protección planetaria, o cómo evitar la contaminación y destrucción de posibles ecosistemas extraterrestres con nuestros propios microbios, forma parte habitual del diseño de las misiones espaciales, pero preocupa cada vez más cuando se está hablando de futuras misiones tripuladas a Marte o de enviar sondas a lugares como Europa, la luna de Júpiter que alberga un gran océano bajo su costra de hielo. En julio, un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU instaba a la NASA a revisar y actualizar sus políticas de protección planetaria.

Sin embargo, la entrada de nuevos operadores privados complica aún más el panorama. Cuando en febrero Elon Musk lanzó al espacio su deportivo Tesla, algunos científicos ya advirtieron de que una posible colisión del coche con Marte podría contaminar el ambiente marciano; es evidente que el deportivo de Musk no se ensambló en una sala blanca. Pero incluso la contaminación microbiana de un coche es una broma comparada con la nuestra propia. Los humanos somos sacos andantes de bacterias, y cualquier misión tripulada significará la liberación inevitable de infinidad de microbios al medio.

Ante todo esto, ¿qué hacer? Los más estrictos abogan por políticas hiperproteccionistas, y la propia NASA insinúa que el diseño de sus misiones marcianas trata de evitar enclaves con mayor probabilidad de vida. Pero la incongruencia salta a la vista: si evitamos los lugares con mayor probabilidad de vida, ¿cómo vamos a averiguar si hay vida?

Por ello, otros expertos rechazan estas posturas extremas que bloquearían la investigación de posibles formas de vida alienígena. El genetista de Harvard Gary Ruvkun, miembro del comité autor del informe, decía al diario The Washington Post que la idea de que un microbio polizón en una sonda espacial pudiera invadir otro planeta es «como de risa», «como una ideología de los años 50». Lo mismo opina Ruvkun de la posibilidad contraria, un microbio marciano que pudiera llegar a la Tierra en una misión de ida y vuelta y colonizar nuestro planeta.

Sin embargo, y citando a un famoso humorista, ¿y si sí?

Ruvkun basa su argumento en descartar por completo la posibilidad, pero esta es una pequeña trampa; las futuras políticas de protección planetaria no pueden simplemente hacer desaparecer la bolita como los trileros. En algún momento deberá llegarse a un acuerdo que incluya el reconocimiento expreso de los riesgos como un precio que tal vez haya que pagar si queremos seguir explorando el cosmos. Y deberá decidirse si se paga o no. Y si se acepta, quizá haya que desechar la corrección política que hoy tiñe el lenguaje sobre protección planetaria –curiosamente, en esto hay coincidencias en la ciencia y en la anticiencia– para ceñirse a un objetivo más realista y asumible de minimizar la interferencia pero no de eliminarla, si esto supondría renunciar a explicar el origen y el misterio de la vida.

En un lugar de la Mancha hay microbios casi marcianos

La astrobiología es una curiosa ciencia, tanto que algunos incluso llegan a calificarla de pseudociencia. Tiene como objetivo de su estudio algo cuya existencia aún no consta, la vida alienígena. Pero más que esto, se trata de que es imposible demostrar que NO existe vida extraterrestre. Los puristas más tiquismiquis alegan que no cumple el criterio de falsación enunciado por Popper en su definición del método científico, y que por tanto no puede considerarse una ciencia.

Pero es evidente que, mientras no se demuestre lo contrario, en ningún caso la astrobiología podría considerarse una pseudociencia al mismo nivel que la parapsicología o la astrología. Tal vez en todos los casos podamos decir que se trata de disciplinas que están casi en el puesto de aduanas de la ciencia, mirando hacia esa frontera. Pero obviamente, la astrobiología está dentro, mientras que las otras están fuera, y esto marca una diferencia como estar a un lado o al otro de la frontera entre, digamos, Yemen y Omán, o sea, entre un país arrasado por la guerra y otro donde se vive con tranquilidad.

Tal vez esa condición fronteriza es la que tiene un especial atractivo para los que tenemos una mente científico-fantasiosa, o científica mixta, o lo que sea. Pero tampoco hay que dejarse llevar demasiado por las figuraciones: en realidad la astrobiología tampoco está compuesta por un montón de tipos y tipas sentadas con los brazos cruzados y tirando avioncitos de papel a la espera de que alguien descubra algo que les dé tarea.

Mientras llega ese momento, una de las ocupaciones fundamentales de los astrobiólogos (pero ni mucho menos la única) es investigar los límites de la vida terrestre, con la idea de que los seres más inadaptados a lo que entendemos como el hábitat terrícola medio vivirían muy a gusto en otros lugares más raritos del cosmos, y por tanto pueden ser parecidos a los que podrían encontrarse en planetas como Marte. Y por el camino, el estudio de estos bichos llamados extremófilos –o amantes de las condiciones extremas– puede revelar nuevos hallazgos básicos de cómo funciona la biología, o puede también abrir una vía hacia nuevas aplicaciones industriales.

En esta línea es donde encaja un estudio presentado esta semana en el Congreso Europeo de Ciencia Planetaria, que se clausuró ayer en Berlín. En este trabajo, los investigadores indios Rebecca Thombre, Priyanka Kulkarni y Bhalamurugan Sivaraman, junto con el español Felipe Gómez del Centro de Astrobiología (CAB) de Madrid, han descrito ciertos microbios presentes en dos lagunas manchegas que tal vez podrían sobrevivir en ciertos lugares de Marte o en el océano subglacial de Europa, la luna de Júpiter que hoy triunfa en las apuestas sobre la posible existencia de vida en nuestro vecindario solar.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

Las lagunas de Peña Hueca y Tirez forman parte de los humedales de Villacañas, en la provincia de Toledo, una formación natural junto a una zona industrial que durante años estuvo castigada por la contaminación y abandonada a su suerte, y que en los últimos años se ha rehabilitado para convertirse en un enclave ecológico privilegiado. En aquel paraje sobrevive el grillo cascabel de plata (Gryllodinus kerkennensis), un animalito cuyo sonido dicen que se asemeja al tintineo de una campanilla, y que se creía extinguido en este continente desde 1936. En 2008, investigadores españoles lo descubrieron agazapado en los humedales de Villacañas, que se han convertido en su último bastión europeo conocido.

Pero una faceta de la vida en aquel lugar de la Mancha que está interesando especialmente es la de sus habitantes más pequeños, aquellos que no pueden verse a simple vista, pero cuyos efectos son visibles incluso a gran altura desde el aire, ya que en las estaciones húmedas dan a la laguna de Peña Hueca un color rosa característico. Se trata de una variedad específica del alga unicelular Dunaliella salina que los autores del nuevo estudio han denominado EP-1. Este microorganismo, cuyas células rojas tiñen el agua de un color rojizo, es un extremófilo halófilo, un microbio capaz de crecer a gusto en altísimas concentraciones de sal que serían letales para otros seres vivos. Además, los investigadores han encontrado también en la laguna una bacteria llamada Halomonas gomseomensis PLR-1, igualmente adaptada a aguas extremadamente salinas.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

La laguna de Peña Hueca, en Villacañas (Toledo). Imagen de Europlanet / F Gómez / R Thombre.

El secreto de estos microorganismos para soportar una vida en salazón es producir un compuesto que engaña a las leyes de la física. Otro organismo cualquiera se deshidrata en presencia de dosis de sal tan altas, porque la presión osmótica tiene a hacer fluir el agua de su interior hacia el exterior en un intento (inútil) de equilibrar la concentración de sal a ambos lados de la célula. Para evitar esta pérdida, Dunaliella produce grandes cantidades de compuestos como el glicerol, que imita la concentración externa de sal y así logra que la célula no pierda agua.

Por otra parte, el color rojo del alga se debe a su gran producción de β-caroteno, el mismo compuesto que pinta las zanahorias de naranja, y que permite a Dunaliella protegerse de la nociva luz ultravioleta del sol. Debido a que el β-caroteno es un antioxidante y un precursor de la vitamina A, en todo el mundo se utiliza esta alga como diminuta factoría química para producir carotenoides destinados a la industria cosmética y a la alimentación.

Pero más allá de su importancia en la Tierra, los microbios presentes en Peña Hueca y Tirez pueden revelar pistas sobre cómo podría ser la vida en Marte. Los astrobiólogos estudian múltiples lugares terrestres que se conocen como análogos marcianos, enclaves que por sus condiciones geológicas y químicas son similares a distintas ubicaciones del planeta vecino y cuyos habitantes podrían tal vez sobrevivir allí; y por tanto, si existe vida en Marte, tal vez pueda ser similar a estos microbios extremófilos terrestres.

Muestras rojas del alga Dunaliella salina EP-1 en un cristal de sal. Imagen de Europlanet / F Gómez / R Thombre.

Muestras rojas del alga Dunaliella salina EP-1 en un cristal de sal. Imagen de Europlanet / F Gómez / R Thombre.

Según los autores del nuevo estudio, Peña Hueca es un buen análogo de los depósitos de cloruro en los altiplanos meridionales de Marte, el área más abrupta que ocupa dos terceras partes de la superficie marciana. Pero la laguna manchega también podría reflejar condiciones parecidas a las del gran océano que se extiende bajo el hielo en Europa, una de las muchas lunas de Júpiter.

Según Gómez, el astrobiólogo del CAB, especies como estas algas podrían utilizarse incluso para terraformar Marte, es decir, sembrar aquel planeta con microbios que a lo largo de miles de años vayan convirtiendo lo que hoy es un desierto inhóspito en un lugar apto para una amplia variedad de formas de vida, incluida la nuestra. Así pues, entre los molinos y los talleres artesanos de queso se abre ahora también en la Mancha un lugar de peregrinación para unos nuevos caballeros andantes de la ciencia, los astrobiólogos. A saber cómo habría reaccionado Don Quijote a esto.

Descubierto el planeta de Spock, y podría haber vida

Tal vez un signo de que no soy lo suficientemente friki es que nunca he sido un ardiente fan de Star Trek. ¿Será porque la serie original me quedó atrás y la nueva llegó cuando ya estaba yo a otras cosas? ¿Será porque, en cambio, me acertó de pleno en el estómago el estreno de la primera trilogía de Star Wars y aquello ya no tenía vuelta atrás? ¿Será porque en mi época la Televisión Única nos enchufaba unas entonces-magníficas-hoy-supongo-que-lamentables series de ciencia ficción que la gente más joven suele desconocer por completo (e incluso muchos de mi generación), como Espacio 1999, La fuga de Logan o Los siete de Blake (esta última es para subir nota, ya que no la recuerdan ni mis propios hermanos)?

Pero en fin, hoy vengo a traerles una novedad que caerá como el maná divino a la legión de trekkers o trekkies, que no estoy seguro de cuál es la forma correcta; precisamente la advertencia anterior viene como descargo de que en realidad desconozco este extremo y otros muchos relacionados con las andanzas del capitán Kirk, su Enterprise, sus tripulaciones y sus tribulaciones. La noticia es que un equipo de investigadores de varias universidades de EEUU, con la participación del Instituto de Astrofísica de Canarias y la Universidad de La Laguna de Tenerife, dice haber encontrado el planeta natal de Spock, Vulcano.

Ilustración del planeta HD 26965b. Imagen de Universidad de Florida.

Ilustración del planeta HD 26965b. Imagen de Universidad de Florida.

Imaginarán que la presentación de la noticia tiene algo de gancho publicitario; que obviamente logra su objetivo, o tal vez yo tampoco vendría hoy a contarles esto. Mientras que los primeros exoplanetas descubiertos, allá por el año de 1992, fueron carne de titulares en todo el mundo, hoy caen a docenas, incluso a cientos, y es casi imposible estar al día. A fecha de hoy, la Enciclopedia de Planetas Extrasolares recoge 3.845 planetas en 2.866 sistemas, 636 de ellos con más de un planeta; pero este número seguirá aumentando, tal vez mañana mismo.

Por ello, si los descubridores de un exoplaneta encuentran una percha para vender su descubrimiento colgándole algún adorno que tenga tirón popular, mejor que mejor. Anteriormente nos han llegado ya varios Tatooine, planetas que orbitan en torno a dos soles como el mundo de Luke Skywalker en Star Wars. También conocimos Mimas, una luna de Saturno que tiene un divertido parecido con la Estrella de la Muerte, y otros planetas de la saga como el helado Hoth también tienen su reflejo real en el catálogo de los exoplanetas descubiertos. Ahora le ha tocado el turno a Vulcano.

La luna de Saturno Mimas y la Estrella de la Muerte. Imagen de NASA / Lucasfilm.

La luna de Saturno Mimas y la Estrella de la Muerte. Imagen de NASA / Lucasfilm.

Es más, y como curiosidad, interesa aclarar que en realidad el estudio describiendo este nuevo planeta se publicó en julio en la web de la revista Monthly Notices of the Royal Astronomical Society, sin que entonces prácticamente ningún medio se interesara por ello. Dos meses después, la Universidad de Florida publica una nota de prensa añadiendo el gancho de Spock y Vulcano, y aquí estamos contándolo.

Pero algo hay que reconocer, y es que tampoco se trata de un recurso publicitario forzado. Porque, de hecho, HD 26965b es realmente el planeta de Spock. Según explica el coautor del estudio Gregory Henry, de la Universidad Estatal de Tennessee, en julio de 1991 el creador de Star Trek, Gene Roddenberry, publicó una carta en la revista Sky and Telescope en la que confirmaba que su ficticio Vulcano orbitaba en torno a 40 Eridani A, la estrella principal del sistema triple 40 Eridani. Y resulta que 40 Eridani A es precisamente el otro nombre de HD 26965, la estrella en la que se ha encontrado el nuevo planeta. Al parecer, la conexión entre Vulcano y 40 Eridani A se remonta a dos libros sobre la serie publicados en décadas anteriores, Star Trek 2 de James Blish (1968) y Star Trek Maps de Jeff Maynard (1980).

Spock en Star Trek. Imagen de Paramount / CBS.

Spock en Star Trek. Imagen de Paramount / CBS.

Además, se da la circunstancia de que HD 26965b, más conocido ya para la eternidad como Vulcano, es un planeta aparentemente apto para la vida. Su estrella es parecida a nuestro Sol, solo ligeramente más pequeña y fría; y algo que habitualmente solo los biólogos solemos tener en cuenta, tiene prácticamente la misma edad que el Sol, lo que ha dejado tiempo suficiente para que sus planetas puedan haber desarrollado vida compleja. En cuanto al planeta, no es el típico gigante infernal que suele ser frecuente en los descubrimientos de exoplanetas, sino algo posiblemente parecido a nuestro hogar: justo en el interior de la zona habitable de su estrella y con un tamaño aproximado del doble que la Tierra, lo que se conoce como una supertierra.

Todo ello ha llevado a uno de los autores del estudio, Matthew Muterspaugh, a decir que «HD 26965 puede ser una estrella ideal para albergar una civilización avanzada». Y todo ello a solo 16 años luz de nosotros; de hecho, la estrella es visible a simple vista en el cielo, y es la segunda más brillante con una posible supertierra y la más cercana similar al Sol con un planeta de este tipo.

En resumen, para los interesados en estas cosas, un punto más al que mirar en el cielo rascándonos la cabeza. Y para los responsables de los proyectos SETI (Búsqueda de Inteligencia Extraterrestre), imagino que una nueva coordenada a la que apuntar sus antenas para tratar de captar alguna emisión de Radio Vulcano.

¿Nos acerca el lago de Marte al descubrimiento de vida? (Spoiler: no)

En este blog suelo reaccionar con cierta frialdad a los hallazgos de agua en Marte, y no precisamente por falta de interés. Más bien todo lo contrario: Marte es el único material científico del que he tirado en mi actividad extraescolar como novelista (Tulipanes de Marte), así que puede imaginarse mi cariño especial por nuestro vecino planetario del cuarto, al que suelo contemplar en el cielo con un loco e imposible sueño viajero detrás de la mirada; sobre todo en días como estos, cuando físicamente está tan cerca de nosotros.

Entiéndase, el hallazgo de una (probable) gran extensión de agua líquida bajo el hielo del polo sur de Marte es uno de los mayores descubrimientos recientes de la ciencia planetaria. Cuando supe de la noticia, lo primero que quise saber es ¿por qué ahora? ¿Por qué no hasta ahora? Y me maravilló la astucia de los investigadores italianos, que modificaron el manejo de los datos para revelar algo que hasta entonces había pasado inadvertido al radar de la sonda orbital Mars Express debido a que el software del aparato enviaba la media de cada 100 lecturas, lo que anulaba la señal del agua. Al actualizar el software para que enviara los registros individuales, allí apareció la firma del agua líquida; quizá no un lago como tal, sino un estrato de roca porosa mojada. Pero agua.

Casquete de hielo en el polo sur de Marte, bajo el cual puede existir un lago de agua líquida. No todo es hielo de agua, ya que el hielo seco (CO2) también está presente. Imagen de ESA/DLR/FU Berlin/CC BY-SA.

Casquete de hielo en el polo sur de Marte, bajo el cual puede existir un lago de agua líquida. No todo es hielo de agua, ya que el hielo seco (CO2) también está presente. Imagen de ESA/DLR/FU Berlin/CC BY-SA.

Mi tibieza no se debe a que el agua líquida en Marte sea un presunto hallazgo recurrente que ya nos ha decepcionado en ocasiones anteriores. Aquí conté la última de ellas: en 2011 y 2015 se publicaron indicios que apoyaban la existencia de torrentes estacionales de agua, en concreto lo que parecía ser una salmuera muy concentrada que puede permanecer en estado líquido hasta -70 oC. Sin embargo, el pasado noviembre se cortaba el agua en Marte: nuevos datos indicaban que en realidad –y a fecha de hoy; la ciencia de verdad es la única que rectifica cuando se equivoca– aquellos torrentes no contienen otra cosa que polvo y arena.

En el caso del nuevo estudio, los expertos han señalado que los datos del radar son muy sugerentes, pero no definitivos, y que deberán contrastarse con otras lecturas. Pero como voy a explicar, incluso aunque la existencia del lago marciano se confirme, en realidad no añade gran cosa a la posibilidad de vida actual en Marte, ni mejora la posición de este planeta en el ranking de lugares del Sistema Solar que hoy podrían albergar comunidades de microbios.

En realidad, la existencia de agua en Marte la conocemos desde 1963, cuando se confirmó la presencia de vapor de agua. En la enrarecida atmósfera marciana el agua hierve a 10 oC y las temperaturas son de congelación profunda, por lo que el hielo y el vapor son claramente lo que allí más se despacha. Pero dado que la geología marciana conserva pruebas abundantes de un pasado acuoso y una vez demostrado que las moléculas de H2O han resistido durante millones de años a la pérdida de la mayor parte de la atmósfera marciana, el resto es una cuestión de buscar nichos con las condiciones adecuadas de presión y temperatura para encontrar el agua en estado líquido.

Y a priori, es muy probable que estos nichos existan. Sin embargo, sus condiciones son brutales. En 2008 la sonda Phoenix de la NASA, posada en el ártico marciano, analizó el suelo y detectó perclorato, una forma extremadamente oxidada del cloro. Phoenix también confirmó la existencia de hielo de agua fuera de los casquetes polares y quizás incluso de gotitas de agua líquida; también vio nevar en Marte.

En lo que se refiere al perclorato, este anión –o esta sal, si lo prefieren– actúa como un potente anticongelante y puede facilitar la presencia de agua líquida en el gélido ambiente marciano. Pero el descubrimiento de este compuesto complicaba las cábalas sobre la posible existencia de microbios marcianos, porque el perclorato es un arma de doble filo: por un lado, es tóxico para la vida en general. Pero por otro, en la Tierra existen microbios que se alimentan de perclorato en lugares como el desierto chileno de Atacama, el enclave más seco de la Tierra.

Pero… como siempre suelo subrayar, los microbios extremófilos terrestres (aquellos que viven en condiciones casi imposibles, como los volcanes, los polos o Chernóbil) son parte de una enorme masa de biodiversidad que se ha expandido para colonizar todos los hábitats a su alcance. Que sepamos, esto no se aplica a Marte. Algunos estudios sugieren que los microbios terrícolas que comen perclorato pudieron ser pioneros evolutivos de nacimiento muy temprano, antes de que la atmósfera terrestre se llenara de oxígeno, lo que sería un argumento a favor de la posible aparición de seres similares en Marte cuando aquel planeta y el nuestro seguían vidas paralelas, al comienzo de su existencia. Pero en el fondo, no lo sabemos, y los astrobiólogos aún discuten si la presencia de esta sal es una buena o una mala noticia para la posibilidad de vida marciana (ver, por ejemplo, aquí y aquí).

En resumen, el perclorato y las temperaturas ambientales son factores que condicionan la posibilidad de agua líquida en Marte, pero también son los principales factores limitantes para la vida en Marte, incluso una vez demostrada la existencia de agua líquida. Así, el hallazgo de un lago probablemente perclórico deja las cosas más o menos como ya estaban respecto a las especulaciones sobre la vida marciana.

Por otra parte, desde hace tiempo se conoce la existencia de cuerpos del Sistema Solar que tienen no un posible lago subglacial, sino todo un inmenso océano global. Dos ejemplos son Encélado, luna de Saturno, y Europa, satélite de Júpiter. Es más, en estas lunas se cree que el agua se mantiene líquida bajo el hielo por un calentamiento debido a la fricción de las mareas causadas por el tirón gravitatorio de los grandes planetas, por lo que estos océanos no necesitarían grandes cantidades de sales tóxicas y serían por tanto más hospitalarios para la vida que un posible lago en Marte.

En resumen, Marte continúa siendo una incógnita, pero en principio sigue pareciendo un objetivo mucho menos prometedor para la búsqueda de vida que otros lugares del Sistema Solar como Europa o Encélado, o incluso Titán (Saturno) o Ganímedes (Júpiter).

En cualquier caso, el argumento final es sin duda el más desolador. Y es que, si alguien espera que de inmediato se prepare una misión para comprobar si hay algo vivo en ese presunto lago marciano, que abandone toda esperanza: los actuales protocolos de protección planetaria, a los que se adhieren organismos como la NASA y la ESA, recomiendan evitar el envío de sondas a enclaves extraterrestres donde los microbios terrícolas polizones podrían contaminar la vida nativa. O sea, que si hay sospecha de vida no pueden enviarse sondas, y si no se envían sondas nunca sabremos si hay vida. Un bonito ejemplo de lo que aquella novela de Joseph Heller acuñó como una trampa 22.