Entradas etiquetadas como ‘química’

Los astronautas del futuro podrían (y deberían) reciclar sus heces para comer

Suele creerse que los astronautas comen píldoras, lo cual no es cierto. En los primeros vuelos espaciales se experimentó con tubos de pasta alimenticia, cubitos y comida en polvo. De hecho, en aquellos viajes pioneros los expertos ni siquiera estaban seguros de si sería posible comer en el espacio, ya que no sabían cómo la microgravedad podía afectar a la deglución.

La astronauta Sandra Magnus fue la primera que experimentó con la cocina en el espacio. Imagen de NASA.

La astronauta Sandra Magnus fue la primera que experimentó con la cocina en el espacio. Imagen de NASA.

Pero pasados aquellos tanteos iniciales, los astronautas comenzaron a alimentarse con comidas muy parecidas a las que tomamos aquí abajo, y su dieta está vigilada por nutricionistas que se aseguran de su correcta alimentación. No se preparan un solomillo Wellington, pero sí han llegado a experimentar con la cocina.

El principal problema allí arriba es que las cosas flotan, y por lo tanto no se puede echar un filete a una sartén ni hervir un huevo (el vapor no sube), se sustituye el pan por tortillas mexicanas para no crear una nube de migas y la sal viene en forma líquida. Pero comen pollo, ternera, fruta, verduras, pescado, e incluso en algunos casos pizza o hamburguesas. Las raciones preparadas suelen ir en paquetes sellados y deshidratados por comodidad y conservación, pero no por una cuestión de aligerar el peso del agua, ya que todo alimento seco debe rehidratarse, y en el espacio no es posible ir al río a por agua.

Pero todo esto se refiere a la única presencia humana actual en el espacio, la Estación Espacial Internacional (ISS). Y como siempre aclaro aquí, no olvidemos que la ISS, en términos de viajes espaciales, es casi un simulacro; la estación orbita a solo unos 400 kilómetros sobre la Tierra, algo menos de la distancia en AVE entre Madrid y Sevilla, que el tren recorre en unas dos horas y media. La diferencia en el caso de la ISS es que, al poner esos kilómetros de pie, llevar cualquier cosa allí es más complicado por la pegajosa gravedad de la Tierra. Pero recuerden que si todo flota en la ISS no es porque esté tan lejos que escapa del influjo gravitatorio terrestre, ni mucho menos, sino solo porque está continuamente en caída libre, como en esas atracciones de los parques donde te sueltan de golpe y sientes que la sangre se te sube a la cabeza.

Otra cosa muy diferente serían los viajes espaciales de verdad, esos que nunca parecen llegar. Pero si algún día ocurren, ¿cómo se alimentarán sus tripulantes? En el cine de ciencia ficción que se preocupa de estos asuntos, suelen plantearse posibilidades como los cultivos hidropónicos, que se crecen en agua y sin tierra. Esta es una opción real, y de hecho se practica en la ISS.

El astronauta Ed Lu, comiendo con palillos en la ISS. Imagen de NASA.

El astronauta Ed Lu, comiendo con palillos en la ISS. Imagen de NASA.

Pero tengamos en cuenta una realidad física: la materia no se crea ni se destruye, solo cambia de forma. Para que una tomatera produzca un tomate de 100 gramos, esos 100 gramos de materia debe robárselos a su entorno; otra cosa tiene que perder esos 100 gramos. Este es uno de los fallos más habituales en las otras películas de ciencia ficción, las que no se preocupan de estos detalles, y donde los seres crecen aparentemente de la nada.

En la ISS esto no supone un problema, porque los tripulantes reciben periódicamente naves de la Tierra con suministros frescos. Pero en un supuesto viaje interplanetario largo, no digamos ya interestelar, donde no pudiera llevarse toda la comida desde la Tierra y tuviera que fabricarse a bordo, los astronautas producirían sus propios alimentos, comerían, defecarían; si, como se hace en la ISS, expulsaran sus residuos al exterior, poco a poco irían robando materia al hábitat de la nave hasta que no quedara suficiente para seguir sosteniendo la producción de alimentos.

En el espacio abierto no hay materia que pueda recogerse; salvo que encontraran un oasis (como un planeta) donde repostar la química básica necesaria para sus alimentos, sobre todo carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre, la situación sería insostenible. Por supuesto, otro tanto ocurre con el agua. Los viajeros también podrían fabricar su propia agua, pero igualmente necesitarían ir reponiendo su stock de hidrógeno y oxígeno.

Así pues, no les quedaría otro remedio: deberían reciclar sus propias heces para producir alimentos. Por asqueroso que esto pueda parecer, mirémoslo desde un punto de vista estrictamente químico: las heces son materia rica en nutrientes. La mayor parte se compone de bacterias, pero contiene todos esos elementos que los viajeros espaciales no podrían permitirse el lujo de tirar al espacio.

Simplemente, esos átomos y moléculas se encuentran en una forma no utilizable directamente, porque han perdido la energía que podemos extraer de ellos. Los seres vivos somos vampiros energéticos. Al digerir el alimento, le robamos energía (y materia, por supuesto). Para transformar esos residuos otra vez en alimento, simplemente debemos aportarles energía para convertirlos en otras formas moleculares que podamos aprovechar como fuente de energía.

Y por suerte, energía sí la hay en el espacio: hay luz, viento solar, rayos cósmicos, partículas que viajan a alta velocidad… La solución consistiría en cosechar esa energía y utilizarla para recargar las moléculas de las heces, como se recarga una pila, y así convertirlas de nuevo en alimento.

Desde hace años, en la ISS se recicla la orina de los astronautas para producir agua potable, y como conté aquí hace unos meses, en la Tierra también se están probando sistemas con este mismo fin. Lo de las heces llevará más trabajo, pero esta semana se ha publicado un estudio que aporta un sistema completo. No es ni mucho menos autosuficiente ni recicla todos los componentes de las heces sino solo un compuesto concreto, pero es un comienzo.

La astronauta italiana Samantha Cristoforetti explica el funcionamiento del retrete de la ISS. Imagen de ESA.

La astronauta italiana Samantha Cristoforetti explica el funcionamiento del retrete de la ISS. Imagen de ESA.

Los investigadores, de la Penn State University, no han utilizado (aún) heces ni orina, sino un residuo sólido y líquido que se emplea habitualmente para testar los sistemas de reciclaje; algo así como una caca humana industrial. El primer paso de su sistema consiste en utilizar ese residuo como comida para microorganismos; aunque nosotros no podemos alimentarnos directamente de nuestras heces, para muchos microbios son un manjar. Este proceso se llama digestión anaerobia. Es similar al que tiene lugar en nuestro tubo digestivo y se aplica en la Tierra al tratamiento de los residuos.

De esta digestión anaerobia, para la cual el aparato utiliza filtros modificados de los que se ponen en los acuarios, los investigadores cosecharon uno de sus preciados productos: el metano, el componente fundamental del gas natural, que contiene carbono e hidrógeno. El metano se sirve entonces a otro tipo de bacteria que lo usa como alimento y que crece muy a gusto comiéndoselo. Esta bacteria, llamada Methylococcus capsulatus, tiene un 52% de proteína y un 36% de grasa, y todo ello en forma comestible; actualmente se emplea como alimento para el ganado. Y no piensen que comer bacterias continúa siendo algo extraño y repelente; ¿qué si no es el yogur?

Los investigadores han probado su sistema asegurándose de que no crecen bacterias tóxicas, aplicando rangos de pH (acidez/alcalinidad) muy restrictivos y temperaturas altas para que la comida no se estropee. De momento es solo un prototipo y aún está muy lejos de convertirse en un aparato práctico; pero hasta el día en que tengamos naves interestelares, hay tiempo de sobra para desarrollarlo. El director del estudio, el geocientífico Christopher House, dice: «imaginen si alguien pudiera refinar nuestro sistema para poder recuperar un 85% del carbono y el nitrógeno del residuo en forma de proteínas sin tener que utilizar hidropónicos o luz artificial; sería un desarrollo fantástico para los viajes al espacio profundo».

De la cerveza al urinario, y de vuelta a la cerveza

A propósito de mi anterior artículo sobre el Marmite, ese extraño alimento de origen británico creado con los restos de la fermentación industrial de la levadura, Alicia me hacía la observación en Twitter de que posiblemente en los países del norte aprovechen al máximo la cerveza tal y como nosotros hacemos con el cerdo.

El comentario de Alicia me trajo a la memoria una noticia que circuló a finales de la primavera de este año y que pone lacre y sello a esa idea. Porque ¿qué mayor aprovechamiento de la cerveza que recoger el resultado de su paso por el cuerpo humano y volver a convertirlo en cerveza?

Esto es exactamente lo que ha hecho el Consejo de Agricultura y Alimentación de Dinamarca (para abreviar, DAFC, en inglés), con la colaboración de la empresa danesa Nørrebro Bryghus. Se lo explico. A nadie se le escapa que en los festivales de música se consumen océanos de cerveza, y todo asiduo a los conciertos en grandes recintos ha tenido que esperar pacientemente alguna vez al final de una larga fila para devolver al mundo el líquido ingerido, del modo que narraban Pablo Carbonell y los Toreros Muertos.

Pues bien, en 2015 al DAFC se le ocurrió recoger la orina vertida por los asistentes al Festival de Roskilde, celebrado anualmente cerca de Copenhague y que pasa por ser uno de los mayores eventos musicales de Europa. Nada menos que 54.000 litros; piensen en esa botella de agua que tienen en la nevera, y multiplíquenla por 54.000.

Asistentes al Festival de Roskilde en 2015, contribuyendo al proyecto. Imagen de Beercycling.

Asistentes al Festival de Roskilde en 2015, contribuyendo al proyecto. Imagen de Beercycling.

En la primavera de 2016, esas 54 toneladas de agüita amarilla se emplearon como fertilizante en los campos daneses para producir 11 toneladas de malta de cebada. Y después, otra vez a fabricar cerveza. El resultado: 60.000 botellas de cerveza Pilsner que se lanzaban a la venta el pasado junio bajo la marca, no había otra, Pisner.

Los responsables del Proyecto Beercycling aclaraban que los granjeros han utilizado durante siglos la orina del ganado para fertilizar sus cultivos, y que en este caso solo se ha añadido la idea innovadora de aprovechar la humana, con el añadido de que en este caso la materia prima procedía principalmente del consumo de cerveza. Lo cual no es un factor relevante técnicamente, pero le da al proyecto un interesante carácter circular, además de ser hermosamente alegórico.

Cerveza Pisner. Imagen de Beercycling.

Cerveza Pisner. Imagen de Beercycling.

Pero si han suspirado de alivio al saber que la orina no se transforma directamente en cerveza, sino que simplemente se esparce por los campos, no suspiren tan deprisa: en otro proyecto, científicos de la Universidad de Gante (Bélgica) han creado una máquina que recicla directamente la orina en agua potable y fertilizante.

En este caso, sí: los 1.000 litros de orina recogidos de los asistentes al Festival de Música y Teatro de Gante por el investigador Sebastiaan Derese y sus colaboradores estaban destinados a elaborar cerveza sin pasar por el filtro de la naturaleza, sino solo por el de la máquina. “Recuperación completa de nutrientes de la orina humana”, es el tema en el que investiga Derese para su tesis doctoral.

Puede que ideas como la de Derese tengan que vencer algunas resistencias, pero háganse a la idea de que ese es el futuro al que nos dirigimos. Claro que tal vez sea necesario recordar un axioma básico, no por evidente menos incomprendido:

Toda el agua de la Tierra es reciclada.

El agua que bebemos es la misma que llevan bebiendo y excretando todos los seres vivos que han pasado por este planeta durante millones de años. La naturaleza actúa como gran máquina de filtro, devolviéndonos lo que expulsamos después de cubrir un gran ciclo de reciclaje.

Lo cierto es que actualmente lo más común es reciclar el agua usada en las plantas de depuración para destinos diferentes al consumo humano, como el riego o la recarga de acuíferos. Pero solo porque la tecnología aún no está lo suficientemente extendida como para que se nos devuelva al grifo lo que hemos vertido por el desagüe.

Curiosamente, en 2008, cuando la NASA instaló en la Estación Espacial Internacional su primer sistema para reciclar la orina y el sudor de los astronautas en agua potable, publicó el avance bajo el título “reciclar agua ya no es solo para la Tierra”. Pero lo cierto es que en la Tierra aún no hemos llegado a ese nivel de reciclaje que en el espacio es una necesidad. Aunque sin duda, llegaremos, porque cada vez más es también una necesidad aquí abajo. Así que vayan haciéndose a la idea: en un futuro tal vez cercano, reciclar orina para beber ya no solo será para el espacio.

La fruta que comemos está atiborrada de productos químicos

Si han llegado aquí y están leyendo este párrafo sin conocer la línea de este blog, probablemente sea por uno de dos motivos: a) esperan leer alguna revelación que les lleve a reafirmarse en eso de “¡claro, nos envenenan con química!”, o b) se disponen a vapulear al autor de este blog porque, naturalmente (y nunca mejor dicho), LA NATURALEZA NO ES OTRA COSA QUE PRODUCTOS QUÍMICOS.

Evidentemente, la respuesta correcta es la b). Y el titular de este artículo tiene truco, lo cual seguramente me llevará a recibir el vapuleo en Twitter de quienes se cansan leyendo más de 140 caracteres de una vez. Aquí les traigo una muestra gráfica que no es nueva, pero que en su momento causó un enorme revuelo en internet. El profesor de química australiano James Kennedy está justificadamente harto de que, para cierto sector de la sociedad, un químico reciba hoy una calificación moral similar a la de un terrorista, o peor. Kennedy es uno de esos tipos dotados con un sobresaliente talento divulgador, y hace unos años publicó en su blog varias listas de los ingredientes químicos que componen algunas de las frutas y otros alimentos naturales de consumo común. Aquí tienen algunas de ellas, con la del plátano en castellano por gentileza de Kennedy (imágenes de James Kennedy):

Observarán, aparte de lo tremendamente fácil que le resulta a cualquier pirómano social asustar a la población con nombres como dihidrometilciclopentapirazina, que en la lista figuran varias de esas sustancias que se designan con una letra E y un número, correspondiente a su clasificación como aditivos alimentarios, por ejemplo colorantes o conservantes.

En efecto, estos componentes están presentes de forma natural en los alimentos; el hecho de que se sinteticen en un tanque industrial para disponer de grandes cantidades y añadirlos a otros alimentos no los hace mejores ni peores: son exactamente la misma cosa. Y pensar que los productos químicos artificiales son dañinos por definición es un error tan idiota como dejarse morder por una serpiente de cascabel amparándose en la cita de esa preclara experta en salud llamada Gwyneth Paltrow: «nada que sea natural puede ser malo para ti».

Y por cierto, aprovecho que paso por aquí para aclarar otro malentendido de garrafa: en alguna ocasión he comprobado cómo algunas personas, que evidentemente se saltaron algún curso de la secundaria obligatoria, creen que la distinción entre química orgánica e inorgánica consiste en que la primera es la de la naturaleza y la segunda la de las fábricas. Imagino que se debe a aquello de los alimentos «orgánicos».

Perdónenme si esto les desencaja la mandíbula a algunos de ustedes, pero puedo asegurarles que he leído esto en más de una ocasión. Así que debo aclarar lo obvio: química orgánica es la que se basa en el carbono, inorgánica la que no. No tiene absolutamente nada que ver con el carácter natural o artificial del compuesto. El agua es química inorgánica, y sin duda Gwyneth Paltrow certificaría que es un producto natural.

Pese a todo lo anterior, asistimos ahora a una imparable tendencia de productos que se publicitan como sin conservantes ni colorantes, una moda que está socialmente aceptada y que no va a remitir. Hay una pseudociencia de la quimiofobia, tan imposible de erradicar como el resto de pseudociencias.

Lo más llamativo es el mecanismo de círculo vicioso que se crea entre la sociedad y la floreciente industria de lo «natural»: un sector de la población, ignoro si mayoritario pero que marca tendencia, se apunta a la pseudociencia de la quimiofobia. Las compañías de productos de consumo, con el propósito de aumentar sus ventas, eliminan de sus artículos sustancias inocuas, como los conservantes, los colorantes o los parabenos de jabones y desodorantes, para así presentarse ante el consumidor con una imagen más «natural». Cuando estas marcas publicitan lo que no llevan, no hacen sino reforzar entre la población la idea de que las sustancias que antes llevaban los productos de esas marcas, pero ya no, deben de ser dañinos; por algo los habrán eliminado. Poco importa que en realidad los hayan eliminado no porque sean perjudiciales, sino porque usted cree que lo son. Es la versión moderna de las Brujas de Salem: ¡a la hoguera con conservantes, colorantes, parabenos…!

Esta irresponsabilidad social de las compañías de productos de consumo ampara también mucha trampa y cartón a través de prácticas publicitarias engañosas. En numerosos casos, etiquetas, eslóganes, anuncios y reclamos juegan sutilmente con las palabras para no mentir, pero tampoco decir toda la verdad. Un ejemplo: una marca de pan de molde estampa en sus bolsas el lema «sin colesterol». La única manera de que el pan llevara colesterol sería que el panadero perdiera algún dedo dentro, ya que el colesterol es un lípido que actúa como componente esencial de las membranas de las CÉLULAS ANIMALES. Pero no parece probable que esta marca pretenda informar inocentemente al consumidor, sino más bien crearle la ficción de que su producto es más saludable que otros de la competencia. Naturalmente, es probable que los competidores se apunten al mismo reclamo para no ser menos, y así se difundirá entre los consumidores la falsa idea de que el pan lleva colesterol a no ser que se indique lo contrario.

Otro ejemplo es la etiqueta «sin gluten», también popularizada hoy por la errónea creencia de que estas proteínas causan algún efecto dañino en las personas no celíacas. Cada vez más productos de lo más variopinto se suman hoy a la moda de exhibir este lema, y ello pese a que el gluten solo está presente en los cereales. Imagino que la etiqueta «sin gluten» aporta tranquilidad a los compradores celíacos, pero tengo mis dudas de que sea este el propósito que motiva a las marcas para estampar este lema en productos que no tendrían por qué llevar cereales en su composición: si una salchicha se publicita como compuesta por un 100% de carne, añadir una etiqueta «sin gluten» es un reclamo publicitario tramposo.

Una marca de zumos se anuncia en televisión diciendo que “no les ponen azúcar”. Pese a la apariencia casual de la frase, la fórmula parece sospechosamente elegida para que el consumidor incauto caiga en la trampa de creer que se trata de zumos diferenciados de la competencia por no llevar azúcar. La ciencia nutricional actual está condenando a los azúcares (también naturales, como diría Gwyneth) como causantes de la enfermedad cardiovascular, y la fórmula más tradicional y correcta «sin azúcares añadidos» tal vez ya no sea suficientemente eficaz como reclamo publicitario; pero basta con sobreimpresionar en la pantalla un mensaje en letra pequeña aclarando que los zumos tienen todo el azúcar de la fruta para atravesar ese colador de malla gruesa que es la publicidad autorregulada.

Anuncios que esconden parte de la verdad, proclamas saludables sin fundamento demostrado, suplementos dietéticos que no suplementan nada que resulte útil suplementar… Hace unos días el mando a distancia de mi televisor me llevó por azar a un programa estadounidense llamado Shark Tank, en el que varios emprendedores trataban de conseguir financiación para sus negocios de un puñado de millonarios bastante ostentotes (palabra que acabo de inventarme). Varios de los negocios aspirantes vendían suplementos nutricionales o productos parafarmacéuticos, siempre naturales. Los inversores ametrallaban a los candidatos a preguntas sobre ventas, rentabilidad, distribución, competencia…

Ninguno de ellos hacía la que debería ser la pregunta fundamental: ¿realmente eso sirve para algo? No parecía importar lo más mínimo; obviamente, bastaba con que los compradores así lo creyeran. Los productos químicos sintéticos y los fármacos están estrechamente regulados por las leyes de los países, y por las comunitarias en el caso de la UE. Fuera de esas leyes está la jungla; tan natural como peligrosa y sembrada de trampas.

Un hallazgo en un cometa complica la búsqueda de vida alienígena

¿Cómo puede un descubrimiento en un cometa complicar la búsqueda de vida alienígena? Si les interesa, sigan leyendo.

Tal vez recuerden que hace dos años y medio hasta algunos telediarios abrieron con el primer aterrizaje de un artefacto espacial en un cometa: se trataba de Philae, un módulo separable de la sonda Rosetta de nuestra Agencia Europea del Espacio (ESA). Philae solo pudo operar durante un par de días debido a que su aterrizaje defectuoso lo dejó en un lugar bastante escondido de la luz del sol, pero su breve vida fue suficiente para hacer ciencia muy valiosa. Por su parte, su nodriza Rosetta concluyó su misión en septiembre de 2016 estrellándose contra el objeto de su estudio, el cometa 67P/Churyumov–Gerasimenko.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Entre los descubrimientos que Rosetta ha aportado al conocimiento, en 2015 los científicos de la misión anunciaron el hallazgo de oxígeno molecular en la atmósfera del cometa. El oxígeno molecular es lo que respiramos, una molécula formada por dos átomos de oxígeno, O2. Y a pesar de que el oxígeno como elemento es uno de los más abundantes en el universo (el tercero, después de hidrógeno y helio), su forma molecular, la respirable, es extremadamente rara, que sepamos hasta ahora. Hasta 2011 no se confirmó por primera vez su existencia fuera del Sistema Solar, y no fue precisamente aquí al lado: en una región formadora de estrellas de la nebulosa de Orión, a unos 1.500 años luz. Posteriormente se ha detectado también en otra zona de formación de estrellas de la nebulosa Rho Ophiuchi.

La rareza del oxígeno molecular estriba en que es muy reactivo, muy oxidante, por lo que tiende a reaccionar rápidamente con otros compuestos y desaparecer en esta forma; por ejemplo, con el hidrógeno para producir agua. Así que, cuando los científicos encontraron oxígeno molecular en el cometa 67P, la reacción lógica se resumía en tres letras: WTF?

La explicación que sugirieron los investigadores de Rosetta era que el oxígeno estaba congelado en el cometa desde su formación, en los tiempos del origen del Sistema Solar, y que se iba liberando por el calor del sol. Sin embargo, la hipótesis fue cuestionada porque incluso en este caso parecía improbable que el oxígeno pudiera haber permanecido intacto, sin reaccionar, durante miles de millones de años.

Ahora, por fin existe una explicación para el oxígeno de 67P, y ha llegado de una fuente inesperada: un ingeniero químico que se dedica a la investigación de nuevos componentes electrónicos. Konstantinos Giapis, de Caltech (EEUU), se dedica desde hace 20 años a cosas como bombardear semiconductores con chorros de átomos cargados a alta velocidad para estudiar las reacciones químicas que se producen.

Cuando Giapis supo del descubrimiento de Rosetta, de repente se dio cuenta de que el cometa podía ser un ejemplo real de los experimentos que él realiza en el laboratorio: el hielo presente en 67P se calienta con el sol, liberando vapor de agua que se ioniza con la radiación ultravioleta solar y se estrella de nuevo a alta velocidad con el cuerpo del cometa por el efecto del viento solar. Cuando estas moléculas de agua chocan contra la superficie de 67P, arrancan átomos de oxígeno que se combinan con el oxígeno del agua para formar O2.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

No es solo una teoría: Giapis lo ha puesto a prueba en su laboratorio, simulando el proceso que tiene lugar en el cometa, y ha demostrado que se produce oxígeno molecular. Así que la presencia de este compuesto en 67P no es una reliquia de la época del nacimiento del cometa, sino una reacción que está ocurriendo ahora para generar oxígeno respirable fresco.

Lo cual nos lleva de vuelta al título de este artículo. Y es que, aunque el estudio de Giapis aporta un interesante hallazgo en el campo de la astrofísica/química, sus repercusiones pueden complicar aún más la búsqueda de firmas de vida en planetas extrasolares: incluso si se detecta oxígeno en la atmósfera de alguno de estos lejanos planetas, ya hay otro mecanismo más que podría explicar su origen sin necesidad de que exista algo vivo allí.

El drama de la búsqueda de vida en el universo es que difícilmente llegaremos jamás a tener una prueba directa, una confirmación absoluta. Todos los intentos de encontrar biología en planetas extrasolares, que cada vez son más (los intentos y los planetas), deben conformarse con buscar indicios indirectos, como señales que no sean fácilmente atribuibles a un fenómeno natural. Los nuevos instrumentos de observación van a facilitar en los próximos años el análisis de las atmósferas de muchos exoplanetas, y con ello será posible sospechar que tal o cual composición atmosférica podría indicar la existencia de vida.

Naturalmente, la más evidente de estas posibles firmas biológicas atmosféricas es el oxígeno. Nunca se ha pretendido que esta fuese una firma definitiva: existen procesos geológicos y químicos que pueden dar lugar a la generación de este gas sin intervención de nada vivo. Por ejemplo, Europa y Ganímedes, dos de las grandes lunas de Júpiter, tienen atmósferas de oxígeno muy tenues, pero allí este gas se forma por la ruptura del agua (H2O) causada por la radiación, o radiolisis.

Sin embargo, con los procesos abióticos (sin vida) de fabricación de oxígeno ocurren dos cosas: primero, no parece fácil que puedan originar enormes cantidades de este gas y sostenidas a lo largo del tiempo. En el caso de la Tierra, el gran inflado de nuestra atmósfera se produjo por la proliferación de microbios fotosintéticos, y si aún hoy podemos respirar es gracias a que seguimos teniendo organismos fotosintéticos.

Segundo, en algunos casos esos procesos requieren condiciones que tampoco son hospitalarias para la vida. Por ejemplo, en planetas muy calientes y próximos a su estrella, la radiación UV de esta puede descomponer el agua. Pero si se encuentra oxígeno en un planeta así, sus propias condiciones hacen muy improbable que exista algo vivo.

En resumen, y aunque detectar oxígeno en abundancia en la atmósfera de un exoplaneta no sería una demostración de vida, sí sería un buen comienzo. O al menos, lo era, hasta el hallazgo de Giapis. Ahora sabemos que hay una manera más de producir oxígeno, que a 67P le funciona muy bien, y en la que no interviene nada parecido a la vida. Desde Caltech ya nos advierten: «otros cuerpos astrofísicos, como planetas más allá de nuestro Sistema Solar, o exoplanetas, también podrían producir oxígeno molecular por el mismo mecanismo abiótico, sin necesidad de vida. Esto puede influir en la futura búsqueda de signos de vida en exoplanetas».

Sin un «segundo génesis», no hay alienígenas

Si les dice algo el nombre del lago Mono, en California, una de dos: o han estado por allí alguna vez, o recuerdan el día en que más cerca estuvimos del «segundo génesis».

Les explico. A finales de noviembre de 2010, la NASA sacudió el ecosistema científico lanzando un teaser previo a una rueda de prensa en la que iba a «discutirse un hallazgo de astrobiología que impactará la búsqueda de pruebas de vida extraterrestre». La conferencia, celebrada el 2 de diciembre, solo decepcionó a quienes esperaban la presentación de un alien, algo siempre extremadamente improbable y que el anuncio tampoco insinuaba, salvo para quien no sepa leer. Para los demás, lo revelado allí era un descubrimiento excepcional en la historia de la ciencia: una bacteria diferente a todos los demás organismos de la Tierra conocidos hasta ahora.

El lago Mono, en California. Imagen de Wikipedia.

El lago Mono, en California. Imagen de Wikipedia.

Coincidiendo con la rueda de prensa, los resultados se publicaron en la web de la revista Science bajo un título breve, simple y atrevido: «Una bacteria que puede crecer usando arsénico en lugar de fósforo». La sinopsis de la trama decía que un equipo de investigadores, dirigidos por la geobióloga Felisa Wolfe-Simon, había encontrado en el lago Mono un microorganismo capaz de emplear arsénico como sustituto del fósforo en su ADN. Lo que para otros seres terrestres es un veneno (su posible papel como elemento traza aún se discute), para aquella bacteria era comida.

Toda la vida en este planeta, desde el virus que infecta a una bacteria hasta la ballena azul, se basa en la misma bioquímica. Uno de sus fundamentos es un material genético (ADN o ARN) formado por tres componentes: una base nitrogenada, un azúcar y un fosfato. Dado que este fue el esquema fundador de la biología terrestre, todos los seres vivos estamos sujetos a él. Encontrar un organismo que empleara un sistema diferente, por ejemplo arseniato en lugar de fosfato, supondría hallar una forma de vida que se originó de modo independiente a la genealogía de la que todos los demás procedemos.

Esto se conoce informalmente como un «segundo génesis», un segundo evento de aparición de vida (que no tiene por qué ser el segundo cronológicamente). Sobre si la bacteria del lago Mono, llamada GFAJ-1, habría llegado a representar o no un segundo génesis, hay opiniones. Hay quienes piensan que no sería así, ya que la existencia de un ADN modificado habría representado más bien una adaptación extrema muy temprana dentro de una misma línea evolutiva.

Para otros, es irrelevante que el origen químico fuera uno solo: dado que la definición actual de cuándo la no-vida se transforma en vida se basa en la acción de la evolución biológica, existiría la posibilidad de que la diversificación del ADN se hubiera producido antes de este paso crucial, y por lo tanto la vida habría arrancado ya con dos líneas independientes y paralelas.

Pero mereciera o no la calificación de segundo génesis, finalmente el hallazgo se desinfló. Desde el primer momento, muchos científicos recibieron el anuncio con escepticismo por razones teóricas, como el hecho de que el ADN con arsénico en lugar de fósforo daría lugar a un compuesto demasiado inestable para la perpetuación genética (este es solo un caso más de por qué muchas de las llamadas bioquímicas alternativas con las que tanto ha jugado la ciencia ficción son en realidad pura fantasía que hace reír a los bioquímicos). La publicación del estudio confirmó las sospechas: los experimentos no demostraban realmente que el ADN contuviera arsénico. Y como después se demostró, no lo contenía.

La bacteria GFAJ-1 del lago Mono resultó ser simplemente una extremófila más, un bicho capaz de crecer en aguas muy salinas, alcalinas y ricas en arsénico. Tenía una tolerancia fuera de lo común a este elemento, pero no lo empaquetaba en su ADN; se limitaba a acumularlo, construyendo su material genético con el fósforo que reciclaba destruyendo otros componentes celulares en tiempos de escasez. Su única utilidad real fue conseguir el propósito expresado en su nombre, GFAJ, formado por las iniciales de Give Felisa A Job («dadle un trabajo a Felisa»): aunque el estudio fuera refutado, le sirvió a Wolfe-Simon como trampolín para su carrera.

Bacterias GFAJ-1. Imagen de Wikipedia.

Bacterias GFAJ-1. Imagen de Wikipedia.

Por algún motivo que desconozco, el estudio nunca ha sido retractado, cuando debería haberlo sido. Me alegro de que a Wolfe-Simon le vaya bien, pero desde el principio el suyo fue un caso de ciencia contaminada: no descubrió el GFAJ-1 por casualidad, sino que estaba previamente convencida de la existencia de bacterias basadas en el arsénico, algo que ya había predicado antes en conferencias y que le hizo ganar cierta notoriedad. El siguiente paso era demostrar que tenía razón, fuera como fuese.

Hoy seguimos sin segundo génesis terrestre. Y su ausencia es una razón que a algunos nos aparta de esa idea tan común sobre la abundancia de la vida alienígena. Afirmar que el hecho de que estemos aquí implica que la vida debe de ser algo muy común en el universo es sencillamente una falacia, porque no lo implica en absoluto. Es solo pensamiento perezoso; una idea que cualquiera puede recitar si le ponen en la boca un micrófono de Antena 3 mientras se compra unos pantalones en Zara, pero que si se piensa detenidamente y sobre argumentos científicos, no tiene sustento racional.

Pensémoslo un momento: si creemos que la vida es omnipresente en el universo, esto equivale a suponer que dado un conjunto de condiciones adecuadas para algún tipo de vida, por diferentes que esas condiciones fueran de las nuestras y que esa vida fuera de la nuestra, esta aparecería con una cierta frecuencia apreciable.

Pero la Tierra es habitable desde hace miles de millones de años. Y sin embargo, esa aparición de la vida solo se ha producido una vez, que sepamos hasta ahora. Si suponemos que los procesos naturales han actuado del mismo modo en todo momento (esto se conoce como uniformismo), debería haber surgido vida en otras ocasiones; debería estar surgiendo vida nueva hoy. Y hasta donde sabemos, no es así. Hasta donde sabemos, solo ha ocurrido una vez en 4.500 millones de años.

¿Por qué? Bien, podemos pensar que el uniformismo no es una regla pura, dado que sí han existido procesos excepcionales, como episodios globales de vulcanismo o impactos de grandes asteroides que han cambiado drásticamente las reglas del juego de la vida. Esto se conoce como catastrofismo, y la situación real se acerca más a un uniformismo salpicado con algunas gotas esporádicas de catastrofismo.

Pero si aceptamos que el catastrofismo fue determinante en el comienzo de la vida en la Tierra, la conclusión continúa siendo la misma: si deben darse unas condiciones muy específicas e inusuales, una especie de tormenta bioquímica perfecta, entonces estamos también ante un fenómeno extremadamente raro, que en 4.500 millones de años no ha vuelto a repetirse. De una manera o de otra, llegamos a la conclusión de que la vida es algo muy improbable. Desde el punto de vista teórico, para que la idea popular tenga algún viso de ser otra cosa que seudociencia debería antes refutarse la hipótesis nula (una explicación sencilla aquí).

A lo anterior hay una salvedad, y es la posibilidad de que la «biosfera en la sombra» (un término ya acuñado en la biología) procedente de un segundo génesis fuera eliminada por selección natural debido a su mayor debilidad, o sea eliminada una y otra vez, por muchos génesis que se produzcan sin siquiera enterarnos.

Esta hipótesis no puede descartarse a la ligera, pero tampoco darse por sentada: si en su día la existencia de algo como la bacteria GFAJ-1 no resultaba descabellada, es porque la idea de una biosfera extremófila en la sombra es razonable; una segunda línea evolutiva surgida en un nicho ecológico muy marginal, como el lago Mono, tendría muchas papeletas para prosperar, quizá más que un invasor del primer génesis pasando por un trabajoso proceso de adaptación frente a un competidor especializado. Y sin embargo, hasta ahora el resultado de la búsqueda en los ambientes más extremos de la Tierra ha sido el mismo: nada. Solo parientes nuestros que comparten nuestro único antepasado común.

Si pasamos de la teoría a la práctica, es aún peor. Hasta hoy no tenemos absolutamente ni siquiera un indicio de que exista vida en otros lugares del universo. En la Tierra la vida es omnipresente, y no se esconde. Nos encontramos con pruebas de su presencia a cada paso. Incluso en el rincón más remoto del planeta hay testigos invisibles de su existencia, porque en el rincón más remoto del planeta uno puede encender un GPS o un Iridium y recibir una señal de radio por satélite. Si el universo bullera de vida, bulliría también de señales. Y sin embargo, si algo sabemos es que el cosmos parece un lugar extremadamente silencioso.

Como respuesta a lo anterior, algunos científicos han aportado la hipótesis de que la vida microbiana sea algo frecuente, pero que a lo largo de su evolución exista un cuello de botella complicado de superar en el que casi inevitablemente fracasa, impidiendo el progreso hacia formas de vida superiores; lo llaman el Gran Filtro. Otros investigadores sugieren que tal vez la Tierra haya llegado demasiado pronto a la fiesta, y que la inmensa mayoría de los planetas habitables todavía no existan. Pero también con estas dos hipótesis llegamos a la misma conclusión: que en este momento no hay nadie más ahí fuera.

Pero esto es ciencia, y eso significa que aquello que nos gustaría no necesariamente coincide con lo que es; y debemos atenernos a lo que es, no a lo que nos gustaría. Personalmente, I want to believe; me encantaría que existiera vida en otros lugares y quisiera vivir para verlo. Pero por el momento, aquello del «sí, claro, si nosotros estamos aquí, ¿por qué no va a haber otros?», mientras alguien rebusca en los colgadores de Zara, no es ciencia, sino lo que en inglés llaman wishful thinking, o pensamiento ilusorio.

Claro que todo esto cambiaría si por fin algún día tuviéramos constancia de ese segundo génesis terrestre. Y aunque seguimos esperando, hay una novedad potencialmente interesante. Un nuevo estudio de la Universidad de Washington, el Instituto de Astrobiología de la NASA y otras instituciones, publicado en la revista PNAS, descubre que en la Tierra existió un episodio de oxigenación frustrado, previo al que después daría lugar a la aparición de la vida compleja.

Hoy sabemos que hace unos 2.300 millones de años la atmósfera terrestre comenzó a llenarse de oxígeno (esto se conoce como Gran Oxidación), gracias al trabajo lento y constante de las cianobacterias fotosintéticas. Los fósiles más antiguos de células eucariotas (la base de los organismos complejos) comienzan a encontrarse en abundancia a partir de unos 1.700 millones de años atrás, aunque aún se discute cuándo surgieron por primera vez. Pero si de algo no hay duda, es de que fue necesaria una oxigenación masiva de la atmósfera para que la carrera de la vida tomara fuerza y se consolidara.

Los investigadores han estudiado rocas de esquisto de entre 2.320 y 2.100 millones de años de edad, la época de la Gran Oxidación, en busca de la huella de la acción del oxígeno sobre los isótopos de selenio. La idea es que la oxidación del selenio actúa como testigo del nivel de oxígeno en la atmósfera presente en aquella época.

Lo que han descubierto es que la historia del oxígeno en la Tierra no fue un «nada, después algo, después mucho», en palabras del coautor del estudio Roger Buick, sino que al principio hubo una Gran Oxidación frustrada: los niveles de oxígeno subieron para después bajar por motivos desconocidos, antes de volver a remontar para quedarse y permitir así el desarrollo de toda la vida que hoy conocemos.

Este fenómeno, llamado «oxygen overshoot«, ya había sido propuesto antes, pero el nuevo estudio ofrece una imagen clara de un episodio en la historia de la Tierra que fue clave para el desarrollo de la vida. Según Buick, «esta investigación muestra que había suficiente oxígeno en el entorno para permitir la evolución de células complejas, y para convertirse en algo ecológicamente importante, antes de lo que nos enseñan las pruebas fósiles».

El interés del estudio reside en que crea un escenario propicio para que hubiera surgido una «segunda» biosfera (primera, en orden cronológico) de la que hoy no tenemos constancia, y que tal vez pudo quedar asfixiada para siempre cuando los niveles de oxígeno se desplomaron por causas desconocidas. Pero Buick deja claro: «esto no quiere decir que ocurriera, sino que pudo ocurrir».

E incluso asumiendo que la propuesta de Buick fuera cierta, en el fondo tampoco estaríamos hablando de un segundo génesis, sino de un primer spin-off frustrado a partir de un único génesis anterior; las bacterias, los primeros habitantes de la Tierra, ya llevaban por aquí cientos de millones de años antes del oxygen overshoot. El estudio podría decirnos algo sobre la evolución de la vida, pero no sobre el origen de la vida a partir de la no-vida, la abiogénesis, ese gran problema pendiente que muchos dan por resuelto, aunque aún no tengamos la menor idea de cómo resolverlo.

Los Nobel de Física y Química premian los chips prodigiosos

Si no fuera porque no es así como funciona, se diría que los comités de los Nobel de Física y Química de este 2016 se han puesto de acuerdo para premiar un mismo campo, las nanocosas del nanomundo. Dirán ustedes que gran parte del trabajo de la física, la química y la biología consiste precisamente en indagar en todo aquello que no podemos ver a simple vista, y no se equivocarán. Si fuera posible miniaturizarnos –esta semana volví a ver aquella divertida película de Dante y Spielberg, El chip prodigioso–, la naturaleza no tendría misterios para nosotros. No habría nada que investigar; bastaría con abrir los ojos y ver qué pasa.

Fotograma de la película 'El chip prodigioso' (1987). Imagen de Warner Bros.

Fotograma de la película ‘El chip prodigioso’ (1987). Imagen de Warner Bros.

Pero dentro de todo ello, hay un área transversal de la ciencia que se dedica específicamente a explorar cómo es el paisaje a esa escala diminuta, cómo son sus montañas, valles y costas, y a fabricar aparatos que puedan desenvolverse en ese entorno de lo diminuto del mismo modo que lo hace un rover en Marte. No es un minimundo ni micromundo, ya que el prefijo «micro» comprende los tamaños en el rango de la célula y sus partes. La unidad de medida allí es el nanómetro, la millonésima de milímetro, y desde ahí hacia abajo. En algún momento, los científicos comenzaron a referirse a ese mundo añadiéndole un «nano»: nanotecnología, nanoingeniería, nanociencias.

Nuestro mundo tiene sus formas, lo que llamamos el relieve topográfico. Esas formas pueden cambiar a lo largo del tiempo debido a fuerzas de la naturaleza, pero siguiendo ciertas reglas: cuando en una montaña se ha horadado una cueva, un derrumbamiento podrá hacerla desaparecer, pero la montaña no puede deshoradarse y volver a quedar como estaba. Y un río no puede correr sobre la cumbre de una montaña.

Hay una rama de las matemáticas que estudia las formas, o topos, y cómo pueden transformarse unas en otras a través de transiciones permitidas: por ejemplo, se puede deformar, pero no cortar y pegar. Una hoja de papel puede convertirse en una silla de montar, pero no en una bola. La topología se aplica a áreas de las matemáticas como el álgebra y la geometría, pero también a la física.

El funcionamiento de la materia está relacionado con su estructura. Por ejemplo, un metal conduce la electricidad porque permite el libre movimiento de los electrones. Algunos físicos exploran las fronteras de ese nanomundo, los límites exóticos de la materia donde aparecen propiedades inusuales; por ejemplo, los semiconductores o los superconductores. Como los paisajes, esa materia tiene sus formas y sus reglas, lugares inaccesibles por donde un río no puede discurrir, o un electrón no puede moverse. De la aplicación de la topología a estas formas exóticas de la materia y a sus cambios (como de sólido a líquido) pueden aprovecharse algunas de esas propiedades raras. La capacidad de manipular y controlar a voluntad la conductividad de un material es la base de toda la tecnología electrónica que utilizamos hoy.

El Nobel de Física 2016 ha premiado a los británicos (los tres trabajando en EEUU) David Thouless, Michael Kosterlitz y Duncan Haldane por haber sentado en los años 70 y 80 las bases de esa topología de la materia exótica y de sus transiciones de fase. Por cierto que el padre de Kosterlitz, Hans, bioquímico, se quedó a un paso del Nobel como uno de los descubridores de las endorfinas.

En ese nanopaisaje, a partir de los años 80 algunos investigadores empezaron a construir máquinas, sistemas formados por piezas que se mueven cuando se les aplica energía, del mismo modo que una batidora gira cuando se enchufa a la red eléctrica. Las piezas de estas máquinas son moléculas, diseñadas con una forma específica que les permite desempeñar la función deseada una vez que ocupan su lugar, tal como hacen los ingenieros industriales. La primera de estas piezas, obra del francés Jean-Pierre Sauvage en 1983, era una simple cadena de dos eslabones que permitía el movimiento libre.

La nanoingeniería de máquinas se inspira en la propia naturaleza. Unos años antes habían comenzado a descubrirse los primeros nanomotores (máquinas rotativas) naturales, comenzando por el flagelo que emplean algunas bacterias para propulsarse en el agua y que consiste en un mecanismo giratorio. En 1991, el escocés Fraser Stoddart logró construir un nanoanillo que podía girar y desplazarse alrededor de un eje. Ocho años después, el holandés Bernard Feringa construía el primer nanomotor, una especie de ventilador de una sola aspa.

Sauvage, Stoddart y Feringa han sido premiados con el Nobel de Química 2016. Desde entonces se han construido nuevas nanomáquinas, como nanoascensores o nanocarretillas. Algunas de ellas se inspiran en mecanismos previamente inventados por la naturaleza; por ejemplo, nuestros músculos funcionan gracias a una nanomáquina deslizante, un sistema similar al que también sirve para que nuestras células expulsen al exterior ciertas sustancias, como moléculas de defensa contra infecciones.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Nanocoche Nanobobcat, de la Universidad de Ohio. Imagen de OU.

Se espera que en el futuro una de las principales aplicaciones de las nanomáquinas sea la medicina. Como en El chip prodigioso, pero con un Dennis Quaid molecular. También servirán para usos como construir nuevos sensores y sistemas de almacenamiento de energía. Por el momento, una de las ramas más sorprendentes de la nanoingeniería es la fabricación de nanocoches, máquinas capaces de desplazarse sobre una superficie utilizando una fuente de energía, por ejemplo la luz.

De hecho, este año se celebrará en Toulouse (Francia) la primera carrera mundial de nanocoches, como expliqué con detalle en un reportaje a finales del año pasado. Varios laboratorios del mundo han presentado sus prototipos de lo más variado, como una versión nanoscópica de Los autos locos. Estaba previsto que la carrera se celebrara el 14 y 15 de este mes, pero los organizadores han decidido posponerla para dejar algo más de tiempo a las nanoescuderías para que pongan a punto sus modelos, que deberán correr sobre una pista de oro en el vacío a -268 ºC.

¿Que el café muy caliente provoca cáncer? ¿Y el consomé?

¿Qué es un café muy caliente? ¿Qué es caliente? ¿Templado? ¿Es lo mismo si se pregunta a dos personas distintas? ¿Cómo sabe la gente a qué temperatura bebe el café? ¿Qué bares sirven el café con termómetro? ¿Cómo sabe la Organización Mundial de la Salud a qué temperatura bebe la gente el café o el mate? ¿Y por qué no se dice nada del té, la tila o el chocolate? ¿Y qué hay de la sopa, el consomé o la caldereta de marisco? ¿Tienen más riesgo de cáncer quienes toman los garbanzos del cocido con caldo que quienes los prefieren secos? ¿O al contrario, lo tienen peor los segundos, porque toman la sopa por separado y por tanto tragan el caldo más caliente que quienes mastican los garbanzos? ¿Y aquellos que prefieren la comida en general más caliente?

Imagen de pexels.com (dominio público).

Imagen de pexels.com (dominio público).

Si usted se ha hecho preguntas de esta índole a propósito de la noticia divulgada esta semana por todos los medios, según la cual la Organización Mundial de la Salud (OMS) dice que el café y el mate caliente pueden aumentar el riesgo de cáncer, no por el café o el mate, sino por su temperatura… Enhorabuena: no se preocupe, no es usted más duro de mollera que la media; todo lo contrario, ha demostrado una postura crítica inusual y un juicio muy saludable, además de haber hecho, aunque sea mentalmente, el trabajo que muchos medios de comunicación deberían haber hecho y no han hecho.

Con ocasión de la anterior aparición en los medios de la Agencia Internacional de Investigación sobre el Cáncer (IARC) de la OMS, a propósito de las salchichas y la carne roja (y de la que ya hablé aquí y aquí), ya les alerté en esta sintonía de que este año el mismo organismo tenía en su agenda una reunión para valorar el riesgo cancerígeno del café, el mate y otras bebidas calientes. Y que de ella saldría algún otro titular jugoso, como así ha sido.

Vaya por delante que mi postura respecto a la OMS trata de ser ecuánime, a veces incluso en contra de la corriente: la he defendido cuando pocos lo hacían (gripe A, ébola…), pero también la he vapuleado cuando he considerado que lo merecían (zika, salchichas…). En cuanto a los expertos de la IARC, merecen todo el respeto y hacen muy bien aquello para lo cual han sido designados: mirar del derecho y del revés un batiburrillo de estudios, muchos de ellos dudosos o inconcluyentes, con la obligación de emitir un veredicto de culpabilidad o inocencia que a menudo no puede extraerse de los datos ni metiéndolos en una prensa de las del aceite de oliva virgen extra.

Tanto en esta ocasión como en anteriores, mis críticas no han sido hacia la IARC, sino a la política de comunicación de la OMS y al tratamiento de ciertos medios, a veces acrítico, a veces rayando en el sensacionalismo. Aunque, si piensan que es petulante por mi parte poner en duda este u otros veredictos (están en su derecho), hay algo que sí debo aclarar: el comité de la IARC no es el claustro de profesores de Hogwarts. Aquí no hay magia, sino una simple evaluación de una serie de estudios que están perfectamente disponibles e identificados, y que cualquier persona con la formación necesaria puede valorar.

Pero si les interesa mi valoración de todo este asunto del café y el mate templados, calientes o muy calientes, la resumo gráficamente: ¯\_(ツ)_/¯

Por no extenderme, no voy a entrar en el hecho de que en 1991 el café fuera “posiblemente cancerígeno” y el mate “probablemente cancerígeno” y que, con el cambio de siglo, ambos hayan dejado de serlo. Creo que el propio hecho habla por sí mismo. Me remito a lo ya explicado sobre la carne y el cáncer. O mejor, a mi reciente artículo sobre el monólogo del humorista John Oliver, que lo explica con mucha más gracia. Y para añadir algo más de alpiste mental sobre lo que causa o previene el cáncer, les dejo este gráfico.

¿Todo causa y previene el cáncer? Imagen de Schoenfeld y Ioannidis, American Journal of Clinical Nutrition.

¿Todo causa y previene el cáncer? Imagen de Schoenfeld y Ioannidis, American Journal of Clinical Nutrition.

Pero el asunto de la temperatura sí merece un comentario. Respondiendo a sus dudas, les voy a contar de dónde se saca la IARC que “tomar bebidas muy calientes a más de 65 ºC ha sido clasificado como probablemente carcinogénico para humanos”, como dice el artículo en la revista The Lancet Oncology que resume las conclusiones de la IARC (la monografía completa, que hará el número 116, aún no está disponible, pero sí las referencias a los estudios valorados por los expertos).

En primer lugar, hay estudios epidemiológicos, de esos que he tratado aquí con profusión (la última vez, a propósito del monólogo de Oliver), que tratan de encontrar una correlación sin demostrar ninguna causalidad, y de los que uno puede extraer casi siempre una o otra conclusión estadísticamente significativa, sin importar que el efecto sea minúsculo e irrelevante. Como ilustración de esto sirve también el gráfico que he mostrado más arriba, y de lo cual sale una idea extendida en la calle: todo produce y previene el cáncer… al mismo tiempo.

Vayamos a los estudios citados por los expertos del IARC y que relacionan bebida muy caliente con cáncer de esófago. ¿De cuántos estudios estamos hablando? ¿Decenas? Nada de eso. Hacen un total de… tres. El primero de ellos, del año 2000, es un estudio catalán que compendiaba un total de 830 casos y 1.779 controles en Suramérica; cifras demasiado diminutas para sostener por sí solas una conclusión epidemiológica cuando se trata de cáncer. Más aún cuando su primera conclusión, que el consumo de mate –sin importar la temperatura– se correlaciona con el riesgo de cáncer, es precisamente la que ha sido ahora negada por la IARC. Más aún, sobre todo, cuando el riesgo asociado a la temperatura aparece para el mate, el té y el café con leche, pero no para el café solo (resultados como este suelen ser los que a uno le alertan de que algo no está funcionando del todo bien).

El segundo estudio, de 2013 y también con la participación de los investigadores catalanes en un equipo más amplio, es muy similar, pero centrado exclusivamente en el mate. También en este caso, con 1.400 casos y 3.229 controles, los investigadores encuentran una correlación entre consumo de mate y cáncer, que se refuerza cuando la bebida se consume más caliente. Pero una vez más, la conclusión fundamental es la que no ha convencido a la IARC; basándose en tan escasos datos y tan poco concluyentes, la agencia de la OMS dicta que «las pruebas de la carcinogenicidad del consumo de mate no muy caliente son inadecuadas». En cuanto al efecto de la temperatura, se considera que las pruebas son «limitadas». Pero insisto, si desaparece la sinergia o efecto multiplicador, como lo denominan los investigadores, entre factor 1 (mate) y factor 2 (temperatura), porque la conclusión sobre el factor 1 no es convincente, se acabó la sinergia; por tanto, se cae la lógica del resto de las conclusiones.

El tercer estudio es un caso aparte. Al parecer en la provincia de Golestán, al norte de Irán, existe una tasa especialmente elevada de cáncer de esófago. Así que un grupo de investigadores de la Universidad de Teherán decidió evaluar la posible influencia del té, que al parecer allí se toma a temperatura volcánica. Hay que reconocerles el esfuerzo de un estudio amplio y riguroso. El número de casos es pequeño, 300 y 571 controles, pero en este caso el universo de la muestra tampoco es muy amplio. Además, reclutaron a una cohorte de más de 48.000 voluntarios sanos para estudiar los patrones de consumo de té. De todo ello acababan concluyendo que la alta temperatura del té se asocia con un mayor riesgo de cáncer.

Pero claro, las respuestas no tardaron en llegar, en forma de cartas a la misma revista, British Medical Journal. Y sus títulos hablan por sí solos: «Té y cáncer. ¿Y qué hay de la masticación de opio?«. O «Té y cáncer. ¿Por qué el norte de Irán?» (evidentemente, el Golestán no es la única región del mundo donde se toman bebidas muy calientes). Yo añadiría: Té y cáncer. ¿Qué hay de los genes? Lo de Golestán huele a algún factor genético; algo me dice que el aporte de genes frescos en una remota provincia del norte de Irán debe de ser más bien escaso.

Por último, nos queda hablar de los estudios experimentales, los de laboratorio, los que realmente demuestran una relación directa de causa y efecto, y sin los cuales todo lo demás no deja de ser una apuesta más o menos cabal. La IARC cita solo dos estudios, el segundo muy reciente, publicado en abril de 2016. Y veamos qué es lo que dice: investigadores brasileños alimentaron a unos ratones con agua a 70 ºC y nitrosaminas, compuestos con reconocida actividad cancerígena. La conclusión fue que el agua caliente potencia el efecto cancerígeno de las nitrosaminas. Muy bien. ¿Y el agua caliente sola? En este caso… no, no había cáncer. Lo único que ocurría, en palabras de los investigadores, era que el agua caliente «inducía inicialmente una necrosis esofágica que cicatrizaba y se hacía resistente a la necrosis después de sucesivas administraciones».

Creo que ya está todo dicho. Juzguen ustedes.

¿Cómo empezó esta película de la vida?

Hoy el ser humano ha llegado a observar galaxias a 13.400 millones de años luz, lo que equivale a espiar lo que sucedía en el universo hace 13.400 millones de años. Pásmense ante este logro del telescopio espacial Hubble anunciado el pasado marzo:

En cambio, aún no sabemos qué ocurrió en nuestra propia casa hace menos de la tercera parte de ese tiempo para que hoy podamos estar aquí y contarlo. El origen de la vida es uno de los mayores enigmas científicos pendientes.

Un nuevo estudio en la revista Nature Geoscience viene a sugerir cómo pudo comenzar a prepararse ese campo fértil para que la vida llegara a bullir en la Tierra. Cuando este planeta era una inhóspita bola gélida, el calor necesario para fundir el hielo y disparar el inicio de una química habitable pudo provenir de gigantescas erupciones solares.

Según el modelo de simulación elaborado por la NASA, los frecuentes fogonazos de un Sol joven e impetuoso pudieron facilitar que el nitrógeno atmosférico inerte se fijara en formas aprovechables para la vida, como hoy hacen los microbios al servicio de las plantas.

Eyección de masa coronal, un tipo de erupción solar, captada el 31 de agosto de 2012 por el telescopio espacial de la NASA Solar Dynamics Observatory (SDO). La imagen de la Tierra a escala revela las proporciones. Cuando el Sol era joven, estas erupciones eran aún mucho mayores y más frecuentes que ahora. Imagen de NASA/GSFC/SDO.

Eyección de masa coronal, un tipo de erupción solar, captada el 31 de agosto de 2012 por el telescopio espacial de la NASA Solar Dynamics Observatory (SDO). La imagen de la Tierra a escala revela las proporciones. Cuando el Sol era joven, estas erupciones eran aún mucho mayores y más frecuentes que ahora. Imagen de NASA/GSFC/SDO.

Una de estas formas, ácido cianhídrico, pudo ser crucial en la aparición de los precursores de la vida, como ácidos nucleicos, proteínas y lípidos. El pasado año, un estudio publicado en Nature Chemistry demostró que estas reacciones pudieron darse en la Tierra primitiva. Aún nos queda mucho por saber de cómo comenzó esta película, pero ya empezamos a vislumbrar algunos fragmentos de los créditos iniciales.

Añado: todo lo cual, por cierto, nos lleva una vez más de vuelta al argumento contrario a esa hipótesis de que la vida es algo muy común en el universo. En 1972, Carl Sagan y George Mullen se preguntaron cómo era posible que en la Tierra temprana hubiera existido agua líquida –como muestran las pruebas geológicas– cuando el tenue brillo del Sol por aquel entonces habría mantenido esta roca hoy mojada como una roca congelada. Era una paradoja que había que resolver.

Pero había que resolverla porque hoy estamos aquí. Cuando explicamos la historia del universo o de sus partes debemos buscar hipótesis compatibles con el hecho de que hoy existimos, como dicta el llamado principio antrópico, que para usos como este debería renombrarse para hacer referencia a la vida en general (¿biótico?) y no al ser humano en particular.

En cambio, imaginemos que somos una inteligencia extrauniversal y que contemplamos la historia desde el principio de los tiempos. En ese caso esperaríamos que la evolución del cosmos siguiera los caminos más lógicos. No hay paradojas que resolver, sino la expectativa de que las cosas sigan su curso natural más probable. En este caso, introducir argumentos como las erupciones solares para licuar el agua de la Tierra sería simplemente un Deus ex machina, que la Wikipedia define muy bien:

Cualquier acontecimiento cuya causa viene impuesta por necesidades del propio guión, a fin de que mantenga lo que se espera de él desde un punto de vista del interés, de la comercialidad, de la estética, o de cualquier otro factor, incurriendo en una falta de coherencia interna.

O dicho mucho más coloquialmente, una de esas típicas morcillas que se introducen en las películas y que no vienen a cuento, pero que se justifican solo por el hecho de que así logramos que luego ocurra algo que nos interesa que ocurra. Un ejemplo científico que ya conté en su día en un reportaje: la elección de la rana como organismo donante de ADN para la recreación de los dinosaurios en Parque Jurásico. No hay motivo biológico para elegir la rana, que no es pariente cercana de los dinosaurios; de hecho, está más alejada evolutivamente de ellos que los humanos (según datos actualizados, 355 millones de años frente a 320). La única razón es que esta elección permitía que luego los dinosaurios cambiaran de sexo para reproducirse, cosa que algunas ranas pueden hacer, pero nosotros no.

Resumiendo, el estudio de la NASA desvela una más de esas muchas carambolas que debieron producirse para que la vida surgiera en la Tierra. Pero si alguien escribiera ese guión con tantos giros improbables, los espectadores responderían con el típico «¡venga ya!». No, no me refiero a los alienígenas que salvan a Brian cuando cae de la torre; ¡qué demonios, son los Monty Python! ¿Pero quién no se ha preguntado por qué las águilas de El señor de los anillos aparecen oportunamente para rescatar a los protagonistas de una muerte segura, pero en cambio no les pueden hacer el favorcito de acercarlos un poco hasta Mordor?

Una droga y un veneno, ¿el origen de la vida?

La gran pregunta entre las grandes preguntas de la biología es cómo comenzó la vida en la Tierra. Desde los tiempos en que los biólogos evolutivos comenzaron por primera vez a buscar una explicación natural a este inmenso misterio, la respuesta a este conundrum ya no solo atañe a la comprensión de nuestro propio origen, sino a la posibilidad de que haya alguien más por ahí fuera rascándose su alienígeno coco al respecto de la misma pregunta.

Ilustración de la Tierra temprana. Imagen de Wikipedia.

Ilustración de la Tierra temprana. Imagen de Wikipedia.

Como ya he comentado aquí anteriormente, la famosa ecuación de Drake, la que arroja una serie de términos para estimar el número de civilizaciones con capacidad de comunicación interestelar en nuestra galaxia, es un interesante ejercicio de especulación para la reflexión planteado por un físico. Se trata de un producto de varios términos, entre los cuales algunos conciernen a la física y tienen una posibilidad de estimación real; por ejemplo, la fracción de estrellas que contienen planetas.

Pero uno de esos términos, designado fl, expresa la fracción de planetas que desarrollan vida. Y sobre esto no tenemos ni la más mínima puñetera idea. Si es cero, el resultado final de la ecuación es cero. Sabemos que no es cero porque nosotros estamos aquí; pero bien podría ser algo tan próximo a cero que el resultado final fuera uno, es decir, nosotros y punto.

Resumiendo; para un biólogo, la ecuación de Drake es una tautología: estima la vida alienígena a través de un término que estima la vida alienígena. Este término no es una variable, sino la incógnita. ¿Para qué sirve entonces la ecuación de Drake?, se preguntarán.

Lo cierto es que Drake, un tipo muy lúcido, jamás ha pretendido que su ecuación se tomara al pie de la letra –como a menudo hace la divulgación popular– para calcular realmente la población alienígena de la Vía Láctea, sino que la propuso como materia de reflexión. Como bien explican aquí los amigos de SETI League, «la importancia de la ecuación de Drake no está en la resolución, sino en la contemplación; no se escribió en absoluto con propósitos de cuantificación»; y añaden con gran acierto que, si algo cuantifica la ecuación de Drake, es solo «nuestra ignorancia».

El motivo de que aún desconozcamos por completo esta fl es precisamente que no sabemos cómo surgió la vida en la Tierra. Y por tanto, aventurar que fl es muy alta o muy baja depende de la intuición personal de cada cual sobre la probabilidad de que las moléculas adecuadas reaccionen espontáneamente en condiciones determinadas para formar unidades de información autorreplicativas que conduzcan a su propagación, que estas unidades de información se traduzcan en funciones biológicas y que estas se individualicen en compartimentos separados autónomos, o células. Nada menos.

Desde hace más de medio siglo, los biólogos han tratado de lograr reacciones químicas en el laboratorio que simulen lo que pudo suceder hace unos 4.000 millones de años, cuando la vida en la Tierra comenzó a gestarse. Uno de los primeros, y tal vez el más famoso, fue el que hicieron Miller y Urey en 1952, en el que lograron generar aminoácidos (moléculas orgánicas complejas, los componentes de las proteínas) a partir de fuentes de carbono, nitrógeno e hidrógeno. Pero aún hay mucho camino por recorrer.

Hace casi un año conté aquí un precioso experimento elaborado por investigadores de Georgia Tech (EEUU) que demostró la posibilidad de formación espontánea de cadenas de aminoácidos en condiciones compatibles con las de la Tierra primitiva. La vía de aparición de las primeras proteínas sobre la Tierra es fundamental porque algunas de ellas, las llamadas enzimas, son imprescindibles para la vida. Por ilustrarlo con el primer ejemplo que me viene, las enzimas son como ministros matrimoniales que materializan la unión productiva entre otras proteínas.

Pero hay otra vía esencial sobre la cual los experimentos de Miller-Urey y Georgia Tech no aportan nada: la de los ácidos nucleicos, las moléculas como el ADN y el ARN encargadas de codificar la información, conservarla, perpetuarla y proporcionarla para que las enzimas puedan facilitar los procesos biológicos. Muchos biólogos piensan que el primer ácido nucleico pudo ser, antes del ADN, un ARN, ya que este puede actuar además como enzima. Es decir, el ARN puede ser un dos en uno, lo que simplificaría el proceso necesario para el arranque de la vida.

Pero aún es necesario demostrar cómo podría haberse formado espontáneamente un ARN en la Tierra primitiva. El ARN es una cadena compuesta por unidades llamadas nucleótidos (más concretamente, ribonucleótidos, frente a los desoxirribonucleótidos del ADN). Estos nucleótidos se representan por esas «letras» de las que habrán oído hablar: A, C, G, T. Solo que en el ARN la T, timina (o timidina), se sustituye por U, uracilo (o uridina). Así pues, habría que demostrar la formación de cadenas de A, C, G y U de manera espontánea en un ambiente de laboratorio que emule las condiciones de la Tierra primigenia.

Lo que vengo a contar después de esta larga introducción es que el mismo equipo de Georgia Tech que consiguió ligar cadenas de aminoácidos ha logrado ahora la formación de algo muy parecido a una cadena de ARN. Y los eslabones que han empleado para ello son curiosos: ácido barbitúrico y melamina.

Sin duda les sonará el ácido barbitúrico. No es una droga en sí, pero es el precursor de infinidad de ellas, todas las que terminan en -barbital. Marilyn Monroe, Elvis, Judy Garland y Jimi Hendrix son solo algunas de las numerosas estrellas que se apagaron a causa de estas sustancias. En cuanto a la melamina, tal vez recuerden el terrible caso en 2008 de las muertes de bebés en China por leche adulterada. La melamina es la base de la formica de las cocinas, pero en el organismo reacciona con el ácido cianúrico para formar cristales que se acumulan en el riñón y lo atascan.

Pues bien, resulta que el ácido barbitúrico y la melamina son muy similares a las moléculas que sirven de base a los nucleótidos del ADN y el ARN, de modo que podrían contemplarse como una especie de ancestros químicos de estas moléculas. Pero tienen una peculiaridad: cuando los investigadores los colocan simplemente en agua y en presencia de los componentes necesarios, todos ellos fácilmente presentes en la Tierra primitiva, reaccionan espontáneamente para convertirse en algo muy parecido a los nucleótidos biológicos.

Una doble hélice de proto-ARN formada por nucleótidos de ácido barbitúrico y melamina. Imagen de Georgia Tech.

Una doble hélice de proto-ARN formada por nucleótidos de ácido barbitúrico y melamina. Imagen de Georgia Tech.

Una vez obtenidos estos por separado, ambos se unen para formar uno de esos peldaños típicos que vemos en la escalera del ADN. Después, y también de manera espontánea, los peldaños se ligan unos a otros para crear una doble hélice que recuerda muchísimo a una cadena de ADN, o ARN en este caso. Todo ello por sí mismo, sin intervención de enzimas, y en condiciones que podrían haberse dado perfectamente en los charcos de la Tierra antigua.

Por supuesto, aún sigue habiendo mucho camino por recorrer. Lo que han obtenido los investigadores no es un ARN, sino algo que tiene el mismo aspecto físico y una estructura química muy parecida. Pero el ácido barbitúrico y la melamina aún deberían sustituirse por los nucleótidos biológicos, como adenina y uracilo. Y uno de los coautores del trabajo, Ramanarayanan Krishnamurthy, ha dejado claro: «Es un camino complejo que aún tendríamos que diseñar al menos sobre el papel, y aún no estamos ahí». Pero también añade: «Nos estamos acercando a moléculas que se parecen a lo que pudo ser la vida en sus etapas tempranas».

Como dice el codirector del estudio, Nicholas Hud, «la Tierra temprana era un laboratorio desordenado donde probablemente se producían muchas moléculas como las necesarias para la vida». De este juego de azar depende la fl de la ecuación de Drake que aún no estamos ni cerca de estimar. Pero si la línea de investigación que siguen Hud y Krishnamurthy llegara a demostrar una ruta biológica plausible, podríamos llegar a tener un argumento teórico para sostener que fl es distinta de cero. El hecho de que estemos aquí es un argumento práctico, pero en ciencia un caso anecdótico (nuestra existencia) no basta para justificar una teoría (la existencia de otros).

Y como acabo de caer en que hace tiempo que no les dejo con algo de música, aquí viene Hendrix.

Cosméticos con liposomas, otro timo que tampoco se irá

Apostaría mi calavera a que la reciente absolución científica del colesterol como gran satán de la dieta apenas va a cambiar el concepto que está tan instalado en la calle.

Como recordatorio de lo que ya he contado aquí, sucesivos estudios fracasaron al intentar demostrar esa idea preconcebida hace varias décadas sin ningún fundamento real, a saber, que a más colesterol en la dieta, más colesterol en sangre. En vista de las tozudas pruebas de que esto sencillamente no funciona tan sencillamente, y que incluso obligaron a una retractación por parte del proponente original de esta errónea idea, la nueva edición de las recomendaciones nutricionales de EEUU publicada a principios de este año ha eliminado la restricción del colesterol en la dieta, dando luz verde a que cada uno se sirva lo que le apetezca sin aumentar su riesgo de caer fulminado por un patatús coronario.

Resumo para que quede más claro: la primera potencia científica del mundo ya ha reconocido oficialmente que comer alimentos ricos en colesterol no perjudica la salud.

Pero como digo, difícilmente va a lograrse que el conocimiento de esta realidad permee en la calle. Por desgracia, la publicidad es mucho más poderosa que la divulgación científica. Hay mucha gente que duda de que el hombre llegara a la Luna, de que las vacunas sean seguras o de que la actividad humana haya alterado el clima terrestre, y sin embargo muchos parecen tragarse sin masticar la milonga que un fulano muy serio les cuenta en los intermedios de las pelis sobre lo necesario que es meterse entre pecho y espalda una ración de crustáceo antártico a la salsa de omega-3 (a pesar de que el omega-3 tampoco hace lo que dicen que hace).

En torno a las grasas de la dieta hay montado un inmenso negocio nutracéutico que va a explotar todos los recursos a su alcance para lograr perpetuar las falacias, del mismo modo que la industria del tabaco trató durante décadas de impedir un cambio de percepción que empañara la imagen pública de su producto. Es cierto que en el caso del tabaco este cambio acabó produciéndose, pero cabe preguntarse si habría ocurrido lo mismo en ausencia de las campañas promovidas por las autoridades oficiales.

En el caso del colesterol es dudoso que exista este apoyo, dado que los alimentos bajos en colesterol no hacen nada malo. Simplemente, tampoco hacen nada bueno, y este planteamiento es el mismo que mantiene en la calle y en la legalidad, por ejemplo, a los productos homeopáticos, o a los videntes radiotelevisivos que en sus anuncios evitan escrupulosamente arrogarse ninguna capacidad de videncia; se limitan a presentarse como psicólogos alternativos: «si hay algo que te preocupa, nuestro equipo de profesionales [¿?] puede ayudarte», dicen, viajando por el universo sobre un estrellado fondo de constelaciones.

Ilustración del corte de un liposoma. Imagen de Wikipedia.

Ilustración del corte de un liposoma. Imagen de Wikipedia.

Ahora tenemos otros dos ejemplos de timos derribados por la ciencia, pero tan rentables que también están destinados a perdurar. El primero (el segundo, mañana) es un viejo conocido de la mitología parafarmacéutica: los liposomas en las cremas cosméticas. Los liposomas son una especie de microcélulas artificiales vacías que pueden rellenarse con lo que uno desee. La idea es que se pueden encapsular sustancias en su interior para que lleguen al lugar deseado. Y de hecho, pueden utilizarse de este modo como vehículos para administrar fármacos dentro del organismo. Pero otra cosa es que sean capaces de atravesar la piel, como aseguran las compañías cosméticas.

Y no, no lo hacen. Ya no recuerdo cuándo leí el primer estudio demostrando que los liposomas sobre el cutis hacían lo mismo que cualquiera que no sea Harry Potter tratando de atravesar la entrada al andén 9¾. Pero sí recuerdo el último, porque se ha publicado esta misma semana, y las técnicas de análisis cada vez más avanzadas ya no dejan lugar a dudas.

Investigadores de la Universidad del Sur de Dinamarca ya habían demostrado en 2013 que los liposomas se desbaratan y pierden su carga útil en el momento en que tocan la piel, lo que deja ahí, sencillamente tiradas sobre el cutis, a las moléculas presuntamente beneficiosas que debían viajar cómodamente en su vehículo hasta las capas profundas de células vivas. Ahora, el mismo equipo ha perfeccionado su método, basado en una avanzada nanoscopía que permite observar directamente los liposomas individuales, y su conclusión es tajante.

Así lo cuenta el director del estudio publicado en la revista PLOS One, Jonathan Brewer: «De una vez por todas, establecemos que los liposomas intactos no pueden penetrar la superficie de la piel. Por tanto, debemos revisar la manera en que percibimos los liposomas, especialmente en la industria del cuidado de la piel, donde los liposomas se perciben como esferas protectoras que transportan agentes a través de la barrera cutánea».

Contrariamente a lo que cualquiera acostumbrado a otros campos de la actividad humana podría sospechar, el propósito de estos científicos, como el de tantos otros, no es encabezonarse en tener razón para no ceder ni un ápice desde sus planteamientos previos (por favor, ni se les ocurra pensar que me estoy refiriendo a la política), sino simplemente poner a prueba un principio comúnmente aceptado sin la debida validación científica. Es probable que a estos investigadores les hubiera resultado mucho más rentable demostrar que los liposomas funcionan a las mil maravillas, porque la industria cosmética pone mucho dinero en juego.

Pero la realidad es la realidad. Y con honestidad, los científicos precisan que no pueden negar la posibilidad de que alguna reacción química en la piel pudiera ayudar a que los agentes encerrados en los liposomas atraviesen la frontera cutánea: «Cuando los liposomas tocan la piel y se rompen, no es seguro que los agentes activos se pierdan; pudiera ser que se iniciara alguna reacción química que de alguna manera ayudara a los agentes a viajar a través de la barrera de la piel». De hecho, como también conté aquí, algunas cremas o esas soluciones antisépticas de manos que se usan en hospitales y baños de oficinas pueden facilitar que ciertos compuestos penetren en la piel, incluyendo contaminantes del entorno que preferiríamos mantener fuera de nosotros.

Pero para lograr esto, construir algo tan sofisticado como un liposoma es una manera inútilmente costosa de matar moscas a cañonazos, porque incluso si hacen algo «es de una manera diferente a como nos cuenta la industria de la belleza», dice Brewer.