Entradas etiquetadas como ‘superantígenos’

La inmunología revela pistas clave sobre la gravedad de la COVID-19

Suele sorprenderme que a nadie parezca sorprenderle la existencia de los anticuerpos. Piénsenlo un momento: toda proteína que se produce en el cuerpo lleva sus instrucciones de fabricación previamente escritas en el genoma, que hemos heredado de nuestros padres, y ellos de los suyos. Y sin embargo, llega un virus nuevo que antes no existía, como el SARS-CoV-2 de la COVID-19, y el organismo es capaz de fabricar unas proteínas, los anticuerpos, ajustadas a la forma de las proteínas del virus, los antígenos, como esas protecciones de espuma van recortadas alrededor del objeto que protegen. Incluso si algún día descubriéramos microbios en Venus y pudieran infectarnos, generaríamos anticuerpos contra los antígenos de Venus.

¿Cómo lo hacemos? ¿Cómo es posible que nuestros genes puedan fabricar anticuerpos adaptados a la forma de antígenos que antes ni siquiera existían, con los que jamás ningún humano se había topado?

Este fue un enigma que torturó a los inmunólogos durante años, hasta que en los 70 lo resolvió el japonés Susumu Tonegawa. Y personalmente, fue la casi increíble solución la que me llevó a elegir la inmunología como especialidad de doctorado. Todos decían que el XXI sería el siglo del cerebro, y de hecho lo es; el encuentro entre neurociencias y computación aún nos reservará sorpresas alucinantes en las próximas décadas (por cierto, después de recibir el Nobel, Susumu se dedicó al cerebro). Muchos querían desentrañar los secretos del cáncer, la eterna lacra. Otros elegían la biotecnología vegetal por sus grandes posibilidades de desarrollo industrial.

Pero en cuanto a mí, no solo la respuesta a esa pregunta era la mayor maravilla de la naturaleza, sino que además la inmunología me parecía la cosa más importante del mundo. Porque es precisamente lo que nos protege del mundo.

Esta es la respuesta: en los linfocitos B, las células que producen los anticuerpos, los genes encargados de fabricar estas proteínas se reorganizan entre sí al azar, como cuando se utilizan las mismas piezas de Lego para hacer construcciones diferentes (esto se llama recombinación somática). En cada célula individual el resultado es distinto, y por ello cada célula produce un anticuerpo único, con una forma distinta. La consecuencia es que nuestro cuerpo está patrullado en todo momento por millones de células B preparadas para producir millones de anticuerpos distintos contra cualquier cosa, el polen de arizónica, la peste negra, el SARS-CoV-2, el antígeno venusiano o nada en particular.

Esto lo llevamos de fábrica; esas células ya existen previamente. Cuando el antígeno en cuestión nos invade, llega un momento en que casualmente se produce el encuentro entre él y su anticuerpo, y eso activa a la célula B correspondiente para multiplicarse y comenzar a inundar el torrente sanguíneo con millones y millones y millones de copias de esos anticuerpos concretos. La otra parte de la respuesta inmune adaptativa, los linfocitos T, utiliza también un mecanismo similar para colocar un receptor en su membrana que también reconoce los antígenos.

Imagen tomada con microscopio electrónico y coloreada del coronavirus SARS-CoV-2. Imagen de NIAID.

Imagen tomada con microscopio electrónico y coloreada del coronavirus SARS-CoV-2. Imagen de NIAID.

En estos tiempos se ha confirmado que, en efecto, la inmunología es la cosa más importante del mundo: en ella confiamos para que nos saque de esta, gracias a las vacunas. Y como inmunólogo, aunque ya no ejerciente, me llena de orgullo y satisfacción, como decía aquel, que sean mis colegas, y no Bruce Willis ni Will Smith, quienes vayan a salvar el mundo.

En los últimos meses han sido tan intensos los estudios inmunológicos sobre la COVID-19 que incluso han llegado a desvelar nuevos secretos sobre cómo funciona el sistema inmune. Una de las grandes incógnitas es cómo pararlo para que no sobreactúe; entre los inmunólogos suele decirse que la mitad del sistema inmune sirve para frenar a la otra mitad, ya que demasiada respuesta puede ser peor que ninguna respuesta.

Como ya he contado aquí, en muchos de los pacientes más graves de cóvid –sucede también con otras infecciones– lo que les mata no es el virus, sino la reacción exagerada de su cuerpo contra el virus. El sistema inmune sobreactúa y sume al organismo en un grave estado de inflamación generalizada sin que sus mecanismos de control puedan impedirlo (se llama Síndrome de Liberación de Citoquinas o tormenta de citoquinas, o, de forma más general, Síndrome de Respuesta Inflamatoria Sistémica; esto incluye una complicación de la cóvid que ocurre de forma rara en niños). Y los enfermos mueren del éxito de su propia respuesta inmune.

Un nuevo estudio ha encontrado el porqué, o al menos uno de los más importantes porqués, aunque el cómo detenerlo llevará más tiempo. Un grupo de investigadores de la Universidad de Pittsburgh, el centro médico Cedars-Sinai de Los Ángeles y la Universidad Martin Luther de Alemania ha descubierto que la proteína Spike del SARS-CoV-2, la que el virus utiliza como llave para entrar en las células (y su principal antígeno; los test de anticuerpos detectan anticuerpos contra Spike, y los test de antígenos utilizan anticuerpos contra Spike para detectar si la persona tiene esa Spike, lo que revela la presencia del virus), tiene un trocito similar a un conocido superantígeno presente en algunas bacterias.

Un superantígeno es lo que su nombre indica: un antígeno capaz de provocar una superrespuesta. Y esa superrespuesta es mala; sume al cuerpo en esa vorágine inflamatoria que puede resultar fatal. En este caso, los científicos han encontrado en la proteína Spike una parte de estructura y secuencia muy similares a la enterotoxina B del estafilococo, un conocido superantígeno, y que no está presente en otros coronavirus parecidos como el del SARS original.

Este superantígeno se une directamente –este “directamente” es importante, porque es lo que hace a un antígeno “súper”– a los receptores de las células T mencionados arriba de forma no específica, provocando una estimulación de céluas que no están destinadas a responder contra ese patógeno, pero cuya sobreactivación lleva a la hiperinflamación. En bacterias, ese superantígeno produce el llamado Síndrome de Shock Tóxico (SST), una enfermedad que se hizo popular porque en algunos casos venía provocada por tampones demasiado absorbentes que se utilizaban durante demasiado tiempo; las bacterias crecían en los tampones y provocaban la enfermedad.

Los investigadores han comprobado también que, en las personas con cóvid grave y síntomas de hiperinflamación, ese presunto superantígeno efectivamente está funcionando como tal: en estos pacientes se ha encontrado una abundancia de células T con un repertorio concreto de receptores en sus membranas que revela una activación por el superantígeno.

Esta no es ni mucho menos la única pista que la inmunología está aportando en la lucha contra la pandemia. En los últimos meses se han publicado numerosos estudios que revelan cómo el sistema inmune responde a la infección del coronavirus, y cómo las personas con un determinado perfil inmunológico pueden tener mayor riesgo de padecer enfermedad grave. En particular, dos estudios recientes han encontrado que hasta un 14% de los pacientes graves –una minoría, pero importante– tiene una avería en su sistema de interferón I.

Los interferones son nuestros principales antivirales naturales, moléculas que produce nuestro propio organismo en respuesta a una infección viral para luchar contra el virus. Los humanos tenemos más de veinte, clasificados en tres tipos, I, II y III. En concreto, los investigadores han descubierto que ese grupo de pacientes tiene, o bien un defecto genético innato que afecta al funcionamiento de su interferón de tipo I, o bien anticuerpos que bloquean su interferón de tipo I.

Tener anticuerpos contra componentes de nuestro propio organismo es raro, pero no excepcional. En condiciones normales, nuestro sistema inmune sabe distinguir entre lo que es nuestro y lo que no: produce anticuerpos y células T contra los antígenos extraños, pero aprende a tolerar nuestras propias proteínas; por eso es clave la compatibilidad en los trasplantes, para que el organismo no rechace el órgano nuevo como algo ajeno. Sin embargo, a veces esa regulación no funciona bien y el sistema nos ataca a nosotros mismos, provocando enfermedades autoinmunes como el lupus, la esclerosis múltiple, la artritis reumatoide y otras. En el caso de ese grupo de pacientes de cóvid, se ha observado que producen anticuerpos contra su interferón de tipo I. En condiciones normales, probablemente esto no les produce ningún trastorno, pero les dificulta luchar contra el virus en caso de infección.

En la práctica, todos estos hallazgos aportan pistas que pueden ayudar a enfocar los tratamientos para salvar vidas. Dado que para los virus no existe una bala mágica como los antibióticos contra las bacterias, los tratamientos deben ser mucho más específicos, no ya dependiendo del virus concreto, sino de cómo afecta a cada perfil de paciente. Los pacientes con un defecto de interferón de tipo I podrían recibir una suplementación terapéutica de este antiviral que les falta; los que producen anticuerpos contra este interferón podrían beneficiarse de un tratamiento con interferón de otro tipo o con reactivos que bloqueen su autoanticuerpos. Y en general, saber qué perfiles inmunológicos son los más propensos a desarrollar una respuesta dañina puede informar a los médicos sobre qué tipo de inmunomoduladores utilizar en cada caso: esteroides, bloqueantes de la tormenta de citoquinas, inmunoglobulina intravenosa (que contiene anticuerpos contra el superantígeno del estafilococo)…

No, por desgracia, el antiviral único y milagroso que aparece en las películas (a veces erróneamente llamado antídoto) no existe en la realidad, y es dudoso que vaya a existir alguna vez. De todos los antivirales que ya se conocen y que se emplean contra distintos virus, no hay ninguno de eficacia equiparable a la de un antibiótico contra las bacterias. Los virus son bichos extremadamente duros de pelar; por algo son los organismos (sí, en mi opinión son seres vivos) más abundantes de la Tierra. Y por ello la clave para luchar contra ellos no está tanto en ellos como en nosotros, en aprender a domar nuestro propio sistema inmune para que luche contra el virus sin matarnos en la batalla.