Entradas etiquetadas como ‘inmunología’

Cara y cruz del tratamiento de la COVID-19: la cara, dexametasona

Que un fármaco haya mostrado por primera vez claramente en un ensayo clínico la capacidad de salvar la vida de algunos enfermos de cóvid es una magnífica noticia que el mundo entero estaba aguardando. Que ese fármaco sea la dexametasona es para mí una doble satisfacción personal, pero además es sin duda una suerte para la humanidad, como ahora explicaré. En el lado de las pegas, y como veremos, es solo un primer paso: no va a ser la panacea, y debemos tener en cuenta que en España tal vez no ayude a rebajar las tasas de mortalidad por debajo de las actuales, porque ya se venía utilizando ampliamente, así que en nuestro país su efecto ya está descontado.

Esta es la historia. El pasado marzo la Universidad de Oxford, con el apoyo del gobierno británico y otras instituciones, puso en marcha un gran ensayo clínico denominado RECOVERY, destinado a probar en paralelo un puñado de tratamientos contra la cóvid. El objetivo del estudio era alcanzar un mínimo de 2.000 pacientes tratados para cada una de las terapias y 4.000 en un grupo de control, para alcanzar una suficiente fiabilidad estadística.

El pasado 8 de junio, el primero de esos tratamientos alcanzó el hito previsto. Los investigadores detuvieron esa rama del ensayo para analizar los resultados, que han resultado muy esperanzadores: la mortalidad de los pacientes conectados a respiradores en el grupo de control era del 41%; el fármaco probado la reducía un tercio, en un factor de 0,65, lo cual equivale a salvar la vida a unas 13 personas de cada 100, o una de cada ocho. El grupo que recibía oxígeno sin respiradores, cuya mortalidad básica era del 25% también se benefició, aunque menos: una de cada 25 muertes puede evitarse. Por el contrario, no se observaron mejoras en los pacientes graves cuya patología no requiere respiradores ni oxígeno, de los cuales fallece un 13%.

Con estos datos, los investigadores se encontraron en sus manos con los primeros resultados de un fármaco que en un ensayo clínico ha demostrado el poder de salvar vidas de enfermos de cóvid. Recordemos que el remdesivir, un antiviral que también en un ensayo clínico ha mostrado la capacidad de reducir el tiempo de hospitalización, en cambio no ha arrojado datos estadísticamente significativos sobre una reducción de la mortalidad. Ante la importancia del hallazgo, los científicos de Oxford han difundido la noticia públicamente en un comunicado, a la espera de la publicación detallada de sus resultados en una revista científica, lo que permitirá a otros investigadores analizar y valorar los datos.

He aquí el fármaco en cuestión: dexametasona, un corticoide antiinflamatorio clásico que se viene utilizando desde los años 60. Y esta es la buena noticia para la humanidad: mientras que el remdesivir es un antiviral complejo, caro, inyectable y propiedad de una compañía, en cambio la dexametasona es un fármaco barato, que puede tomarse en pastillas, que existe en versión genérica, que puede comprarse en cualquier farmacia y que se produce a toneladas (quizá estoy exagerando) en todo el mundo.

Dexametasona en viales. Imagen de melvil / Wikipedia.

Ahora bien, los datos ya muestran que tampoco va a ser la panacea, el remedio milagroso que libre al mundo de la amenaza de la cóvid. Para entender por qué puede beneficiar a unos pacientes y no a otros, hay que explicar contra qué actúa.

En este blog he repasado detalladamente (aquí, aquí y aquí) uno de los efectos perniciosos de la enfermedad del coronavirus SARS-CoV-2, y que esta infección comparte con otras anteriormente conocidas: una sobreactivación inflamatoria del sistema inmune del enfermo que llega a ser más perjudicial que el propio virus; no lo mata la infección, sino su propia respuesta contra la infección.

Esta denominada tormenta de citoquinas, o más propiamente Síndrome de Liberación de Citoquinas (CRS, en inglés), es algo que se viene observando desde el comienzo de esta pandemia, en pacientes que tienen disparados sus niveles de ciertos marcadores de inflamación y que en muchos casos se correlacionan con el agravamiento y la muerte. Dado que el CRS ya se conocía de otras infecciones, incluyendo las gripes, desde el principio los clínicos han alertado de la necesidad de explorar esta vía como tratamiento contra la nueva cóvid.

Sin embargo, aún no parecen haberse publicado datos suficientemente extensos sobre qué porcentaje de enfermos de cóvid sufren este síndrome. Se ha hablado de entre un 10% y un 30%. Algunos estudios han llegado a encontrar marcadores de inflamación alterados en todos los pacientes analizados, aunque esto tampoco implica que este sea el proceso del cual vaya a depender críticamente la evolución de su enfermedad. Por ello, aún no se sabe a qué proporción del total de afectados de cóvid podría ayudar un tratamiento dirigido a mitigar la tormenta de citoquinas, pero sí que al menos algunos enfermos se beneficiarán de ello.

Y esto es exactamente lo que hace la dexametasona: antiinflamar. Para este fin se viene empleando desde hace décadas contra diversos cuadros hiperinmunes, incluyendo enfermedades autoinmunes o incluso alergias graves. Como ya expliqué aquí, actualmente se están ensayando diversos fármacos destinados a aplacar la tormenta de citoquinas. Algunos de ellos, como el tocilizumab, han mostrado posibles beneficios en estudios preliminares. Pero como el remdesivir, se trata de un fármaco caro y poco accesible.

La diferencia básica entre el tocilizumab u otros inhibidores de la tormenta de citoquinas (que aún tendrán mucho que decir) y la dexametasona es que los primeros actúan específicamente sobre ciertos componentes muy concretos del sistema inmune, como un francotirador; por el contrario, la dexametasona y otros corticoides son como lanzallamas. Es por esto que organismos como la Organización Mundial de la Salud o el Centro para el Control de Enfermedades de EEUU no recomendaban los corticoides contra la cóvid, ya que los antiinflamatorios generales para un paciente que está luchando contra una infección parecen como quitarle el salvavidas a alguien que se está ahogando.

Pero decía al comienzo que España quizá no reduzca sustancialmente sus tasas de mortalidad gracias a este hallazgo, y es que aquí la dexametasona ya se ha venido empleando regularmente en enfermos graves de cóvid, a diferencia de otros países como Reino Unido. De hecho, en nuestro país está en marcha también un ensayo clínico con este medicamento, dirigido por Carlos Ferrando, del Hospital Clínic de Barcelona. Según informa la revista Science, Ferrando está ahora analizando los datos: «Parece que tenemos una señal de que estos corticoides reducen la mortalidad, pero tenemos que terminar el análisis», ha dicho. Con todo, y aunque los pacientes en España ya hayan estado beneficiándose de los efectos de la dexametasona, la publicación de los resultados de los ensayos ayudará a los clínicos a orientar mejor sus tratamientos hacia aquellos enfermos más susceptibles de mejorar con este fármaco.

Por último, y ya en el aspecto más personal, decía también al comienzo que estos resultados son una doble satisfacción. Primero, una parte de mi tesis sobre la activación de los mecanismos inmunitarios celulares por dos de sus mediadores más importantes, la interleukina-2 (IL-2) y la IL-4, estuvo dedicada a estudiar la inhibición de esos mecanismos activadores por la dexametasona; así que encontrar ahora que un compuesto cuyos efectos inmunosupresores uno contribuyó a investigar puede salvar vidas durante esta pandemia es más que gratificante.

Segundo, y este ya es un enfoque más general: quienes nos hemos dedicado o se dedican a la inmunología hemos defendido que, aparte de la inevitable búsqueda de antivirales, una clave esencial de la lucha contra las infecciones puede estar no en intentar matar los patógenos, sino en tratar de ayudar al cuerpo a combatirlos.

El hecho de que ciertos antivirales como el remdesivir se anuncien como «de amplio espectro» resulta algo irónico, cuando realmente aún no han mostrado beneficios claros contra ninguna enfermedad. En cambio, nuestro sistema inmune es una maravilla de la evolución que a diario, sin que nos demos la menor cuenta, está combatiendo contra innumerables patógenos capaces de matarnos. No tenemos antivirales de amplio espectro y nos estamos quedando sin antibióticos. Pero tenemos un sistema inmune con un poder increíble, tanto que a veces se sobrepasa. En nuestra capacidad de encontrar el modo de domarlo cuando hace falta, ayudándole a hacer frente a las continuas amenazas a las que estamos expuestos, reside, pensamos algunos, el futuro de la lucha contra las enfermedades infecciosas.

Cuando el sistema inmune escala contra la covid, ¿cómo desescalarlo?

Viene muy al pelo esta nueva terminología de «escalada» y «desescalada» para explicar esa grave deriva de la COVID-19 (covid) que está costando vidas: el Síndrome de Liberación de Citoquinas (CRS, en inglés) o «tormenta de citoquinas», una sobreactuación del sistema inmune que puede conducir a un Síndrome de Respuesta Inflamatoria Sistémica (SIRS, en inglés) y que es la causa de la muerte de algunos pacientes; no los mata el virus, sino su propia respuesta al virus.

Y esta deriva es devastadora, ya que ataca rápido y de forma inesperada. Según una revisión de casos en China en la revista Journal of Infection, «la mayoría de estos pacientes críticamente enfermos y muertos no desarrollaron manifestaciones clínicas graves en las fases tempranas de la enfermedad. Algunos mostraron solo fiebre suave, tos o dolor muscular. El estado de estos pacientes se deterioró de repente en las fases posteriores o durante el proceso de recuperación. El Síndrome de Distrés Respiratorio Agudo (ARDS) y el fallo multiorgánico ocurrieron rápidamente, resultando en la muerte en un breve periodo».

Un modelo impreso en 3D del nuevo coronavirus SARS-CoV-2 de la COVID-19. Imagen de NIH / Flickr / CC.

Un modelo impreso en 3D del nuevo coronavirus SARS-CoV-2 de la COVID-19. Imagen de NIH / Flickr / CC.

Para evitar esa escalada mortal del sistema inmune, existen fármacos que pueden facilitar la desescalada, y por lo tanto impedir que el cuerpo se destruya a sí mismo mientras lucha contra la infección. Entre los posibles medicamentos que pueden barajarse, vienen a la mente en primer lugar los antiinflamatorios más clásicos, los esteroides.

Los corticoides son antiinflamatorios que la mayoría habremos utilizado en alguna ocasión. Estos esteroides son también un tratamiento estándar en muchos casos en los que existen cuadros inflamatorios más graves o crónicos, o cuando es necesario deprimir la respuesta inmune, por ejemplo en las personas con un órgano trasplantado.

Pero los esteroides no parecen una solución óptima. Deprimir la respuesta inmune de un plumazo implica el riesgo de dejar al paciente sin defensas contra el virus, y esto no es ni mucho menos deseable. Los corticoides se han probado anteriormente contra otros coronavirus, los del Síndrome Respiratorio Agudo Grave (SARS) y el Síndrome Respiratorio de Oriente Medio (MERS), y no solo no han funcionado bien, sino que además perjudicaban la lucha del organismo contra el virus. Por ello, generalmente los expertos no están recomendando el uso de esteroides contra la covid.

En su lugar, se están ensayando medicamentos que no actúan de forma general sobre los mecanismos inflamatorios, sino que se han diseñado específicamente contra algún componente concreto implicado en la tormenta de citoquinas. Y entre estos componentes, hay un sospechoso habitual que suele actuar como gran protagonista: la interleukina 6 (IL-6). Esta es una hormona del sistema inmune, o citoquina, cuya función es repartirse por el organismo para convocar a las tropas a la batalla de la inflamación, un mecanismo de lucha contra las infecciones. Así, la IL-6 juega un papel muy beneficioso. Pero si se produce en exceso, ya sabemos el resultado.

Por ejemplo, la IL-6 provoca el reclutamiento masivo de los macrófagos, células eliminadoras del sistema inmune. Esta legión celular combate ferozmente contra las hordas del patógeno. Si recuerdan la montaña de cadáveres tras la batalla de John Nieve contra Ramsay Bolton por Invernalia (a mí esta traducción libre de Winterfell siempre me ha sonado al nombre de una feria de deportes de invierno), eso es el pus, restos de macrófagos muertos y patógenos destruidos. Y en los pacientes de covid esos restos pueden bloquear los pulmones hasta dejarlos inservibles.

Así pues, bloqueando la IL-6 o su receptor en las células puede contenerse esa inflamación exagerada. Desde hace años hay un fármaco que lo hace muy bien, llamado tocilizumab. Todos los fármacos terminados en «mab» son anticuerpos monoclonales (MAb = Monoclonal Antibody), anticuerpos que se producen en el laboratorio mediante un cultivo de células que son todas clónicas entre sí. Del mismo modo que los anticuerpos generados por nuestro cuerpo en respuesta a una infección pueden neutralizar un virus, en los laboratorios se crean anticuerpos diseñados para bloquear un componente del organismo con fines terapéuticos. Y eso es lo que hace el tocilizumab, bloquear la acción de la IL-6. Lógicamente, estos medicamentos de diseño y que no se fabrican por simples reacciones químicas, sino que emplean cultivos celulares como factorías, no suelen ser precisamente baratos.

El tocilizumab se utiliza normalmente con éxito en otras enfermedades hiperinflamatorias. Contra la covid, se probó inicialmente en un pequeño número de casos en China y después en Italia, con resultados alentadores. Aunque no será la bala mágica, hay esperanzas depositadas en que pueda ayudar a algunos pacientes. Y como decía aquí ayer, la ventaja de fármacos como este es que podrían aplicarse a distintas infecciones víricas en las que se produzcan estas complicaciones. Existen además otros inhibidores de la acción de la IL-6, como sarilumab o siltuximab (también «mabs») que serían posibles candidatos.

Precisamente ayer se ha publicado el último estudio hasta ahora sobre el tocilizumab. En la revista PNAS, científicos chinos informan de que todos sus pacientes con covid grave a los que se les ha administrado el fármaco, 20 en total, han superado la enfermedad, recibiendo el alta en una media de 15 días después del comienzo del tratamiento. Como viene ocurriendo con frecuencia en esta pandemia, hay que recordar: no es un ensayo clínico. Es un número muy pequeño de pacientes y no hay grupo de control. No se sabe cómo habrían evolucionado los enfermos de no haber recibido esta medicación.

Pero la IL-6 no es ni mucho menos la única citoquina implicada en la tormenta. Otras como la familia de IL-1 (descubierta inicialmente como factor de la fiebre), los interferones (las municiones antivirales que posee nuestro cuerpo), el Factor de Necrosis Tumoral (TNF, otro factor que promueve la inflamación) y otros aparecen elevados en los casos de CRS, y en muchos de los pacientes más graves de covid. Contra estos mediadores y sus receptores se prueban distintas estrategias. Además de los anticuerpos monoclonales para neutralizarlos, se diseñan moléculas similares a sus receptores en las células que se mueven libremente por la sangre y los tejidos para capturarlos e impedir que lleguen al lugar donde deberían actuar.

Aquí no acaba el arsenal de herramientas contra las tormentas de citoquinas. Los investigadores buscan también el modo de evitar que la tormenta se produzca en primer lugar, bloqueando sus desencadenantes. Entre estos se encuentran las catecolaminas, una familia de neurotransmisores (hormonas del sistema nervioso) que incluyen la adrenalina y la dopamina. En este enfoque entraría también la cloroquina, el medicamento clásico contra la malaria del que tanto se ha hablado.

La cloroquina es capaz de bloquear la producción de IL-6 y TNF. Sin embargo, a pesar de la publicidad que ha recibido este fármaco y aunque se ha incluido en una batería de grandes ensayos clínicos patrocinados por la Organización Mundial de la Salud, el estudio inicial dirigido por un investigador francés que apoyaba su uso ha sido fuertemente criticado, y resultados posteriores no han confirmado las bondades de la cloroquina contra la covid; para algunos expertos, la cloroquina es un globo pinchado.

Por último, merece la pena mencionar el caso de la melatonina, una hormona producida por el cerebro que regula los ciclos de sueño y vigilia. La melatonina es también antiinflamatoria, y puede ser un modulador crítico del sistema inmune. Como ya he contado aquí, ciertos datos con animales indican que la melatonina puede modificar la potencia de la respuesta inmune hasta en un 40%, y podría estar implicada en la estacionalidad inmunitaria, es decir, cómo nuestro cuerpo responde a ciertas infecciones de distinto modo en diferentes épocas del año, lo que a su vez puede explicar en parte por qué cogemos la gripe en invierno y no en verano. La melatonina ha despertado bastante interés en la lucha contra la covid. Y aunque tampoco va a ser el medicamento milagroso que muchos esperan –pero que por desgracia difícilmente existirá–, actualmente se estudia si podría aportar algún beneficio a los pacientes de covid que sufren CRS.

En resumen, muchas vías abiertas, pero por el momento ninguna de ellas claramente la vía por la que apostar. Miles de investigadores en todo el planeta, sin apenas reconocimiento público, están trabajando contra reloj en un esfuerzo científico sin precedentes. Ellos son quienes sin duda nos sacarán de esto. Pero deberemos ser pacientes, porque aún queda mucha pandemia por delante.

En busca de medicamentos para salvar el cuerpo, no para eliminar el virus

«Los antivirales probablemente serán eficaces para la fracción de pacientes infectados que desarrollan casos leves de COVID-19 […] Pero para los pacientes que desarrollan enfermedad grave o crítica, y que requieren hospitalización y cuidados intensivos, la estrategia basada en antivirales no cuadra con lo que se necesita en la primera línea, donde médicos y pacientes pelean por la vida».

Son palabras de la inmunóloga del Instituto Salk (EEUU) Janelle Ayres en un artículo aparecido la semana pasada en la revista Science Advances, una de las opiniones más importantes que se han publicado hasta ahora sobre el tratamiento científico de la crisis del coronavirus SARS-CoV-2 de la COVID-19 (covid). No porque nadie haya dicho antes lo que Ayres dice en su artículo (recordatorio: atentos siempre al consenso científico, rechazar siempre a los iluminados que creen saber lo que nadie más sabe), sino porque resume a la perfección una eterna asignatura pendiente en la lucha contra las enfermedades infecciosas: centrarnos no tanto en combatir al patógeno, sino en salvar al organismo.

Imagen de pxfuel.

Imagen de pxfuel.

Un minúsculo resumen a modo de flashes: entre el siglo XIX y comienzos del XX se buscan compuestos antibacterianos para tratar las enfermedades infecciosas. Finalmente Fleming, Florey y Chain dan con la penicilina. Los antibióticos cambian el mundo, salvando a la humanidad de las enfermedades bacterianas. Pero los antibióticos, como su nombre indica, solo actúan contra seres vivos. Los virus no son seres vivos. Los antibióticos no sirven contra los virus. Más tarde comienzan a desarrollarse antivirales. Pero mientras que los antibióticos son (inicialmente) un regalo de la naturaleza y suelen funcionar contra un amplio espectro de bacterias, como un lanzallamas en una batalla, los antivirales son armas sofisticadas que debemos diseñar nosotros y que generalmente son de acción más restringida.

Sí, hay muchos antivirales. Algunos de los que ya existen podrían ser eficaces contra el virus de la covid. Es el caso del remdesivir, un fármaco creado contra el ébola y todavía en estudio experimental. Actúa saboteando el fotocopiado que hace el virus de su material genético para reproducirse. El remdesivir imita a una de las «letras» del ARN del virus, de modo que este la utiliza como si fuera la de verdad. Pero esta falsa pieza hace que la maquinaria se encasquille y no termine de producirse la nueva copia del virus; algo así como aquello que hacía el Sherlock Holmes de Guy Ritchie de meter un pintalabios en la cinta de balas de la ametralladora (ignoro si esto realmente sirve con las ametralladoras, pero sí con los virus).

El remdesivir es actualmente uno de los fármacos que suscitan más expectativas en la lucha contra la covid. Los primeros resultados en pacientes graves fueron alentadores y recientemente se ha filtrado que un ensayo clínico en Chicago parece arrojar un balance positivo, pero también hay datos contradictorios en China. Todo apunta a que en unos días, quizá esta misma semana, se publicarán nuevos resultados, y algún país como Japón parece dispuesto a aprobar rápidamente su uso contra la covid. Pero los expertos aún se muestran cautos y no se apuntan a la idea de que el remdesivir vaya a ser la panacea.

Mientras, otros muchos posibles antivirales están en pruebas, y también se están buscando y desarrollando nuevos compuestos aprovechando el conocimiento cada vez más preciso de los componentes moleculares del virus. Por ejemplo, se estudian inhibidores de algunas de las proteínas que el virus necesita para infectar y fabricar copias suyas a millones. También se busca bloquear la unión del virus al receptor celular que emplea para invadir. Algunos de estos compuestos son anticuerpos de diseño, parecidos a los que el organismo produce de forma natural. Una manera rudimentaria, pero históricamente eficaz en muchos casos como primera línea de lucha, es utilizar el plasma de personas que ya han pasado la enfermedad, ya que su sangre contiene anticuerpos.

Los antivirales sin duda llegarán. Pero los nuevos tardarán años, y los reposicionados (aquellos ya aprobados para otras indicaciones) probablemente tendrán una utilidad limitada. Los antivirales serán en general más beneficiosos en personas que solo desarrollen síntomas leves, o en aquellas de mayor riesgo pero en las que la medicación pueda administrarse en fases muy tempranas de la enfermedad.

Pero como vienen insistiendo numerosos científicos y ya he contado aquí, el menor de los problemas de una persona que está en la UCI, con sus pulmones prácticamente inservibles, fallos graves en otros órganos, quizá sepsis e infecciones bacterianas secundarias, es precisamente el virus. Este ya ha hecho el daño que podía hacer. En esos momentos lo necesario es conseguir que el cuerpo del enfermo pueda seguir funcionando sin apagarse para siempre, hasta que sus órganos comiencen a recuperarse. Como escribí aquí, si un intruso prende fuego a nuestra casa, nuestro objetivo principal es apagar el fuego, no echar al intruso.

Así, Ayres insiste en que deben buscarse fármacos que ayuden a que el organismo tolere la infección y siga funcionando, y que este ha sido un terreno olvidado en la lucha contra los patógenos. «No hay razones científicas ni de salud pública para que no hayamos desarrollado esas terapias», escribe. «En lugar de preguntarnos ¿cómo combatimos las infecciones?, podríamos comenzar a preguntarnos ¿cómo sobrevivimos a las infecciones?».

Al fin y al cabo, esto es lo que normalmente hacemos con otras infecciones virales que no amenazan nuestra vida: con resfriados o gripes no tomamos medicaciones contra el virus, que son escasas para algunos de ellos e inexistentes contra otros. Simplemente tomamos fármacos que nos ayudan a seguir funcionando de manera normal hasta que nuestro cuerpo se libra del virus por sí solo. La propuesta de Ayres consiste en extender este enfoque a virus que provocan síntomas más agresivos como el de la covid. Por ejemplo, buscar compuestos que ayuden a las células del epitelio alveolar y de los capilares pulmonares a seguir funcionando para evitar el fallo respiratorio.

La inmunóloga señala además otra ventaja de este enfoque: cada nuevo patógeno es un reto que comienza de cero, mientras que los fármacos destinados a tolerar una infección sin morir pueden servir del mismo modo para una amplia gama de virus. En lugar de nuestros anti-bióticos, serían nuestros pro-bióticos, si no fuera porque este término ya se lo apropiaron los fabricantes de yogures.

Ahora bien, pensarán ustedes que esta reflexión de Ayres está muy bien, pero que si nos lleva a alguna parte de cara al problema que tenemos ahora mismo. Y la respuesta es que podría ser, porque entre las terapias destinadas a salvar al paciente y no a eliminar el virus, están las dirigidas a paliar uno de los efectos típicos de las infecciones que también parece desempeñar un papel relevante en muchos casos de covid: el Síndrome de Liberación de Citoquinas (CRS, en inglés) o «tormenta de citoquinas», una reacción exagerada del propio sistema inmune que puede conducir a un Síndrome de Respuesta Inflamatoria Sistémica (SIRS) cuyas consecuencias a menudo son letales.

Como ya conté aquí, se ha comprobado que el CRS/SIRS está implicado en la patología de muchos casos de covid, aunque aún no se sabe en cuántos o en qué proporción. Pero dado que fue el factor principal de letalidad en los jóvenes y niños que sucumbían a la gripe de 1918, que opera también en otras muchas infecciones, y que incluso no es descartable que pudiera relacionarse con ciertos extraños casos muy extraños y esporádicos de covid en niños –esto aún es una mera conjetura–, parece que es una vía a tener en cuenta. Y la ventaja es que los moduladores inmunitarios que pueden mitigar el CRS/SIRS ya existen, ya están aprobados, y algunos de ellos se emplean con éxito en otros casos.

Por último, una aclaración. En algunos casos se está hablando del CRS/SIRS de la covid como un síndrome autoinmune, pero no es así; cuidado con la confusión. Se habla de una enfermedad autoinmune cuando el sistema inmunitario ataca componentes del propio organismo confundiéndolos con invasores extraños; por ejemplo, cuando el cuerpo produce anticuerpos contra una proteína propia que tiene una función fisiológica normal. Este no es el caso del que estamos hablando: no hay respuesta autoinmune, sino una reacción inmunitaria exagerada que promueve un estado de inflamación en todo el organismo, conduciéndolo al caos y a un mal funcionamiento general. Mañana repasaremos cuáles son las armas que se están probando para atajar esta autoagresión del organismo provocada por el virus de la covid.

Cuando no es el coronavirus el que mata, sino el propio sistema inmune

La inmunología, mi cuna científica, es a los virus y otros patógenos lo que los polis a los cacos, el lado luminoso al lado oscuro de la Fuerza o los expertos en ciberseguridad a los hackers. Pero igual que existen polis corruptos, un Anakin que se convierte en Darth Vader o, imagino, algún blindador de sistemas que roba el banco que ha blindado, el sistema inmune también puede pervertirse.

Un ejemplo muy cotidiano es la alergia, cuando el cuerpo monta una respuesta inmunitaria absurda, innecesaria y hasta muy dañina contra algo tan peligroso como, por ejemplo, un cacahuete. Otro ejemplo son las enfermedades autoinmunes, como la esclerosis múltiple, la artritis reumatoide o el lupus. En este caso, el sistema inmune pierde una de sus capacidades básicas, la de discriminar entre lo propio y lo no propio, y ataca a ciertos componentes del organismo como si fueran invasores extraños.

Pero estos no son los únicos casos.

Remontémonos a 1918. Como es bien sabido, aquel año y el siguiente se extendió por el mundo la pandemia de lo que entonces se llamó, y ha perdurado tristemente, como gripe española (nunca lo fue; recibió ese nombre porque las noticias sobre contagios y muertes se publicaban libremente en España, país neutral en la Primera Guerra Mundial, mientras que el resto de Europa y EEUU estaban sometidos a la censura de prensa de la guerra). Aquella fue una pesadilla que hoy no podemos ni imaginar, ya que la enfermedad se cebaba con los niños y los jóvenes sanos, mientras que los ancianos la pasaban como una gripe leve. La pandemia dejó entre 40 y 100 millones de muertos, más que la guerra.

Aquella tragedia de la enfermedad que se llevaba a los más jóvenes no solo causó un inmenso dolor, sino también un total desconcierto entre los científicos: ¿cómo era posible que los más fuertes y sanos sucumbieran con más facilidad?

Sin relación alguna con lo anterior, en los años 90 los científicos empezaron a conocer con más detalle un problema que llevaba años discutiéndose, el mecanismo por el cual los trasplantes de médula ósea fallaban no porque el enfermo rechazara el trasplante, sino al contrario, porque el trasplante rechazaba al enfermo; el tejido trasplantado producía células inmunitarias que atacaban al huésped, dañando sus órganos.

Este efecto se producía por una sobreactivación de ese sistema inmune importado a través de la producción descontrolada de ciertas moléculas promotoras de activación e inflamación llamadas citoquinas. A este fenómeno se le llamó tormenta de citoquinas, dicen que en referencia a la operación Tormenta del Desierto de EEUU contra Irak. Más propiamente, su nombre es Síndrome de Liberación de Citoquinas (CRS, en inglés).

En esencia, el CRS es como esas subidas de la tensión eléctrica que funden los aparatos. La electricidad es necesaria para que funcionen, pero si de repente llega demasiada, los cacharros conectados a la red eléctrica pueden acabar fritos. Del mismo modo, un sistema inmune excesivamente activado puede dañar nuestros órganos y matarnos.

A comienzos de los años 2000, empezó a identificarse el fenómeno de la tormenta de citoquinas con las complicaciones graves e incluso mortales de ciertas infecciones, como la aparición de encefalopatías en enfermos de gripe, que causaba la muerte de un centenar de niños cada invierno en Japón (fue allí donde primero se describió). Pronto se descubrió que el CRS estaba detrás de otras enfermedades infecciosas como la viruela o la gripe H5N1. Pero también permitió explicar lo observado con otros patógenos como la malaria o… la gripe de 1918.

De este modo, por fin se logró explicar la alta letalidad de aquella gran pandemia en personas jóvenes y sanas: eran sus fuertes sistemas inmunitarios, y no directamente el virus, lo que las mataba, mientras que el CRS no aparecía en las personas ancianas con sus defensas debilitadas.

Sin embargo, aún es mucho lo que no se conoce sobre la tormenta de citoquinas. ¿Por qué en igualdad de condiciones de edad, salud y otros factores, algunas personas envían a su cuerpo esas letales subidas de tensión inmunitaria, mientras que otras no lo hacen?

Imagen al microscopio eléctronico de barrido y coloreada de un macrófago. Imagen de NIAID / Flickr / CC.

Imagen al microscopio eléctronico de barrido y coloreada de un macrófago. Imagen de NIAID / Flickr / CC.

Así llegamos a 2020, el año de la pandemia del coronavirus SARS-CoV-2 de la COVID-19. Y de nuevo nos encontramos con que el CRS vuelve a cobrar protagonismo. Desde los primeros tiempos de la epidemia se ha observado un dato extraño. Aquellas personas con un sistema inmune más debil, como las que tienen inmunodeficiencias congénitas, VIH o ciertos cánceres de la sangre, o las sometidas a quimioterapia por cáncer o que toman medicación inmunosupresora por un trasplante, son siempre más susceptibles a infecciones, y por lo tanto deberían ser presa fácil del coronavirus.

Y sin embargo, estudios tanto en China como en Italia mostraban que las personas inmunodeprimidas no sufrían efectos más graves por el coronavirus, sino más bien lo contrario. «No se informó de ninguna muerte en pacientes de trasplantes, quimioterapia o tratamientos inmunosupresores en ningún grupo de edad», escribía el autor de un estudio en Lombardía.

Y por el contrario, en un gran número de pacientes graves, muchos de los cuales mueren, se han descubierto niveles de citoquinas y otros indicadores que revelan cuál es la causa directa de su grave enfermedad: no es el virus, sino la respuesta desaforada de su sistema inmune; la tormenta de citoquinas. Es decir, que un sistema inmune debilitado parece proteger de la COVID-19, mientras que una respuesta más fuerte conlleva un riesgo mayor.

Aún es pronto para afirmar que el CRS sea la causa principal o única de muerte por coronavirus, y todavía no parece haber datos confirmados fiables sobre el porcentaje de los fallecimientos por esta causa. Los enfermos suelen sufrir también infecciones bacterianas secundarias que afectan gravemente a sus pulmones. Muchas de estas bacterias son hoy más fuertes que nunca, ya que han desarrollado resistencia a muchos de los antibióticos conocidos. Estas bacterias multirresistentes suelen atrincherarse en entornos como los hospitales, y de hecho algunos expertos ya han advertido de que el abundante uso actual de antibióticos en los enfermos de COVID-19 afectados por infecciones secundarias no hará sino agravar el problema de que nos estamos quedando sin armas contra las bacterias.

Pero cuando los pulmones de muchos de los afectados por COVID-19 se van llenando con una especie de masa que poco a poco los va bloqueando, impidiendo la respiración y por tanto la oxigenación de la sangre, y que finalmente les causa la muerte, ese fenómeno está causado por los macrófagos, un tipo de células del sistema inmune que han proliferado y han acudido en avalancha a los pulmones por las órdenes que reciben de la tormenta de citoquinas.

Ahora bien: si muchos enfermos de COVID-19 no mueren directamente a causa del coronavirus, sino de su propia respuesta inmune descontrolada, ¿por qué son sobre todo los ancianos los que mueren, y no los jóvenes como en la gripe del 18? Aún no hay respuesta para esto. Se han apuntado posibles hipótesis, como que la inmunidad provocada por este virus afecte más a las personas mayores con un sistema inmune más entrenado en la respuesta a infecciones, mientras que el de los niños es aún demasiado inmaduro para responder fuertemente. Un estudio en China encontró que el 30% de las personas testadas que habrían sufrido enfermedad leve de coronavirus, sobre todo los menores de 40 años, no parecían tener anticuerpos contra el virus en la sangre. Aunque esto no descarta la respuesta de estas personas por otros mecanismos inmunitarios alternativos, el extraño dato sugiere que la inmunidad disparada por este virus es compleja.

Todo lo anterior lleva a dos conclusiones. Primera: a pesar de que las esperanzas a corto plazo del público en general parecen depositadas en los antivirales, la utilidad de estas armas siempre será limitada; salvo enormes sorpresas, los científicos piensan que esta no va a ser la solución que salve de la muerte a los ya muy enfermos. Imaginemos que un intruso invade nuestra casa. Cuando nos enteramos, nuestro interés es expulsar al intruso. Pero si este prende fuego a la casa, nuestro objetivo cambia: ya no es expulsar al intruso, sino apagar el fuego, porque de lo contrario nos quedaremos sin casa, con o sin intruso. Los antivirales, si se encuentran, servirán a las personas con síntomas leves, pero no van a salvar a los enfermos que ya están en estado crítico.

La segunda conclusión es que la salvación de estos enfermos podría estar en deprimir el sistema inmune, atajando la perniciosa tormenta de citoquinas y manteniendo los pulmones operativos y el organismo estable hasta que su cuerpo se libre del virus. Y en efecto, este es uno de los enfoques que actualmente se están probando en la lucha contra la pandemia, y que entronca con lo que esta semana explicaba en la revista Science la inmunóloga Janelle Ayres, del Instituto Salk de EEUU, en el que es quizá el artículo más importante que hasta ahora se ha escrito sobre el coronavirus: la investigación terapéutica contra estos patógenos debería cambiar de enfoque, abandonar la lucha contra el virus y centrarse en la salvación del organismo para tolerar la enfermedad hasta que esta remita.

Pero como veremos mañana, esto no es tan sencillo, puesto que la frontera entre dejar al cuerpo con defensas reducidas para contener la tormenta y dejar al cuerpo sin defensas con las que luchar contra las infecciones es una línea muy tenue que no conviene traspasar.

Si la epidemia baja en verano, es posible que no sea por el virus, sino por nosotros

Decíamos ayer que, durante décadas, los virólogos han buscado la respuesta a la estacionalidad de ciertas enfermedades en cómo se comportan esos virus en invierno y en verano, en distintas condiciones de temperatura y humedad. Y que si bien esto sin duda influye en buena medida, no parece que la respuesta esté exclusivamente ahí. Y que quizá deberíamos fijarnos en el otro término de la ecuación de toda infección: nosotros. ¿Somos distintos en verano y en invierno?

Sí, esto ya lo podemos imaginar, podría pensarse. Incluso en los anuncios de televisión hemos escuchado que nuestro sistema inmune se debilita con el frío. Y también que ciertos productos nos ayudan a reforzarlo. Claro que, cuando quien nos lo cuenta es quien quiere vendernos esos productos, como mínimo deberíamos desconfiar. Y cuando estas proclamas se llevan al estudio científico, la conclusión suele ser que no existen pruebas suficientes para sostenerlas.

Claro que parecería lógico pensar que el frío nos debilitara y nos hiciera más propensos a sufrir infecciones. En un estudio curioso, dos investigadores dividieron a 180 voluntarios en dos grupos, y a uno de ellos les hizo meter los pies en agua fría durante 20 minutos; los resfriados posteriores fueron casi el triple de frecuentes que en el grupo de control. El «vas a coger frío» que decíamos ayer.

Pero esto no es necesariamente así: en realidad, aunque a simple vista pudiera parecer comprensible que el frío nos debilite el sistema inmunitario, desde un punto de vista biológico no tiene mucho sentido. El frío intenso es una agresión al organismo, lo que se denomina un factor de estrés. Y precisamente lo que suelen hacer los factores de estrés es justo lo contrario, preparar a nuestro cuerpo para responder más eficazmente con diferentes respuestas; entre ellas, estimular el sistema inmune.

Esto se revelaba en un estudio en el que un grupo de investigadores fue sometiendo a un grupo de sufridos voluntarios a inmersiones repetidas y periódicas en agua fría, para ir midiendo la evolución de algunos de sus parámetros inmunitarios. El efecto de una sola inmersión fue mínimo. Pero según se iban repitiendo, los científicos descubrieron que los sujetos fueron aumentando sus niveles de monocitos, linfocitos T y B, interleukina-6 (IL-6) y otros indicadores de respuesta inmune, sin un aumento de anticuerpos, los proyectiles teledirigidos del organismo contra los invasores. Es decir, que el frío estaba armando al cuerpo para responder mejor en caso de infección.

Extrayendo una muestra para una prueba de coronavirus. Imagen de Diario de Madrid / Wikipedia.

Extrayendo una muestra para una prueba de coronavirus. Imagen de Diario de Madrid / Wikipedia.

Claro que esto debería llevarnos a pensar que en invierno estaríamos precisamente más preparados para combatir una gripe o incluso un coronavirus. Lo cual no cuadra con el hecho de que la gripe nos ataque precisamente en invierno. Pero una vez más, sería solo quedarnos con una pequeñísima parte del dibujo total, como fijarnos solo en una de las figuras del Jardín de las Delicias de el Bosco e ignorar el resto. Porque en el caso del comportamiento de la respuesta inmune a lo largo del año y de las estaciones, sin duda estamos ante una enorme y complicada pintura que aún no podemos ver ni entender en su totalidad.

Para ilustrarlo, baste este dato: la ecóloga de las enfermedades infecciosas Micaela Martínez, de la Universidad de Columbia, ha estudiado las variaciones estacionales de numerosos contagios y ha llegado a la conclusión de que todas las enfermedades infecciosas, hasta un total de 68, tienden a subir y bajar en ciertas épocas concretas del año. Pero no hay un patrón común: la gripe ataca en invierno, pero las paperas, la rubeola o el sarampión lo hacen en primavera, la hepatitis A en verano, la polio entre verano y otoño… Así pues, en lo que respecta al sistema inmune, parece que la cosa es mucho más compleja que una simple «subida o bajada» de las defensas en ciertas épocas del año.

Y dado que los factores inherentes a los distintos patógenos (salvo algunos muy claros, como por ejemplo, en el caso de las enfermedades transmitidas por mosquitos u otros artrópodos) no parecen suficientes para explicar esta estacionalidad de los contagios, Martínez se ha embarcado en un ambicioso proyecto que puede llevarla al Nobel o a ninguna parte: estudiar las variaciones estacionales del sistema inmune y sus factores desencadenantes; en otras palabras, descifrar el calendario de nuestras defensas y por qué existe este calendario.

He aquí el motivo de lo arriesgado del proyecto: todo científico necesita dar a sus becarios un tema de trabajo que pueda garantizar la conclusión de una tesis doctoral en cuatro años. Martínez selecciona grupos de voluntarios, les extrae sangre y otras muestras corporales en distintas estaciones durante varios años, y confía en encontrar huellas celulares y moleculares de un comportamiento estacional de nuestro reloj interno que justifique variaciones inmunitarias a lo largo del año, descontando el posible efecto de otras infinitas variables experimentalmente incontrolables. Para ello, mide todo lo que puede medirse: metabolitos, citoquinas (moléculas reguladoras de la respuesta inmune), niveles de distintos tipos de células inmunitarias, comunidades microbianas… Pero la probabilidad de no encontrar nada relevante o coherente es muy alta, y este es uno de los motivos por los que hasta ahora este ha sido un terreno científicamente inexplorado.

Como en todos los campos que investigan los ritmos biológicos, las hormonas son un objetivo especial a tener en cuenta. La melatonina, una hormona que secretamos por la noche, es uno de los reguladores más potentes de nuestro reloj interno. Y en invierno, cuando las noches son más largas, fabricamos más cantidad. Como contaba un reciente reportaje en Science, se ha visto en animales que la manipulación de los niveles de melatonina puede cambiar hasta en un 40% la respuesta inmune. Se ha relacionado esta variación con el hecho de que la respuesta del organismo no sea la misma si nos ponen una vacuna por la mañana o por la tarde, y se ha comprobado también que la mayor o menor activación de ciertos genes relacionados con el sistema inmune a lo largo del año tiene patrones invertidos en el hemisferio norte y en el sur.

En resumen, el limitado conocimiento de estas variaciones inmunológicas estacionales aún no pude decirnos nada respecto a cómo se comportará nuestro organismo en diferentes épocas del año frente al coronavirus SARS-CoV-2 de la COVID-19, y por lo tanto si nuestro propio sistema inmune podrá ayudarnos a que el azote de la pandemia descienda en verano. Pero claramente y según la ciencia vaya haciendo la luz en esta caverna casi inexplorada, será un factor que podremos aprovechar.

Por ejemplo, pensemos en el crucero Diamond Princess que estuvo en cuarentena en Japón por el brote del nuevo coronavirus. Este caso ha servido como un infortunado experimento natural que ya ha ofrecido a los científicos innumerables datos para ayudar a entender el comportamiento de la epidemia (y que reveló una de sus claves más importantes, la alta proporción de contagiados asintomáticos). Sin embargo, hay algo de aquel caso que aún no se ha estudiado con detalle: en un crucero se reúnen personas procedentes de todo el mundo. Algunas de ellas vienen con su sistema inmune en «modo invierno» y otras con el «modo verano». ¿Afectó el virus de diferente manera a unos y a otros?

Todo lo anterior podría parecer demasiado incierto y abstracto como para resultar de utilidad en estos momentos. Pero en realidad, este conocimiento podría resultar crucial para salvar vidas ahora. Porque según van conociéndose con mayor detalle el virus de la COVID-19, sus efectos y su comportamiento, hay algo esencial que se va revelando, y es que, como ocurre también con otras infecciones víricas, en realidad puede que en muchos casos no sea el virus el que mata, sino la respuesta inmune desbocada que provoca en el organismo. Y por lo tanto, saber controlar estas moléculas reguladoras de la inmunidad, como la IL-6 o la melatonina, podría ser la clave para curar la enfermedad. Como contaremos el próximo día.

Por qué hay motivos para el optimismo si en España ya hay un 15% de población contagiada de COVID-19

(Hay una actualización de lo contado en este artículo con datos de noviembre de 2020 aquí).

Allá por los años 90, cuando hacía mi tesis en inmunología, tuvimos de sabático en el laboratorio a uno de los inmunólogos más reputados del mundo, el profesor Melvin Cohn, del Instituto Salk. Si me propusiera aquí repasar sus méritos científicos, esta página no daría para otra cosa. Sin duda le debo un obituario en condiciones, ya que falleció hace solo año y medio a la edad de 96. Hoy me quedo con esto: era, además, una persona maravillosa; durante esos meses en que disfrutamos de su presencia, de su buen humor y de sus enseñanzas, Mel se convirtió en el abuelo de todos los becarios. Y a efectos de lo que vengo a contar, de él aprendí una de las lecciones fundamentales de la ciencia.

En uno de los seminarios informales que nos impartía una vez por semana, nos contó que un periodista, quizá de la Agencia Efe, aunque esto no lo recuerdo bien, le visitó para entrevistarle en el lugar donde se alojaba: no un hotel de cinco estrellas, sino la austera Residencia de Estudiantes del CSIC. Después de posar para varias fotografías tratando de satisfacer sin rechistar la petición del fotógrafo –“haga como que piensa”–, el periodista le hizo su batería de preguntas. Por entonces el sida estaba en plena efervescencia, y una de las preguntas fue: “¿Cuándo tendremos la vacuna y la cura del sida?”.

“No lo sé”, respondió Mel. Y calló.

Estupefacto, el periodista esperó unos segundos. Pero al ver que el entrevistado no tenía la menor intención de ampliar su respuesta, insistió: “Pero ¿cómo es posible? ¿Uno de los mejores inmunólogos del mundo no puede decir cuándo tendremos la vacuna del sida?”.

La aclaración de Mel fue más o menos así: “No lo sé, porque soy un científico. Si yo fuera un político o un sacerdote, seguro que podría darle a usted una respuesta. Pero un científico solo puede decir lo que la ciencia sabe, y la ciencia no sabe eso que usted me pregunta”.

Esta sabia enseñanza de Mel cobra una especial relevancia en estos días, cuando una gran proporción de los ciudadanos de España y probablemente del mundo entero han añadido a su currículum el título de doctor en epidemiología por la Universidad de Twitter. Hoy los únicos que continúan diciendo “no lo sé” son los científicos. Cuando recientemente a Fernando Simón se le preguntaba por qué en apariencia la letalidad del coronavirus era mucho mayor en España que en Alemania, quienes todo lo que recuerdan de ciencias es que les coincidía a la misma hora del entrenamiento hicieron burla y escarnio de un científico que se comportaba como un científico, confesando no saber lo que, simplemente, nadie sabía.

Imagen al microscopio electrónico de transmisión del coronavirus SARS-CoV-2, causante de la COVID-19. Imagen de NIAID/RML.

Imagen al microscopio electrónico de transmisión del coronavirus SARS-CoV-2, causante de la COVID-19. Imagen de NIAID/RML.

Pero naturalmente, el hecho de que en aquel momento Simón no pudiera dar públicamente una respuesta científicamente sustanciada no significa que no hubiese una hipótesis preferente. En concreto, había dos, pero quedémonos con una: en Alemania la contabilización de casos registrados de COVID-19 estaba mucho más cerca del número de contagios reales que aquí, por lo que su letalidad reportada era más próxima a la Infection Fatality Ratio (IFR, fallecimientos entre los contagiados), mientras que en España la tasa aparente de letalidad estaba más cerca de la Case Fatality Ratio (CFR, fallecimientos entre los enfermos), que es lógicamente mucho mayor.

Posteriormente, nuevos indicios han venido a apoyar esta hipótesis. Y hace un par de días, los epidemiólogos del equipo de respuesta a la COVID-19 del Imperial College de Londres (ICL) han puesto cifras concretas: se estima que en Alemania hay unas 600.000 personas contagiadas, el 0,7% de la población, mientras que en España alcanzan los 7 millones, el 15% de la población.

Nuevamente, quienes cada día desayunan cadáveres para alimentar su sectarismo, ya sea de un lado, contra el gobierno central, o del otro, contra el autonómico de Madrid, han utilizado estos datos para cacarear sobre la desastrosa gestión de la trinchera opuesta que ha llevado al contagio del 15% de la población. Demostrando así que no han entendido nada. Paso a explicarlo.

Desde hace meses, los epidemiólogos se han preocupado de intentar explicar cuál es la utilidad de las medidas de confinamiento: el ya famosísimo “aplanar la curva”. Pero también han explicado que aplanar la curva significa repartir los contagios a lo largo del tiempo para que los sistemas de salud no se colapsen y puedan responder y atender adecuadamente a los enfermos de modo que se minimice el número de muertes. Y como bottom line, han insistido en algo que debemos entender, y es que a esta fuerza de la naturaleza que es el SARS-CoV-2 solo hay una cosa en el mundo que pueda pararla:

La inmunidad.

Y solo hay dos cosas que pueden proporcionar esta inmunidad: la infección o una vacuna. Dado que esta última aún parece estar muy lejana, lo único en lo que ahora puede confiarse a plazo más corto es en la inmunidad grupal, es decir, que la infección quede contenida cuando se haya contagiado una proporción suficiente de la población para extinguir la mayoría de las cadenas de contagios, reduciendo la tasa de reproducción del virus por debajo de 1.

Sobre cuál es esta proporción de población contagiada que puede apagar la epidemia, aún no parece haber acuerdo. Los epidemiólogos del ICL han estimado que en ausencia de intervenciones el virus habría infectado al 90% de la población mundial, 7.000 millones de personas. Este cálculo es mucho más alto que el de otros expertos como Marc Lipsitch de Harvard, que situó la cifra límite en el 60%. Curiosamente en el barco Diamond Princess, que sirvió como experimento natural de la epidemia, solo se infectó en torno a un 20% de los pasajeros, lo cual es sorprendentemente bajo, aunque sería necesario saber si todos ellos compartían los mismos espacios y estuvieron de igual modo expuestos al virus.

Pero resumiendo, lo que nos dicen los expertos es esto: hagamos lo que hagamos, incluso con las medidas más restrictivas, y mientras no dispongamos de una vacuna que fuerce la inmunización, el virus continuará avanzando hasta llegar a su máximo natural de contagios. Es por ello que debemos entender que esto no va a arreglarse con dos o tres meses de confinamiento. Este gráfico del ICL dibuja el futuro que nos espera en el próximo año y medio:

Gráfico del ICL de las oleadas previstas de casos de UCI de la COVID-19 con ciclos de intervenciones.

Gráfico del ICL de las oleadas previstas de casos de UCI de la COVID-19 con ciclos de intervenciones.

La línea naranja representa la evolución de las sucesivas oleadas de los casos más graves de COVID-19 a lo largo del tiempo hasta el final de 2021, suponiendo ciclos de on-off de las medidas de distanciamiento social y cierre de colegios y universidades (rectángulos azules). El gráfico supone que en todo momento se aplican el aislamiento de los casos positivos y la cuarentena de los contactos. Es decir: cuando las medidas logren reducir el número de casos por debajo de un límite, se abrirán las restricciones, que deberán imponerse de nuevo cuando los casos vuelvan a superar un umbral. Y así, una y otra vez, hasta que tengamos una vacuna, o hasta que alcancemos una inmunidad grupal duradera.

Por lo tanto, y sin contar a corto plazo ni con la vacuna ni con un tratamiento específico eficaz, puede entenderse que el país con más éxito contra la epidemia será aquel que consiga llegar antes gradualmente a la inmunidad grupal sin que sus sistemas de salud se saturen de modo que pueda reducirse todo lo posible el número de muertes. ¿Y cuál es el país que ahora está más cerca de la inmunidad grupal?

España, con un 15% de población contagiada, seguida de Italia, con un 9,8%.

(Actualización del 2 de abril: añado aquí la tabla de la estimación de contagios por países publicada por el ICL porque creo que es de interés. Debe quedar claro que es una estimación de los modelos matemáticos epidemiológicos; la realidad no se sabrá mientras no se apliquen test serológicos masivos, los de anticuerpos, no los actuales de detección genética del virus por PCR).

Con todo, sigue siendo cierto que España tiene una letalidad ligeramente mayor que Alemania: según los datos del ICL, aquí estaríamos en el 0,07%, frente a un 0,05% en Alemania (la cifra real será algo mayor en ambos países si se aplica el efecto retraso). Parece evidente que el alto número de casos ya ha forzado nuestro sistema de salud más allá del límite. Pero sin olvidar que cada muerte es una tragedia, deberíamos tener motivos para la esperanza.

Por un lado, si las cifras del ICL son correctas (lo sabremos cuando lleguen los test serológicos de anticuerpos), el virus es en realidad mucho menos letal (como ya conté aquí) de lo que el alarmismo apocalíptico ha tratado de transmitir: la IFR estaría en torno al 0,1%, similar a la gripe estacional; puede ser que añadiendo el efecto retraso sea quizá el doble o algo más, pero ni de lejos treinta o cuarenta veces más como se ha dicho, pese a que la expansión explosiva de la pandemia esté concentrando una alta mortalidad en un plazo muy corto.

Por otro, porque quizá aquí hayamos recorrido ya un mayor trecho del camino que todos los países deberán recorrer más tarde o más temprano. En el mejor de los escenarios, han dicho los epidemiólogos del ICL, este virus va a costar 20 millones de vidas, y es algo que debemos asumir. Pero también según estos expertos, las medidas adoptadas están salvando más vidas de las que se pierden: frente a 28.000 muertes en 11 países europeos, hay 59.000 más que se han evitado, 16.000 de ellas en España. Y esto es gracias al esfuerzo de todos, descontada la toxicidad de quienes no solamente no saben, que en eso estamos todos, unos más que otros, sino que además ni siquiera saben que no saben.

No, Pfizer no ha ocultado al mundo un fármaco que cura o previene el alzhéimer (I)

Si todo lo que se está publicando y tuiteando hoy fuera cierto, sería un día histórico para la humanidad: este 6 de junio de 2019 tendríamos por fin un fármaco para curar y prevenir el alzhéimer. Es decir, que una vez desaparecido todo el revuelo de los juicios de valor sobre las prácticas empresariales de Pfizer, lo que quedaría de todo ello sería una noticia de inmensa trascendencia: la cura del alzhéimer.

Solo que no es cierto. Pfizer no tiene un fármaco que cura el alzhéimer. Pfizer no tiene un fármaco que previene el alzhéimer. Pfizer no ha ocultado al mundo que tiene un fármaco que cura ni previene el alzhéimer; en primer lugar, porque no lo tiene, y en segundo lugar, porque no hay nada oculto: este fármaco es de sobra conocido desde hace años por la comunidad científica, que ya ha estado valorando su potencial contra el alzhéimer sin necesidad de que Pfizer revele o deje de revelar nada.

Imagen de Pixabay.

Imagen de Pixabay.

Por lo tanto, hoy no es día de buenas noticias, sino de malas. La primera mala noticia es que la cura del alzhéimer sigue sin existir; si es que puede llamarse noticia a algo que continúa no siendo, tal como no lo era ayer. Lo que sí es seguro una mala noticia es que lo ocurrido hoy es un triunfo más de la desinformación y la demagogia.

Esta es la desinformación y demagogia que circula: Pfizer creó un fármaco del que sabe que cura o previene el alzhéimer, y lo enterró para que nadie lo utilizara porque le resulta más rentable que la gente siga enferma.

Y esta es la información: existe un fármaco creado por investigadores básicos, ampliamente conocido y que se emplea en el tratamiento de la artritis reumatoide. Desde hace años, la comunidad científica piensa que los fármacos de este tipo quizá podrían aportar algún beneficio contra el alzhéimer. De hecho, se han hecho diversos estudios sobre ello, sin que aún exista una pista clara sobre su posible utilidad. Con el tiempo, han surgido otros fármacos biosimilares (casi idénticos, con el mismo efecto). Pfizer, que vende el fármaco original, se planteó si emprender un ensayo clínico a gran escala. Decidió no hacerlo. Con independencia de las explicaciones que Pfizer pueda ofrecer o haya ofrecido al respecto, existen razones perfectamente comprensibles para que una compañía decida no abordar un enorme gasto de resultados inciertos sobre un fármaco cuyas patentes están expirando, que otras entidades pueden ensayar libremente y del que además ya existen otros clones sometidos a investigaciones y a disposición de la comunidad científica.

Y ahora, la versión larga, por si a alguien le interesa conocer la verdad entre tanto espumarajo.

En 1991, el equipo dirigido por Bruce Beutler en el University of Texas Southwestern Medical Center publicó la creación de una proteína quimérica (formada por la unión de trozos de otras) compuesta por el receptor del factor de necrosis tumoral alfa (TNF-α) y un fragmento de anticuerpo.

Estructura del etanercept. Imagen de NEUROtiker / Wikipedia.

Estructura del etanercept. Imagen de NEUROtiker / Wikipedia.

El TNF-α es una molécula producida por el organismo que promueve los procesos inflamatorios. La proteína quimérica tenía por objeto inhibir la acción del TNF-α in vivo, uniéndose a este y secuestrándolo para neutralizar su función. Dado que ciertas enfermedades como las autoinmunes producen sus síntomas a través de una activación incorrecta del sistema inmunitario, en la que el TNF-α desempeña un papel relevante, la idea de Beutler y sus colegas era que la molécula por ellos diseñada podía sumarse a otras opciones disponibles en el tratamiento de dichas dolencias. Los experimentos mostraron que la proteína bloqueaba eficazmente la acción del TNF-α.

Los investigadores patentaron su molécula y vendieron los derechos a la compañía biotecnológica Immunex, que en 1998 desarrolló el producto para el tratamiento de la artritis reumatoide. Su nombre es etanercept, y su marca comercial Enbrel. En 2002 Immunex fue absorbida por Amgen, que actualmente vende el etanercept en EEUU. En el resto del mundo (excepto Japón) la comercialización del fármaco corría a cargo de Wyeth, que en 2009 fue adquirida por Pfizer.

Desde entonces, el etanercept se ha venido utilizando para el tratamiento de la artritis reumatoide y otras enfermedades autoinmunes, no sin problemas: tanto este fármaco como otros similares son, por su propia definición, inmunosupresores, lo que ha llevado a que ciertos pacientes contraigan infecciones graves e incluso mortales.

Por otra parte, entra el alzhéimer, una enfermedad para la que no existe cura ni prevención y cuya causa primaria aún se ignora. Desde hace años se sabe que el cuadro inflamatorio forma parte del conjunto de síntomas del alzhéimer, pero sin que aún se conozca qué relevancia tiene este proceso en el desarrollo de la enfermedad. La posibilidad de que la inflamación pudiera ser un factor primario es solo una de las hipótesis que circulan en torno a la patología del alzhéimer, pero los investigadores consideran la posibilidad de que el tratamiento del cuadro inflamatorio pueda ayudar a paliar los síntomas o frenar su progresión.

Por ello, desde hace años los investigadores han comenzado a ensayar la posible acción de varios fármacos antiinflamatorios contra el alzhéimer, comenzando por los modelos animales. Uno de estos fármacos es el etanercept. La patente del fármaco expiró en Europa en 2015, mientras que en EEUU aún estará vigente hasta 2028 porque Amgen consiguió una extensión. En la práctica, esto implica que cualquier compañía puede producir etanercept fuera de EEUU. Incluso en aquel país, cualquier compañía puede producir otros inhibidores biosimilares, aunque probablemente (como de hecho ha ocurrido) se enfrente a demandas por parte de Amgen.

Lo que debe quedar claro con esto es que el etanercept, ni jamás ha sido secreto, ni jamás ha sido único, ni pertenece ya siquiera a Pfizer. Está publicado desde 1991, pertenece ya al dominio público (excepto en EEUU) y existen numerosas alternativas, desde los más generales antiinflamatorios no esteroideos hasta los más específicos inhibidores de TNF-α y, dentro de estos, los biosimilares; actualmente existe casi una veintena de fármacos biosimilares al etanercept en distintas fases de desarrollo y comercialización.

Y como es obvio, siendo un fármaco común –de hecho uno de los antiinflamatorios más vendidos del mundo–, tampoco ha estado guardado en un armario o en una caja fuerte. Mañana continuaremos contando qué dicen los ensayos emprendidos hasta ahora con este fármaco contra el alzhéimer, qué es lo que Pfizer sabía y no dijo, qué relevancia real tenía esto, y cómo un dato no científico en un Power Point que llega a manos de un periodista puede pintarse de amarillo para convertirse en una de las fake news más sonadas del momento.

¿Y si el virus de Lloviu no mató a los murciélagos?

En mi entrada anterior resumí la historia del virus de Lloviu, ese pariente próximo del ébola que se describió en 2011 en cadáveres de murciélagos de una cueva asturiana, aunque aún no se conoce dónde pudo originarse –tal vez en Francia, han propuesto los científicos–. Como ya conté, ocho años después aún son muchas las preguntas pendientes sobre este virus; la de interés más general, si supone una amenaza para nosotros.

Pero antes de continuar, uno debe reconocer sus propios errores u omisiones. En mis artículos anteriores sobre el virus he mencionado a Anabel Negredo y Antonio Tenorio, investigadores del Centro Nacional de Microbiología del Instituto de Salud Carlos III (CNM-ISCIII) que han llevado gran parte del protagonismo en la detección del virus. Pero pasé por alto otra referencia esencial de esta historia, o más bien su raíz: el proyecto VIROBAT.

O, mejor dicho, proyectos, ya que son cuatro los que hasta ahora se han encadenado desde 2007 bajo la dirección del virólogo Juan Emilio Echevarría, responsable del Laboratorio de Rabia del CNM-ISCIII. VIROBAT es un programa multidisciplinar de identificación de virus en murciélagos ibéricos que ha implicado a diversos laboratorios en sus distintas líneas. El propio laboratorio de Echevarría identificó en 2013 el lyssavirus de Lleida, una variante de la rabia, mientras que la línea que llevó a la detección del lloviu gracias a las muestras de VIROBAT fue desarrollada en el Laboratorio de Arbovirus y Enfermedades Víricas Importadas del CNM-ISCIII, dirigido entonces por Tenorio y posteriormente por Mari Paz Sánchez-Seco. No solo debemos reconocer públicamente el trabajo científico que se hace en este país, sino también los nombres de quienes lo hacen posible.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

El penúltimo trabajo sobre el lloviu hasta la fecha nos llega también del ISCIII, en colaboración con los investigadores estadounidenses que participaron en la identificación inicial del virus. Y sus conclusiones son interesantes, aunque aún continúan dejando preguntas en el aire que deberán esperar a nuevos estudios.

Como expliqué anteriormente, varios de los filovirus –la familia del ébola y el lloviu– que son letales para los humanos se han encontrado en murciélagos vivos y sin síntomas de enfermedad, lo que ha permitido despejar una incógnita clave sobre estos virus: su reservorio, o los animales que mantienen los virus en circulación y de los que ocasionalmente surgen los brotes que afectan a nuestra especie.

En cambio, el lloviu se encontró en murciélagos muertos. Lo cual no implica necesariamente que el virus matara a estos animales, algo de lo que no existen pruebas. Pero si fuera así y el lloviu fuese letal para los murciélagos, este virus se convertiría en una rareza dentro de su familia, y su reservorio debería buscarse entonces en otras especies, tal vez insectos o garrapatas. Aclarar estas dudas seguiría sin aportar nada sobre los posibles efectos del lloviu en los humanos, pero sería un paso relevante para ir desvelando el ciclo vital del virus (si “vital” puede aplicarse a algo que muchos científicos no consideran realmente un ser vivo).

Para explorar estos interrogantes, en los últimos años los investigadores han tratado de encontrar rastros de la presencia del virus tanto en murciélagos vivos como en otras especies que están en contacto con ellos, desde los insectos hasta nosotros mismos. Sin embargo, el virus no ha vuelto a detectarse de forma directa en otros animales, ni vivos ni muertos, salvo en una única ocasión: en 2016 se localizó en cadáveres de murciélagos hallados en el otro extremo de Europa, en Hungría.

Pero existe otra posibilidad, y es la detección del rastro que el virus haya podido dejar en el sistema inmunitario de los animales que en algún momento han estado infectados. Utilizando esta vía, un nuevo estudio en la revista Viruses, encabezado por Eva Ramírez de Arellano y dirigido por Negredo, ofrece una respuesta: el virus está circulando en los murciélagos de cueva, pero no en otras especies de murciélagos ni en los humanos.

Los científicos han analizado la sangre de hasta 60 ejemplares vivos de la especie Miniopterus schrebersii, el murciélago de cueva en el que se encontró el virus. Para aumentar la probabilidad de que estos animales hubieran estado expuestos al virus, los ejemplares fueron recogidos en 2015 en las mismas cuevas de Asturias y Cantabria donde se descubrió el lloviu. Al mismo tiempo, han examinado la sangre de un grupo de personas que también han estado en contacto con estos murciélagos, se supone que científicos dedicados al estudio de estos animales. Como control negativo, se han añadido muestras de murciélagos de otra especie diferente capturados en Huelva, lejos del brote original de lloviu.

Los resultados muestran que uno de cada tres murciélagos de cueva analizados, el 36,5%, lleva anticuerpos contra el lloviu, lo que confirma que estos animales contrajeron la infección en algún momento y, sin embargo, continúan vivos. Por el contrario, esta respuesta inmunitaria contra el virus no se ha encontrado en los humanos ni en los murciélagos de Huelva.

Estos datos indican que el brote original del lloviu no fue una rareza, sino que el virus está circulando de forma habitual entre los murciélagos de cueva. Sin embargo, no puede afirmarse que la presencia de los anticuerpos en animales vivos demuestre la no letalidad del virus para los murciélagos; del mismo modo que las personas que han contraído el ébola y han vivido para contarlo llevan anticuerpos en su sangre, podría ser que los murciélagos analizados sean los afortunados supervivientes de una epidemia mortal de lloviu.

Así, los investigadores escriben en su estudio que los resultados “disocian la circulación del lloviu como la causa de las muertes previamente reportadas”, pero es ahí hasta donde pueden llegar con los datos actuales. No obstante, encuentran un sospechoso parecido entre la proporción de animales seropositivos en su población y los niveles en las especies de murciélagos que sirven como reservorios del ébola y el marburgo, por lo que dejan entrever la idea de que quizá la dinámica del lloviu sea similar a la de estos virus; es decir, que infecte a los murciélagos sin matarlos.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Por último, el hecho de que no se hayan encontrado anticuerpos contra el lloviu en las personas que están en contacto con los murciélagos nos ha dejado sin la respuesta a la principal pregunta sobre este virus. En 1989 se detectó en Reston, Virginia (EEUU), una enfermedad mortal que afectaba a unos monos importados de Filipinas. Los investigadores descubrieron que el culpable era un filovirus muy similar al ébola, pero pronto se descubrió que era inofensivo para los humanos. Se encontraron anticuerpos en algunas personas que habían manejado los animales y que obviamente habían contraído el virus sin padecer síntomas.

Si el nuevo estudio sobre el lloviu hubiera detectado anticuerpos en algunas de las personas analizadas, probablemente podría concluirse que es un caso similar al virus de Reston: un patógeno para otras especies que no entraña riesgo para los humanos. Pero dado que no ha sido así, aún seguimos a oscuras sobre la peligrosidad del virus. Estudios anteriores sugieren que aparentemente el lloviu sería capaz de infectar células humanas por un mecanismo similar al ébola, por lo que hasta ahora no hay motivos para pensar que pueda ser un virus de contagio más difícil que su primo africano.

A falta de aislar el virus para poder trabajar directamente con él y responder a las preguntas pendientes, por el momento la única vía posible es fabricar sus trocitos a partir de su secuencia genética y estudiar qué hacen y cómo funcionan en sistemas in vitro. Decía más arriba que el nuevo estudio del ISCIII es el penúltimo, no el último; en días recientes se ha publicado además otro trabajo que ahonda un poco más en este prisma molecular del virus de Lloviu, y que aporta también una novedad sugerente. Próximamente, en este mismo canal.

Claves para entender el caso de Carla, la niña con un corazón incompatible

Una de las noticias de esta semana ha sido el alta médica de Carla, la niña que el mes pasado recibió un corazón con un grupo sanguíneo incompatible con el suyo. No hay historia de amor como la que se mantiene con la propia progenie, así que San Valentín habrá tenido este año un significado auténticamente feliz para esa familia. Pero ante todo quiero subrayar lo que suele olvidarse en tales casos: Carla vive por mediación del magnífico equipo médico que la ha atendido en el Hospital Gregorio Marañón de Madrid, pero Carla vive gracias a que otros padres tuvieron el coraje de donar el órgano de su propio bebé fallecido, en medio del desconsuelo más terrible que personalmente puedo imaginar. Es poco probable que leáis esto, pero gracias. Y ánimo.

Carla. Imagen del Hospital Gregorio Marañón / Comunidad de Madrid.

Carla. Imagen del Hospital Gregorio Marañón / Comunidad de Madrid.

Y ya. A quien le baste con la noticia del feliz desenlace de la hipoplasia del ventrículo izquierdo de una niña que hace solo un par de décadas no habría sobrevivido, lo que sigue le sobra. Pero para esos inquietos que desean saber más, qué tiene de especial el trasplante de Carla, cómo se ha conseguido y si «España marca un hito en la historia de los trasplantes», como se ha dicho en algún medio, aquí va una serie de preguntas y respuestas.

¿Qué tiene que ver el grupo sanguíneo en un trasplante?

Es sabido que todo trasplante necesita que el órgano sea compatible con el receptor. Cuando se habla de esta compatibilidad, generalmente se refiere a lo que se llama MHC o HLA. Lo primero significa Complejo Mayor de Histocompatibilidad, y lo segundo Antígeno Leucocitario Humano. Son la misma cosa, pero MHC se usa también para los animales, mientras que el nombre de HLA se reserva solo para los humanos. El MHC/HLA es un tipo de moléculas esenciales para la respuesta inmunitaria. Gracias a ellas podemos reaccionar contra los antígenos extraños y potencialmente peligrosos, como los de bacterias o virus; pero a cambio, su desventaja es que también reconocemos como extraños los MHC/HLA de otras personas. Por eso en los trasplantes se busca la compatibilidad, y por eso es más probable que esta se encuentre dentro de la misma familia, donde se comparten algunos de los mismos genes.

Sin embargo, otro factor adicional de compatibilidad es el grupo sanguíneo. Hay más de 30 clasificaciones de grupos sanguíneos, pero el más importante es el sistema AB0 (por cierto que originalmente es ABO, es decir, con una O mayúscula, aunque en España y otros países la O se sustituye por el cero, 0, mientras que en Rusia los grupos se llaman I, II, III y IV). Como sabemos, las personas del grupo A llevan en sus glóbulos rojos el antígeno A, las del grupo B el B, las del AB los dos y las del 0 ninguno de ellos. Dado que nuestro cuerpo reacciona contra lo extraño, las personas del grupo A tienen anticuerpos contra el B, las del B contra el A, las del AB contra ninguno y las del 0 contra ambos. Por este motivo las personas del grupo 0 son donantes universales, ya que su sangre está libre de esos antígenos que otros podrían rechazar, mientras que las del AB son receptores universales, dado que carecen de anticuerpos capaces de rechazar esos antígenos de la sangre de otros.

Lo mismo se aplica a los trasplantes: un órgano del grupo 0 sirve para cualquier persona, mientras que un paciente del grupo AB puede recibir un órgano de cualquier donante; por supuesto, siempre que exista compatibilidad MHC/HLA. Esto implica que las personas del grupo 0 son las que tienen más dificultad para encontrar un donante.

Los anticuerpos contra los antígenos de los grupos sanguíneos reciben el nombre particular de isohemaglutininas; iso, porque reaccionan contra antígenos de la misma especie, y aglutininas, porque su efecto es aglutinar los glóbulos rojos que llevan esos antígenos de otro grupo sanguíneo distinto al propio. Esta aglutinación es precisamente la que llevó a la identificación de los distintos grupos hace más de un siglo, ya que en el laboratorio se observaba cómo la sangre formaba grumos por efecto de estos anticuerpos. Una transfusión incompatible formaría estos grumos en nuestras venas y arterias, lo que sería letal.

¿Por qué se ha podido trasplantar a Carla?

Con las isohemaglutininas ocurre algo bastante extraño, y es que las personas estamos inmunizadas, digamos vacunadas de forma natural, contra los antígenos sanguíneos que no llevamos y con los que por tanto nunca hemos tenido contacto. Hasta donde sé, no hay una hipótesis lo suficientemente contrastada para explicar esto. Lo que suele suponerse es que algunos antígenos ajenos a nosotros pero que llegan a nuestro interior, como los de virus, bacterias o alimentos, tienen una forma parecida a los de los grupos sanguíneos, y que por tanto son reconocidos por las isohemaglutininas, actuando así como una vacunación espontánea. Personalmente la hipótesis me parece un poco traída por los pelos, pero lo cierto es que no hay otra mejor.

Pero dado que esta vacunación natural se produce durante los primeros años de vida, los recién nacidos aún apenas llevan isohemaglutininas contra los grupos sanguíneos ajenos, por lo que en principio pueden tolerar el trasplante de un órgano procedente de un donante con un grupo incompatible con el suyo. Por este motivo se dice que los bebés tienen un «privilegio inmunológico». Esta posibilidad se sugirió por primera vez en los años 60 y se empezó a estudiar clínicamente en los 80.

Es más, en 2004 se descubrió que cuando a un bebé se le trasplanta un órgano de un grupo incompatible con el suyo, su sistema inmunitario desarrolla tolerancia hacia esos antígenos extraños, sin que se sepa con total certeza cuál es el mecanismo que lo causa; y que por tanto, exponiendo a los bebés del grupo 0 a los antígenos A y B es posible prolongar ese período en el cual pueden aceptar un órgano de un grupo incompatible.

¿Es la primera vez que se hace?

No. Los primeros trasplantes en bebés de órganos con grupos AB0 incompatibles se hicieron en 1996 en el Hospital Infantil de Toronto (Canadá) a cargo de la cardiocirujana pediátrica Lori West. Los resultados se publicaron en 2001 con un rotundo éxito, sin fallecimientos debidos a la incompatibilidad. La introducción de este procedimiento consiguió reducir en Canadá la mortalidad infantil en las listas de espera de trasplantes de un 58% a un 7%. En países como Reino Unido el trasplante cardíaco AB0 incompatible en bebés ya es estándar, pero el de Carla ha sido el primero en España.

¿Se podría aplicar a los adultos? ¿Y a otros órganos?

En los adultos es más complicado debido a que ya poseen esa vacunación natural contra los antígenos diferentes a los de su propio grupo sanguíneo. Pero en algunos casos se está aplicando, sobre todo a los trasplantes de riñón en adultos eliminando antes las isohemaglutininas y conteniendo el rechazo con la medicación. Es muy probable que en los próximos años veamos aumentar las tasas de éxito de estos trasplantes, lo que reduciría una de las barreras de las listas de espera.

Los alergenos ayudan a los bebés a evitar las alergias

Creo que fue Jesús Hermida el primero a quien le oí definir a un periodista como un especialista en ideas generales. Un amigo y gran periodista lo expresó de otra manera; cuando alguien le dijo en una ocasión «es que los periodistas no tenéis ni puta idea de nada», él respondió: «ni falta que nos hace». Se puede saber mucho de algo o poco de todo, pero saber mucho de todo es algo de pocos, y desde luego no es la misión de un periodista.

Cuando además en uno conviven dos personas, el especialista en ideas generales de ciencia y el experto que por definición es un doctor, las cosas se complican aún más: no siempre se entiende bien que un biólogo escriba sobre física o un físico sobre biología, pero lo que en realidad no se está entendiendo es que quien escribe no es el físico ni el biólogo, sino el periodista.

Sin embargo, de vez en cuando surge la oportunidad de desempolvar el doctor que uno lleva dentro. Y en lo que se refiere a un servidor, aunque esa sabanita de papel con la firma fotocopiada del anterior rey diga que se concede a su portador el título de doctor en bioquímica y biología molecular, el campo al que más dediqué esos años de estudio e investigación es la inmunología.

La inmunología es un área de la biología con mucho espacio para estimulantes exploraciones teóricas. Mírenlo de esta manera: el sistema inmune, esa especie de difuso órgano de órganos que permea todo nuestro organismo, dispone de un repertorio tal que es capaz de responder con una defensa (anticuerpos y otros receptores) específicamente ajustada a la forma de cualquier posible molécula invasora (antígeno), acoplándose a ella como un guante.

Incluso si algún día llegáramos a entrar en contacto con un microorganismo alienígena del que jamás habíamos tenido noticia, nuestro sistema inmunitario sería capaz de crear anticuerpos que se unieran específicamente a él. Y esto vale tanto para un elefante como para una musaraña enana, a pesar de que el primero tiene un volumen más de 300.000 veces mayor que la segunda (haciendo un rápido cálculo de servilleta de bar) y por tanto unas 300.000 veces más células. Pero ambos, elefante y musaraña enana, tienen un repertorio completo y aparentemente infinito de anticuerpos.

¿Cómo es posible? La resolución de algunos de estos misterios, como el mecanismo de piezas genéticas móviles responsable de ese inacabable repertorio, ha merecido algún premio Nobel. Pero el sistema inmune aún esconde muchas incógnitas no siempre sencillas de despejar, porque algunas hipótesis no son fáciles de corroborar o refutar con ensayos controlados.

Un ejemplo es la llamada hipótesis de la higiene, según la cual mantener a los bebés en un ambiente excesivamente aséptico les impide el contacto necesario con antígenos de su entorno para que su sistema inmune aprenda a reaccionar contra lo peligroso y a no hacerlo contra lo inofensivo. La idea es que la obsesión por la esterilidad en el entorno del bebé (productos antibacterianos, biberones esterilizados antes de cada toma, agua embotellada, tirar el chupete que se ha caído al suelo…) resulta en una mayor probabilidad de que el niño padezca alergias, asma y enfermedades autoinmunes.

La hipótesis tiene sus variantes, ya que no es lo mismo discutir qué grado de limpieza es el adecuado que hablar del papel de las infecciones en la maduración del sistema inmune. Pero en una forma u otra, la hipótesis de la higiene ha sido largamente discutida, dado que es difícil llegar a un veredicto irrefutable más allá de los datos epidemiológicos, los experimentos con modelos animales y ciertas intervenciones clínicas. Y como suelo decir aquí, una correlación no basta para deducir una relación. Por todo ello, algunos expertos cuestionan la hipótesis, en todo o en parte.

Pero hay algo que sí parece claro: la hipótesis tiene sentido biológico. El principio básico del sistema inmune es que aprende por experiencia (un ejemplo son las vacunas), así que no tiene nada de raro suponer que la privación de estímulos obstaculice ese aprendizaje, del mismo modo que un niño aislado sensorialmente tendría dificultades en su maduración cognitiva.

También tiene sentido desde el punto de vista evolutivo, ya que nuestro sistema inmune ha evolucionado en un mundo sucio que lo desafía desde la cuna, y este desafío es necesario para que aparezca la respuesta; se resume en el refrán: lo que no nos mata, nos hace más fuertes. Y sin que esto baste para dar la hipótesis por válida, sí desplaza la carga de la prueba hacia quienes defienden lo contrario.

En un sentido más amplio, la (tal vez mal llamada) hipótesis de la higiene puede aplicarse también a la exposición a antígenos de otra clase, los alimentarios. Lo cierto es que, como ya conté aquí, los datos confirman un aumento en las alergias alimentarias en las últimas décadas. Y aunque no se puede asumir una causa a la ligera, la tendencia actual reconoce que privar a los bebés de alimentos alergénicos tal vez esté contribuyendo a crear adultos alérgicos.

Cacahuetes. Imagen de Wikipedia.

Cacahuetes. Imagen de Wikipedia.

Un caso típico es el del cacahuete, un alimento clásico en las alergias. Durante años los especialistas recomendaban a los padres que evitaran este fruto seco en la dieta de los bebés. Pero un creciente volumen de estudios ha ido mostrando que tal vez la ausencia de contacto con el antígeno impide desarrollar tolerancia hacia él; o incluso que la exposición a ciertas concentraciones de proteína de cacahuete en el aire puede inducir una alergia que podría prevenirse por el desarrollo de tolerancia a través de la dieta (esto se conoce como hipótesis de exposición dual).

En vista de las investigaciones de los últimos años, en 2015 la Academia de Pediatría de EEUU comenzó a recomendar la introducción de cacahuetes en la dieta a partir de los cuatro meses para los bebés con alto riesgo de padecer alergias alimentarias (por ejemplo, hijos de alérgicos o que ya padecen alguna), siempre con la aprobación del pediatra.

La última noticia es que a esta recomendación se ha unido ahora el Instituto Nacional de la Salud de EEUU (NIH), que en sus nuevas directrices recomienda también introducir los cacahuetes en la dieta del bebé a partir de los cuatro meses. Por supuesto, siempre bajo consejo del pediatra.

Es de esperar que en los próximos años este tipo de recomendaciones se extiendan aún más a otros alimentos. En algunos países, como Australia, las directrices actuales de alimentación infantil establecen específicamente la introducción de alimentos alergénicos como la manteca de cacahuete, el huevo, los lácteos y el trigo antes de cumplir el primer año.

Y en lo que se refiere a la higiene, está claro que entre la limpieza y la esterilidad hay una gran diferencia. Según los estudios, en general los microbios que pueden encontrarse en cualquier hogar con una limpieza regular no son peligrosos; de hecho, la mayoría de ellos son nuestros, y muchos lo son para bien. Pero es comprensible que los mensajes publicitarios lleguen a confundir a muchos padres y madres, ya que también hay toda una industria de la esterilidad para bebés. Simplemente hay que recordar que lo razonable es lo razonable; lo que está limpio para nosotros, también lo está para ellos.