Entradas etiquetadas como ‘química’

Isaac Newton y los dragones

Se ofenda quien se ofenda, tan risibles, ridículas y banales me parecen esas descacharrantes palabras del obispo de Córdoba al definir la fertilización in vitro como un «aquelarre químico» contrario al «abrazo amoroso» del que, según él, deben nacer los hijos (ahí tendrás a muchas pobres chiquillas temiendo quedarse embarazadas por un abrazo), como la arrogancia cristianofóbica de quienes todos los años y tal día como hoy, cumpleaños de Isaac Newton, aprovechan la ocasión para ciscarse en las libres creencias de otros. Allá cada cual, pero los fanatismos son fanatismos, ya los inspire la religión o la ciencia.

Isaac Newton en 1689 por Godfrey Kneller. Imagen de Wikipedia.

Isaac Newton en 1689 por Godfrey Kneller. Imagen de Wikipedia.

Hay algo que sí me gustaría recomendar a estos últimos (sobre el primero creo que no es preciso añadir nada más): que indaguen un poco más en el perfil biográfico de aquel a quien parecen venerar como príncipe de la razón. Newton fue teólogo además de científico, y estuvo a un pelo de ordenarse como pastor anglicano. Hoy se le considera un hereje por su postura antitrinitaria, que comprensiblemente ocultó, y que dominó su pensamiento religioso desde el centro de su esfuerzo intelectual.

Pero fuera de esta ineludible vertiente religiosa de Newton, que en realidad no incumbe a este blog, vengo a destacar otra faceta de su pensamiento que sí entronca con la ciencia, pero que tampoco cuadra con la imagen del racionalista puro con la que muchos parecen identificarle erróneamente. Lo cierto es que Newton fue un tipo fascinante y algo loco. Entre sus facetas menos conocidas se cuenta que, durante su cargo como director de la Casa de la Moneda en Gran Bretaña, inventó las estrías en el canto de las monedas que hoy son tan comunes. Entonces las monedas se fabricaban con metales preciosos, y el propósito de esta innovación fue evitar que los falsificadores rasparan los bordes para sisar una parte del oro.

Esta y otras historias de Newton como el Sherlock Holmes que perseguía a los falsificadores de moneda se cuentan con la tensión narrativa de los mejores thrillers en el libro de Thomas Levenson Newton y el falsificador, publicado en castellano por la editorial Alba en 2011. Un buen regalo para estas fiestas.

Pero Newton también era un ocultista apasionado. Hay quien le ha definido como el último de los alquimistas. Probablemente no lo fue, pero tal vez sí el último de los grandes alquimistas. Newton, como Harry Potter, perseguía la piedra filosofal, como conté con detalle en este reportaje que publiqué en 2010. El economista John Keynes, gran conocedor de la figura de Newton, le definió así:

Newton no fue el primero de la Edad de la Razón. Fue el último de los magos, el último de los babilonios y los sumerios, la última gran mente que miró al mundo visible e intelectual con los mismos ojos que aquellos que comenzaron a construir nuestro mundo intelectual hace menos de 10.000 años.

Naturalmente, la visión de Keynes no es compartida por todos. Hay quienes ven en el trabajo alquímico de Newton un esfuerzo precursor de la química moderna, ya que las transmutaciones metálicas de los alquimistas anticiparon el estudio de las reacciones químicas. Pero esta visión también estaría, para mi gusto, un poco sesgada, ya que en tiempos de Newton hubo otros científicos como Robert Boyle o su tocayo Hooke que realmente sí estaban transmutando la vieja alquimia en la química moderna, al distinguir entre magia y ciencia. Y mientras tanto, Newton escribía cosas como esta:

Nuestro esperma crudo fluye de tres sustancias, de las que dos se extraen de la tierra de su natividad por la tercera y después se convierten en una pura Virgen lechosa como la naturaleza obtenida del Menstruo de nuestra sórdida ramera. Estos tres manantiales son el agua, la sangre (de nuestro León verde totalmente volátil y vaciado de azufre metalino), el espíritu (un caos, que se aparece al mundo en una vil forma compacta, al Filósofo unida a la sangre de nuestro León verde, del que así se hace un león capaz de devorar a todas las criaturas de su clase…).

Una de las ilustraciones de los dragones alpinos en la obra de Johann Jakob Scheuchzer.

Una de las ilustraciones de los dragones alpinos en la obra de Johann Jakob Scheuchzer.

Pero hay un último aspecto de Newton que se ha divulgado y estudiado aún menos, y en el que posiblemente todavía quede un filón biográfico para quien quiera explorarlo y documentarlo. Contemporáneo de Newton fue un médico y científico suizo llamado Johann Jakob Scheuchzer. Entre los trabajos de Scheuchzer destaca uno titulado muy sencillamente Ouresiphoites Helveticus, sive itinera Alpina tria: in quibus incolae, animalia, plantae, montium altitudines barometricae, coeli & soli temperies, aquae medicatae, mineralia, metalla, lapides figurati, aliaque fossilia; & quicquid insuper in natura, artibus, & antiquitate, per Alpes Helveticas & Rhaeticas, rarum sit, & notatu dignum, exponitur, & iconibus illustratur. O de forma algo más breve, Itinera alpina tria, sus viajes alpinos.

Durante sus viajes por los Alpes, entre 1702 y 1704, Scheuchzer describió la naturaleza que observaba a su paso. Pero sus méritos como naturalista han sido puestos en duda por el hecho de que incluyó referencias a la presencia de dragones en los Alpes; no observados por él directamente, sino por testigos, pero sí con todas sus especies alpinas representadas en láminas en su obra. El suizo describía el método para dormir a un dragón con hierbas soporíferas y aprovechar su sueño para cortarle de la cabeza una piedra que poseía enormes propiedades curativas.

Pues bien, el principal patrocinador de la expedición y de la obra de Scheuchzer para la Royal Society londinense no fue otro que nuestro buen amigo Newton, quien según algunas fuentes era también un defensor de la existencia de los dragones. La creencia en estos animales míticos tradicionalmente vino alimentada por el hallazgo de fósiles que hoy conocemos como dinosaurios, sobre todo en China. En tiempos de Newton aún no se conocía el origen de aquellos huesos, pero sí su existencia; en Europa se les atribuían orígenes diversos, desde elefantes de guerra empleados por los romanos hasta gigantes humanos. ¿Creía Newton que los fósiles europeos de dinosaurios eran restos de dragones? ¿Hasta qué punto llegaba su creencia en estas criaturas míticas? En cualquier caso, todo esto no hace sino aumentar el atractivo de un personaje tan genial como conflictivo para quienes pretenden hacer de él un ser unidimensional.

Más sobre carne y cáncer: la falacia química ataca de nuevo

Es prácticamente inviable que un mensaje llegue por un medio a un destinatario cuando el emisor no sabe hablar y el receptor no sabe escuchar. Más aún cuando, además, el mensaje ha quedado completamente distorsionado por el medio. Cuánta razón tenía McLuhan.

Imagen de Dirk Vorderstraße / Wikipedia.

Imagen de Dirk Vorderstraße / Wikipedia.

Ya expliqué en mi artículo precedente que el comunicado de la Organización Mundial de la Salud relativo al ya famosísimo asunto de la carne era de una infamia sin paliativos. Muy raramente le deseo a alguien el despido, ya que el cofre del tesoro de la edad moderna es un puesto de trabajo. Solo deseo que al funcionario que perpetró la confusa, contradictoria y alarmista nota de prensa sobre la relación entre carne y cáncer se le recoloque adecuadamente en un lugar donde no pueda hacer más daño a nadie. No sé, tal vez en una oficina de la OMS situada en uno de esos países donde se paga por usar los baños y a la entrada hay alguien que se encarga de cobrar la tarifa. Lo que esta persona soltó en los medios de todo el mundo fue lo más parecido a una bomba nuclear de desinformación. La devastación que ha provocado es casi irreparable.

Respecto a los medios, han transcurrido ya casi 72 horas desde el atentado informativo de la OMS, tiempo suficiente para que los principales comunicadores y líderes de opinión se hayan tomado la mínima molestia de consultar a fuentes autorizadas para saber qué mensaje transmitir a sus oyentes-lectores-espectadores. Y sin embargo, continúo descubriendo ángulos de tratamiento del asunto que son para echarse la mano a la frente. Ayer, en una emisora de radio escuché frases del siguiente jaez: «¿Y ahora, qué?» «¿Cómo se adaptarán las políticas?» «¿En qué cambiará nuestra forma de vida?»

Como decía mi abuela… Madre del amor hermoso.

Repito, insisto y recalco:

  1. Los indicios de una posible relación entre consumo de carne y cáncer se remontan por lo menos a hace 25 años. La novedad de esta semana es SOLO UNA CUESTIÓN DE NOMENCLATURA.
  2. Nadie se ha planteado enviar una nave al Sol para clavarle una pancarta advirtiendo de su riesgo cancerígeno, a pesar de que la exposición a su radiación es también un factor del Grupo 1 cuyos vínculos con el cancer son más sólidos y están mucho mejor fundamentados que los del consumo de carne. Quien toma el sol suele preocuparse por las quemaduras, no por el cáncer.
  3. Tampoco nadie ha comentado que las bebidas alcohólicas, entre otros factores aparentemente inocentes que repasé ayer, pertenecen al mismo Grupo 1. Seguimos bebiendo cerveza, vino, licores, y ninguno de ellos se vende con etiquetas advirtiendo sobre el cáncer. Quien bebe suele preocuparse por la cogorza y por su hígado, no por el cáncer.

Es evidente que los mensajes deformados emitidos por muchos medios han contribuido enormemente a amplificar la desinformación y la alarma creada en primer lugar por la OMS. Pero seamos justos. Vivimos en una sociedad en la que se ha universalizado el acceso inmediato, rápido y barato a la información. Solo hay que molestarse en buscarla y digerirla. En cambio, las reacciones manifestadas por muchos usuarios de la información en numerosos medios demuestran que una gran parte del público se está guiando mayoritariamente por el prejuicio.

La diferencia entre la ciencia y casi todo lo demás es que esta se guía por juicios, no por prejuicios. Einstein teorizó que nada puede viajar más rápido que la luz. Un físico podría defender esta premisa obstinadamente a lo largo de toda su carrera; y sin embargo, si algún día llegara a demostrarse que la velocidad superluminal es posible (y no lo descarten), ese científico cambiaría inmediatamente de postura sin ningún rubor ni vergüenza. Esto raramente suele ocurrir en la calle, en la sociedad, en la política. El pensamiento racional, razonado y razonable que caracteriza al Homo sapiens busca la prueba, comprende la prueba y se adapta a la prueba.

Sin embargo, el asunto de la carne ha servido para que muchos ciudadanos radicalmente desinformados desempolven viejos prejuicios impropios de una civilización inteligente y desarrollada. Y entre ellos, destaca una vez más la falacia química, esa idea de que «la naturaleza es buena y la química es dañina», que tanto yo como prácticamente todo periodista de ciencia, bloguero y adláteres de este planeta nos hemos visto obligados a tratar de derribar, siempre sin éxito.

En esta ocasión, la falacia química ha resucitado de entre los muertos (en realidad es un eterno zombi) con una forma parecida a lo siguiente: «Pues claro que la carne provoca cáncer, es por todas las mierdas que le meten, hormonas, aditivos…». Y a veces se remata con un estrambote del estilo: «Yo solo como chorizo de mi pueblo, todo natural, ese sí que es sanísimo y no da cáncer».

Para colocar la guinda, ayer un alto representante de la UE compareció ante la prensa para asegurar que la carne a la venta en la Unión cumple con todos los estándares sanitarios de seguridad, contribuyendo a avivar la noción (rematadamente falsa) de que el vínculo entre carne y cáncer depende de la calidad del género, o de que «algo le echan».

A ver. No, no y no.

Los compuestos de la carne imputados con el posible delito de cáncer en primer grado son, en su mayoría, sustancias como las aminas heterocíclicas y los hidrocarburos policíclicos, que aparecen tras el proceso de cocinado por transformación de los propios componentes intrínsecos y naturalísimos de la carne. No son «mierdas». No son aditivos ni hormonas. Solo las nitrosaminas pueden proceder de aditivos, los nitritos, que se emplean en los procesos de curado. Pero primero, la mayoría de los nitritos que consumimos no provienen de la carne, sino de la verdura y la fruta. Y segundo, los nitritos empleados para conservar la carne son imprescindibles, ya que se añaden para evitar el crecimiento del Clostridium botulinum, la bacteria causante del botulismo. El botulismo es una enfermedad mortal. Ustedes verán.

Pero ¿cómo puede ser que un alimento natural provoque cáncer?, se preguntará alguien.

Quédense con esta idea: en realidad, casi cualquier cosa puede provocar cáncer. De hecho, el cáncer puede incluso provocarse solo. Lo que hacen los estudios epidemiológicos y experimentales es tratar de determinar qué sustancias y compuestos pueden hacerlo de forma más consistente, frecuente y eficaz.

Microscopía electrónica de barrido de una célula HeLa. Imagen de NIH.

Microscopía electrónica de barrido de una célula HeLa. Imagen de NIH.

En los laboratorios de biología se cultivan líneas celulares inmortalizadas, capaces de dividirse indefinidamente. Son células cancerosas. De hecho, algunas proceden de cánceres reales, como la línea HeLa, obtenida del tumor de una mujer llamada Henrietta Lacks que murió en 1951 a causa de su enfermedad. Si extraemos células de nuestro cuerpo y las ponemos en cultivo, no tardarán en morir, ya que están sujetas a una especie de programa de caducidad llamado senescencia. Los científicos emplean diversos procedimientos, como el uso de ciertos virus, para convertir estas células en inmortales. Pero también puede suceder que una célula de un cultivo ex vivo, obtenido de un humano o animal, sufra espontáneamente una mutación que la inmortalice. Sin ningún estímulo aparente.

El resumen de la cuestión es que el cáncer no es una enfermedad al estilo de lo que solemos entender por enfermedad. El cáncer no es la malaria o la gripe; no es una perturbación temporal del organismo causada por la presencia temporal de un agente externo, mientras dura la presencia temporal del agente externo. El cáncer es más bien un defecto de fábrica (en los casos familiares) o una avería debida al largo uso (en los casos esporádicos). Es una forma infortunada de obsolescencia. Cuando una célula individual falla, pueden aparecer múltiples manifestaciones, pero todas ellas llevan a una de dos puertas: o la célula muere, o prolifera sin control. Lo primero no tiene ninguna repercusión. Lo segundo es un cáncer.

Cuanto más tiempo vivimos, y hoy vivimos mucho, multiplicamos estadísticamente la probabilidad de que una de nuestras células falle hacia la puerta número dos. Y naturalmente, cuanto peor uso demos a nuestra máquina, más aumentamos las posibilidades de avería. Pero no hay nada, repito, absolutamente nada, que nos proteja de la posibilidad de sufrir un cáncer. En estos días escucharán infinidad de proclamas sin fundamento: que si el ajo, que si el aceite de tal cosa, que si no sé qué hierba. Si algo de esto les tranquiliza, tómenlo. Pero no podrán decir que nadie les avisó de que todo eso es sencillamente una engañosa, inmensa (y a veces interesada) pamplina.

El Nobel de Química se pone al día con los deberes atrasados

No puedo negarlo: a uno se le queda cierta cara de escalera de color cuando un premio Nobel distingue hallazgos que ya figuraban en los libros de texto en los remotos tiempos del siglo XX en que a uno aún le salían espinillas.

Imagen de la Fundación Nobel.

Imagen de la Fundación Nobel.

Como ya he reflejado aquí anteriormente, la apuesta de un servidor iba para Emmanuele Charpentier y Jennifer Doudna, autoras de la tecnología de edición genómica CRISPR/Cas-9, un sistema molecular descubierto en bacterias que sirve para corta-pegar fragmentos de ADN y que promete innumerables aplicaciones desde la investigación básica a las terapias avanzadas. Charpentier y Doudna han merecido ya varios premios, incluyendo el Princesa de Asturias de Investigación 2015, y figuraban también en la quiniela de Thomson Reuters como favoritas para el Nobel (quiniela que, por cierto, este año no ha dado una a derechas).

La tecnología CRISPR/Cas-9 es hasta ahora el mayor avance de este siglo en biología molecular. Tan nuevo que aún está dando sus primeros pasos, en los que surgen nuevas maneras de aplicarlo, variaciones y mejoras al sistema. Tan nuevo que existe una disputa sobre la patente entre los equipos de Doudna y Charpentier y el investigador de Harvard Feng Zhang, el primero que lo aplicó en células humanas y que, para esquivar el embrollo, ha introducido una nueva alternativa a Cas-9 llamada Cpf1.

El sistema CRISPR merecerá un Nobel, no cabe duda. En su día, lejano él. Porque es evidente que el comité de los premios suecos no se distingue precisamente por andar a la última. Sus miembros prefieren los hallazgos ya reposados y consolidados, que han demostrado su relevancia larga y sobradamente sin posibilidad alguna de refutación. Y es probable que la disputa sobre la patente también haya aconsejado esperar para poder valorar el hallago biotecnológico del siglo con un poco más de perspectiva. Y para saber a quién atribuírselo.

El problema es que en ocasiones el reconocimiento llega tan tarde que los galardones se convierten más bien en homenajes a toda una trayectoria de venerables investigadores ya retirados. O en otros casos parece que el comité concede premios escoba, dicho con todo el respeto, en el sentido de recoger los hallazgos que quedaron atrás y que en su día no fueron reconocidos. Es decir, ponerse al día con los deberes atrasados.

Este último es el caso del Nobel de Química de este año 2015. El sueco Tomas Lindahl (actualmente en el Instituto Francis Crick y Laboratorio Clare Hall de Hertfordshire, Reino Unido), el estadounidense Paul Modrich (Instituto Médico Howard Hugues y Universidad de Duke) y el turco Aziz Sancar (Universidad de Carolina del Norte, EE. UU.), premiados «por sus estudios de los mecanismos de reparación del ADN», aportaron los hallazgos merecedores del premio hace ya décadas, en los años 70 y 80 del pasado siglo.

Nada de lo cual resta importancia a los descubrimientos de los tres investigadores. Mientras escribo estas líneas, y ustedes las leen, millones de células de nuestros cuerpos están fotocopiando su ADN para preparar la división celular. Y vigilando este proceso están los mecanismos de reparación para asegurar que el original se mantenga en buen estado, que no se deteriore con defectos que lo dejarían inservible, y que la copia sea fiel al original para evitar las mutaciones que podrían provocarnos un cáncer.

Se trata de hermosos prodigios de la evolución que nos protegen, por ejemplo, de los daños de la luz solar ultravioleta o de los carcinógenos que entran en nuestros cuerpos a diario, y sin los cuales la vida sería imposible. La investigación sobre estos mecanismos prosigue hoy, con el objetivo de dominar su poder para devolver al redil a las células rebeldes del cáncer. Ya existe algún fármaco destinado no a potenciar, sino a inhibir un sistema de reparación para inducir el colapso total del ADN en las células cancerosas.

Eso sí: cuando lean por ahí algo parecido a «los hallazgos de estos investigadores permitirán curar tal o cual enfermedad», no contengan la respiración. Han pasado ya décadas desde los hallazgos de estos investigadores, y hasta ahora estos mecanismos de reparación no se han traducido en una vía mayoritaria para atacar dolencias como el cáncer. Y en lo que respecta a la capacidad de manipular el ADN a voluntad y casi con una precisión quirúrgica… ¿he mencionado ya el sistema CRISPR?

¿Y si la vida surgió en el desierto?

Si algo sabemos con certeza de cómo comenzó la vida en este planeta, es que fue en el mar.

¿O no?

Imagen de Olearys / Flickr / CC.

Imagen de Olearys / Flickr / CC.

Las reacciones químicas de la vida tienen lugar en el agua. Las células son pequeños botijos cerrados que mantienen en su interior un diminuto océano portátil en el que transcurren todos los procesos bioquímicos. Pero antes de que surgiera la primera célula, no había una barrera que confinara el medio acuoso. Por lo tanto, toda la química previa a los primeros sistemas vivos debía desarrollarse directamente sobre mojado. El agua con compuestos precursores disueltos es lo que se conoce como la sopa orgánica primordial, el lugar donde nació la vida.

Algunos científicos piensan que este lugar pudo ser similar a las actuales fumarolas hidrotermales marinas, también llamadas chimeneas negras. Se trata de fisuras en el lecho marino situadas en zonas volcánicas, normalmente a gran profundidad, por las que se filtra agua caliente con abundantes minerales disueltos, sobre todo sales de azufre. La alta temperatura y la riqueza de nutrientes concentran pequeños ecosistemas en las fumarolas, incluyendo bacterias y arqueas primitivas que viven en ausencia de oxígeno, en un entorno muy parecido al de la Tierra prebiótica.

La ventaja de las fumarolas es que crean un ambiente local muy apto para que se dieran las condiciones iniciales de la vida, algo que difícilmente pudo ocurrir en un mar abierto donde los compuestos están demasiado dispersos. Con el paso de los años, los científicos han ido abandonando la idea de que la vida pudo surgir en el agua libre, ya que la baja concentración de las moléculas haría muy improbable que llegaran a producirse las reacciones necesarias; hace falta un ambiente más íntimo, o una fase sólida a la que agarrarse. El propio Darwin ya habló de un «pequeño estanque caliente», y algunos expertos han llegado a proponer incluso que la vida pudo comenzar en el diminuto resto de agua que cabe entre dos laminillas de mica, ese mineral que forma lentejuelas en el granito.

Esto, en lo que se refiere al dónde. Pero ¿cómo? Ayer mencioné el experimento de Miller-Urey. En 1952, Stanley Miller y Harold Urey, entonces en la Universidad de Chicago, construyeron un sistema cerrado en el que introdujeron una fuente simple de carbono, otra de nitrógeno y gas hidrógeno, todo ello en un medio acuoso con una fuente de calor. Al más puro estilo de Victor Frankenstein, aplicaron chispazos a la disolución para simular las tormentas eléctricas de la Tierra primigenia. Gracias a este aporte de energía, el sistema de Miller y Urey generó espontáneamente una gran cantidad de aminoácidos, los bloques que forman las proteínas; tantos que un análisis reciente de las muestras guardadas entonces detectó más de los que en su día habían encontrado los investigadores.

El chispazo de Frankenstein es un elemento problemático. Como expliqué ayer, y en aplicación de la Segunda Ley de la Termodinámica, la física de la naturaleza fluye hacia los estados de mínima energía, no al contrario. En presencia de oxígeno, los compuestos de carbono de los que estamos hechos se queman espontáneamente, desprendiendo calor y produciendo dióxido de carbono (CO2) y agua como residuos finales. Para que la reacción discurra en sentido contrario, por ejemplo para fabricar glucosa a partir de agua y CO2, es necesario aportar energía, que se almacena en los enlaces químicos de la molécula. El chispazo de Miller y Urey lo conseguía; pero por mucho que la Tierra primitiva fuera una especie de Mordor, confiar en los rayos para ejecutar billones de reacciones de ensayo y error es quizá demasiado arriesgado. ¿Sería posible encontrar otra fórmula en la que se aminoraran las barreras energéticas a superar?

De momento, ahí lo dejamos. Pasamos ahora al qué. Para disparar el comienzo de la vida en la Tierra y mucho antes de la primera célula, fue necesario que en primer lugar aparecieran moléculas capaces de copiarse y almacenar información. Lo primero se logra a través de enzimas, que actúan como catalizadores para propiciar reacciones que de otro modo no se producirían, o lo harían muy lentamente. Para lo segundo se necesitan un código y un soporte químico capaz de alojarlo.

Respecto a esto último, hoy todos los organismos almacenamos nuestra información en forma de ADN, a excepción de algunos virus (si es que pueden calificarse como organismos) que emplean como material genético otro derivado llamado ARN. El ARN, que también empleamos todos los organismos para ciertos procesos biológicos, tiene una cualidad especial, y es que además de almacenar información genética puede actuar como enzima, algo que no se ha encontrado en la naturaleza para el ADN. Estos ARN con actividad catalítica se llaman ribozimas.

El descubrimiento de las ribozimas en 1982 indujo a muchos científicos a pensar que quizá la vida en la Tierra comenzó con el ARN, ya que tiene todo lo necesario, capacidad de codificar información y actividad catalítica que podría haber facilitado la autorreplicación. La vida no podría haber comenzado sin la catálisis, y en esta actividad biológica juega un papel imprescindible otro tipo de compuestos, las proteínas, que aportan la mayoría de las funciones enzimáticas y estructurales de los seres vivos. Las proteínas son cadenas de aminoácidos, como los generados por el experimento de Miller-Urey. Pero la unión de los aminoácidos en cadenas requiere un gran aporte de energía para la formación de sus enlaces, denominados peptídicos, y es difícil que esto se produzca de manera espontánea.

Ante todos estos requisitos e incógnitas, un equipo de investigadores del Centro para la Evolución Química y el Instituto Tecnológico de Georgia (EE. UU.) ha creado un modelo que avanza un gran paso en la demostración de la abiogénesis. Los científicos mezclaron dos tipos de moléculas orgánicas, aminoácidos e hidroxiácidos. Estos últimos, que también se presumen presentes en la Tierra primitiva, se diferencian de los aminoácidos en el grupo químico que llevan pegado a su radical ácido, y son muy utilizados en cosmética; muchas cremas llevan alfa-hidroxiácidos, o AHA, por sus (siempre presuntas) propiedades beneficiosas para la piel.

Los investigadores sometieron esta mezcla heterogénea a varios ciclos sucesivos de humedad y secado por calor, con una temperatura máxima que no superaba los 65 ºC. Con este proceso simularon algo que podría haber sucedido en la Tierra primitiva: charcos ricos en materia orgánica que se secaban al sol y se hidrataban de nuevo con la lluvia. Después de solo 20 repeticiones, los científicos observaron que surgían espontáneamente cadenas de hasta 14 unidades de aminoácidos e hidroxiácidos, conocidas con el nombre de depsipéptidos.

Los hidroxiácidos se unen con un tipo de enlace llamado éster, formando lo que se llama un poliéster. Un ejemplo de poliéster es, evidentemente, el poliéster, la conocida fibra textil. Esta es sintética y no biodegradable, pero existen otros poliésteres que se forman y se degradan en la naturaleza. Los científicos ya habían observado antes que estos poliésteres se forman espontáneamente con los ciclos de secado e hidratación. El enlace éster requiere menos energía que el enlace peptídico; basta con un aumento moderado de temperatura para activar su formación. Y una vez logrados los ésteres, la barrera de energía hacia los péptidos, más estables, es mucho menor. «Permitimos la formación de enlaces peptídicos porque los enlaces éster reducen la barrera energética que debe superarse», apunta el codirector del estudio, Nicholas Hud.

Así, una vez que se forman poliésteres, se van rompiendo y reformando, creándose depsipéptidos y finalmente péptidos; todo ello a temperaturas compatibles con la vida y sin necesidad de catalizadores externos. Según el estudio, publicado en la revista Angewandte Chemie International Edition, el proceso podría haber tenido lugar incluso en el desierto, donde el rocío puede formar minúsculas acumulaciones de agua que se secan al sol durante el día y se rehidratan por la noche.

Así, tenemos la demostración de que en la Tierra temprana pudieron formarse péptidos, o pequeñas proteínas. El siguiente paso lo detalla el coautor del estudio Ramanarayanan Krishnamurthy: “Si este proceso se repitiera muchas veces, podrías crecer un péptido que podría adquirir una propiedad catalítica, porque habría alcanzado un cierto tamaño y podría plegarse de una determinada manera. El sistema podría comenzar a desarrollar ciertas características y propiedades emergentes que podrían ayudarle a autopropagarse”.

En resumen, queda superado el obstáculo del que hablaba en el artículo anterior: la aparición de un sistema bioquímico con capacidad de autopropagación es energéticamente posible, y compatible con la Segunda Ley de la Termodinámica. Es evidente que, incluso desde la posible formación espontánea de enzimas y ARN catalítico hasta el nacimiento de la primera célula primitiva, queda aún un largo camino por recorrer. Pero otros investigadores han aportado también grandes avances en estas etapas, como la generación espontánea de membranas protocelulares a partir de ciertos lípidos. Resumiendo aún más: la abiogénesis es posible.

Pero en el fondo siempre nos quedará una pregunta incómoda.

¿Por qué solo una vez?

Mientras confiamos en encontrar vida en algún otro planeta de condiciones habitables, ignoramos a veces el hecho de que, a lo largo de 4.500 millones de años de historia de la Tierra, la abiogénesis solo ha ocurrido aquí UNA vez. O por lo menos, no tenemos absolutamente ningún indicio para sospechar otra cosa.

Concluimos así regresando a una vieja pregunta: ¿es la vida algo extremadamente improbable, como defendía Fred Hoyle? ¿Somos el producto de una casi imposible carambola de fenómenos raros? Por desgracia, no es descabellado pensar que quizá no haya nadie más en el universo.

Tonterías que se dicen: la química orgánica es la buena y natural

No sé si esto llegará a convertirse en una minisección de este blog; material, hay. No trato aquí de reírme de la nesciencia de nadie, entendiendo nesciencia como la falta de un conocimiento que no se nos tiene por qué suponer. Todos somos nescientes en algo, o en mucho, más allá de lo que queremos o estamos obligados a saber. Pero otro caso diferente es la necedad insolente y/o interesada: cuando alguien ha preferido voluntariamente permanecer opaco al conocimiento y, además, hacer gala de ello, o cuando se retuercen los argumentos científicos en favor de una preconcebida ideología.

Química orgánica: un pelícano afectado por el vertido de Deepwater Horizon en 2010. Imagen de Louisiana GOHSEP / Wikipedia.

Química orgánica: un pelícano afectado por el vertido de Deepwater Horizon en 2010. Imagen de Louisiana GOHSEP / Wikipedia.

Lo que vengo a contar hoy es posiblemente una mezcla de ambas cosas, dado que la diferencia entre química orgánica e inorgánica es algo que se aprende en la enseñanza secundaria obligatoria y, por tanto, su ignorancia no puede atribuirse generalmente a una falta de oportunidades en la vida. Ocurrió a propósito de un post reciente de mi compañera Madre ídem sobre las vacunas. En los comentarios, una persona, evidentemente contraria a la vacunación y aparentemente naturómana radical, hacía una distinción entre lo que entendía como química orgánica, la de la naturaleza, y química inorgánica, la de los malignos laboratorios e industrias.

No quiero extenderme en esto, pero debo explicar de dónde procede la confusión. Ciertas técnicas de producción y comercialización de alimentos se apropiaron de algunas etiquetas mucho antes de que la regulación estuviera preparada para hacer algo al respecto; al parecer, el término «orgánico» aplicado de esta manera comenzó a emplearse en 1939 en Estados Unidos por iniciativa particular de alguien. Aquí, en España, surgió una ridícula polémica legal sobre quién podía o no utilizar el término «bio», que se zanjó con el Biomanán convertido en Bimanán, y a tirar. Ridícula, porque «bio» o «biológico» no tienen por qué pasar de repente a significar lo que a un legislador le viene en gana que deben significar, y por tanto la concesión del derecho a usarlos es un abuso de autoridad; algo así como regular legalmente el uso del término «literario» para prohibir su aplicación a las novelas de Dan Brown y Ken Follett. La consecuencia de esta tergiversación es la confusión creada en el ciudadano que no anda especialmente dotado de conocimientos científicos.

Que quede claro, y casi me avergüenza tener que explicar esto a una audiencia adulta: la química orgánica es la del carbono; la química inorgánica es sin carbono. El origen de esta terminología es ancestral y se pierde en la noche de los tiempos (terrible cliché que simplemente significa: no me he molestado en buscar quién fue el primero en utilizarla; aunque uno siempre puede recurrir a Grecia, tan de moda). Pero antes del siglo XIX, los científicos pensaban que los seres vivos estaban compuestos por algo que llamaban «fuerza vital» y que faltaba en las piedras, así que a la química de los seres vivos se la llamó «orgánica» en contraposición a la «inorgánica» de las piedras, ambas igual de naturales.

Con el tiempo, y dado que todos los seres vivos de este planeta tenemos en común el carbono como elemento central y enchufe atómico universal, se llamó orgánica a la química del carbono, e inorgánica a la otra. La dicotomía orgánica/inorgánica no tiene absolutamente nada ver con el hecho de que un compuesto exista en la naturaleza, o que sea la consecuencia natural de unas condiciones controladas por el ser humano (esto es más o menos lo que significa “artificial”). Si queremos referirnos exclusivamente a la química de la vida, esto tiene otro nombre: bioquímica.

El petróleo y todos sus derivados “artificiales” son química orgánica. El plástico es química orgánica. El bisfenol A es química orgánica. Los benzopirenos son química orgánica. Por el contrario, el oxígeno que respiramos es química inorgánica, lo mismo que la sal que echamos a la comida, el hierro de las lentejas, el calcio de la leche y, en general, todo lo que conocemos como sales minerales. Nosotros estamos compuestos tanto por química orgánica como inorgánica, lo mismo que todos los demás seres de la naturaleza. De hecho, y dado que un mínimo del 55% de nuestro peso es agua, somos mayoritariamente química inorgánica, ya que el agua lo es.

Dejando ya aparte los términos, quien siga aferrándose a la distinción entre química natural y química artificial debe saber que es absurdo aplicar un critero pueril de bueno y malo. La naturaleza está atiborrada de compuestos tóxicos. De hecho, el ser humano ha sido incapaz de crear una toxina más potente que la botulínica (el famoso botox) o la tetrodotoxina, ambas cien por cien naturales. La nicotina es natural. El glutamato es natural. Los benzopirenos del tabaco son naturales. Los parabenos los inventó la naturaleza. Muchos de los más potentes carcinógenos son cien por cien naturales. El colesterol no solo es natural, sino que es un componente esencial de las membranas de nuestras células.

Pero incluso la propia distinción está vacía de sentido, ya que no existe una frontera definida. Como ya he apuntado arriba, la llamada síntesis química no consiste más que en poner en contacto dos o más compuestos que normalmente no estarían en contacto por casualidad, y en unas condiciones de presión o temperatura en las que normalmente no se encontrarían por casualidad, pero que en muchos casos podrían llegar a darse sin intervención humana.

Podríamos decir, de hecho, que no hay nada más forzado que introducir en una reacción química un elemento extraño y ajeno para lograr lo que de otro modo nunca sucedería, o sucedería tan despacio que deberíamos sentarnos a esperar durante más tiempo del que viviremos. Esto se llama catálisis, y es algo tan abundante en la naturaleza que de no ser por ello no existiríamos; la naturaleza está abarrotada de unos sofisticadísimos catalizadores llamados enzimas, que facilitan las reacciones químicas sin verse afectadas. Y en el fondo, lo que hace una enzima es algo bastante similar a lo que hace el ser humano cuando provoca una síntesis química; nuestra labor no es la de una fabricación, sino más bien la de actuar como una especie de catalizadores inteligentes.

Así que, ni natural/artificial, ni bueno/malo. Sencillamente, todo es química y, como todo, debe manejarse de una forma responsable y honesta. La química no es más peligrosa que las palabras, cuando estas se manipulan con intenciones tendenciosas para propagar conceptos falaces y provocar, volviendo al tema que motivaba este artículo, que mueran inocentes.

Un Nobel para los descubridores de la cartografía mental

No pongo en duda las ingentes aplicaciones de los LED azules, ya demostradas, ni sus ventajas medioambientales o cómo han facilitado la posibilidad de llevar luz accesible y barata a los países del tercer mundo. Pero como Nobel de Física es tremendamente aburrido; algo así como conceder el de literatura al inventor de los prospectos de las medicinas. Por mucho que esta decisión respete el propósito original de Alfred Nobel cuando instauró sus premios, siempre es más gratificante cuando se reconoce un gran descubrimiento que una invención, por útil que sea esta. Además, a cualquier investigador de ciencia básica le harían un mejor apaño los ocho millones de coronas suecas del premio (unos 880.000 euros) que a inventores ya sobradamente acaudalados gracias a sus patentes, como es el caso de los tres japoneses, uno de ellos radicado en EE. UU., que han sido distinguidos con el Nobel de Física 2014, según anunció la Academia Sueca ayer martes 7 de octubre.

Lo mismo se aplica al Nobel de Química 2014, revelado hoy miércoles y concedido a dos estadounidenses y un rumano afincado en Alemania por empujar radicalmente el límite de resolución de la microscopía óptica gracias al empleo de técnicas de fluorescencia. Los métodos desarrollados por los tres investigadores han sido trascendentales para la observación de moléculas individuales en el contexto de la célula. Los merecimientos del premio son inobjetables. Pero se trata de una mejora de bricolaje científico que, como historia, no da más de sí.

Por suerte, nos queda el Nobel de Medicina, que este año ha premiado un puñado de descubrimientos fascinantes sobre los aparatitos celulares que llevamos en la cabeza para orientarnos en el espacio. En nuestro cerebro existen al menos tres tipos de neuronas que nos sirven para saber adónde o por dónde vamos, y que se disparan –como suele decirse cuando una neurona entra en actividad transmitiendo un impulso electroquímico– según sus funciones especializadas. El primer tipo son las neuronas de dirección. Estas se activan cuando la cabeza del animal, o de la persona, apunta en una dirección específica, y se apagan cuando la cabeza se aparta unos 45º de esa orientación concreta. La función de estas neuronas, que se encuentran en varias regiones del cerebro, es independiente de la vista, y en su lugar parece estar relacionada con los canales semicirculares del oído interno, el que se conoce popularmente como órgano del equilibrio. Lo curioso es que estas neuronas de dirección son capaces incluso de anticiparse en unos 95 milisegundos a la dirección que después tomará la cabeza.

Además de lo anterior, nuestro cerebro cuenta con las llamadas neuronas de lugar, situadas en el hipocampo. Al contrario que las anteriores, estas no responden a la orientación, pero en cambio están asociadas a lugares concretos del entorno que nos rodea. Cuando una rata deambula por un espacio controlado en el laboratorio, los investigadores observan que ciertas neuronas específicas se disparan al pasar por ciertos lugares. De alguna manera, las neuronas de lugar construyen un mapa del entorno en el hipocampo. Cuando John O’Keefe y Jonathan Dostrovsky describieron por primera vez la existencia de estas neuronas en 1971, la comunidad científica lo recibió con cierto escepticismo, porque parecía difícil de demostrar y demasiado bonito para ser cierto: neuronas asignadas a lugares específicos, como si el hipocampo fuera el plano de nuestra casa en el que se ilumina una zona específica cuando vamos al baño y otra cuando entramos en la cocina. Y sin embargo, experimentos posteriores confirmaron la existencia de estas células y de las neuronas de frontera, aquellas que marcan los confines del espacio en el que nos movemos, y que se adaptan cuando estos límites cambian.

Pero si lo anterior parece ciencia-ficción, a ver qué tal suena esto: otro tipo de neuronas, llamadas grid cells (que se traduciría como células de retícula o de rejilla, aunque ignoro cuál es el término estándar en castellano), tienen la peculiaridad de que se disparan cuando la rata pasa por los vértices de una red imaginaria formada nada menos que por triángulos equiláteros. En la siguiente figura se muestra, a la izquierda, la trayectoria de una rata (en negro) moviéndose por un espacio cuadrado, donde cada punto rojo marca el lugar donde se activa una grid cell; en el centro, la representación estadística de esos lugares de activación, y a la derecha el patrón resultante, una retícula triangular o hexagonal.

A la izquierda, el recorrido de una rata (en negro) dispara neuronas en una trama reticular (centro y derecha). Imagen de Torkel Hafting / Tomruen / Wikipedia.

A la izquierda, el recorrido de una rata (en negro) dispara neuronas en una trama reticular (centro y derecha). Imagen de Torkel Hafting / Tomruen / Wikipedia.

Las grid cells están situadas en la llamada corteza entorrinal, una región del cerebro que conecta el neocórtex, responsable de las capacidades cognitivas, y el hipocampo, asociado a la memoria. La diferencia entre las neuronas de lugar y las grid cells es que las primeras reconocen lugares concretos sin un patrón determinado, mientras que las segundas organizan el espacio disponible en una trama regular. Cuando se traslada la rata a otro entorno diferente, las neuronas de lugar construyen un nuevo mapa, mientras que las grid cells, que funcionan incluso sin luz ni puntos de referencia reconocibles, continúan trazando su rejilla de triángulos. Es como si las grid cells dibujaran la retícula de un plano cuyos puntos de interés se etiquetan gracias a las neuronas de lugar, y toda esta información se integra en el hipocampo, donde se guardan nuestros mapas mentales.

Las grid cells fueron descubiertas en 2005 por los investigadores noruegos Edvard Moser y May-Britt Moser, cuya coincidencia de apellidos no es tal: son marido y mujer. Ambos, junto con O’Keefe, han sido agraciados con el Nobel de Medicina 2014, aunque los Moser deberán repartirse una mitad del premio, mientras que la otra va al británico-estadounidense. Anteriormente solo otras tres parejas de esposos y colaboradores han sido merecedores de un premio Nobel compartido, y dos de esos matrimonios pertenecían a la misma familia: Marie y Pierre Curie, y la hija de estos, Irene, con su marido, Frederic Joliot.