Entradas etiquetadas como ‘España’

España, décima en ciencia, vigesimoséptima en premios Nobel de ciencia

En la tabla de países por número de premios Nobel de ciencia, España ocupa un lugar muy por debajo de su puesto en producción científica. No es ninguna novedad, pero es interesante analizar los datos: la décima potencia mundial por volumen de publicaciones científicas se queda en una discreta vigesimoséptima posición en número de premios, compartiendo escalón con Finlandia (que ocupa el puesto 26 en publicaciones), Irlanda (39), Rumanía (41), Lituania (58) y Luxemburgo (81).

Imagen de Jonathunder / Wikipedia.

Imagen de Jonathunder / Wikipedia.

Para la clasificación de los países por el volumen de publicaciones científicas, he tomado los datos del Journal & Country Rank de SCImago, un grupo de investigación integrado por el CSIC y las Universidades de Granada, Extremadura, Carlos III y Alcalá de Henares. A su vez, los datos de SCImago proceden de Scopus, la mayor base de datos de bibliografía académica del mundo. Según estos datos, y para el período acumulado 1996-2014, España ocupa el décimo lugar en número de publicaciones, con un total de 952.099, inmediatamente por debajo de India (998.544) y superando a Australia (890.458).

Este décimo puesto es razonable con respecto al peso económico del país, y es además consistente con otros índices similares, por ejemplo el actualizado el pasado año por la revista Scientific American con datos de la OCDE. En este caso España se mantiene también en décimo puesto por publicaciones en una selección de revistas solo para el año 2014, y anda en la misma línea –puesto arriba o abajo– tanto en gasto en I+D como en doctorados en ciencia e ingeniería. Tampoco es una sorpresa que España se desploma en número de patentes, cayendo al puesto 22. Habría que consultar a los expertos de la industria a qué se debe esta carencia ya clásica en nuestro sistema; pero independientemente de las múltiples razones que supongo podrían aportar, también sería un avance si patentar dejara de estar mal visto en este país.

En cuanto a los datos de los premios Nobel por países, los he tomado de la lista publicada en la Wikipedia, seleccionando solo los de Física, Química y Fisiología o Medicina. Dado que con bastante frecuencia los investigadores trabajan en naciones diferentes a la suya de origen, la lista recopilada por la Wikipedia adopta el criterio más favorable, adjudicando los premios tanto al país natal del galardonado como al estado donde trabajaba en el momento de la concesión. Por ejemplo, Severo Ochoa cuenta como un premio para España y otro para Estados Unidos. A nuestro país se le adjudican dos galardones, Ochoa y Ramón y Cajal.

A continuación detallo la lista de los 41 primeros países por producción científica con su número respectivo de premios Nobel de ciencia. Y para apreciarlo mejor de un vistazo, he construido dos gráficos que expongo más abajo. El primero refleja los mismos datos de esta lista, añadiendo a los 41 primeros Lituania (puesto 58) y Luxemburgo (81), dos países que cuentan con el mismo número de premios Nobel de ciencia que España. El segundo gráfico muestra estos mismos 43 países ordenados por el número de premios.

  1. Estados Unidos: 267 premios Nobel de ciencia
  2. China: 8
  3. Reino Unido: 85
  4. Alemania: 85
  5. Japón: 21
  6. Francia: 36
  7. Canadá: 17
  8. Italia: 12
  9. India: 4
  10. España: 2
  11. Australia: 11
  12. Corea del Sur: 0
  13. Rusia: 17
  14. Holanda: 16
  15. Brasil: 1
  16. Suiza: 20
  17. Taiwán: 1
  18. Suecia: 16
  19. Polonia: 7
  20. Turquía: 1
  21. Bégica: 6
  22. Irán: 0
  23. Israel: 6
  24. Austria: 16
  25. Dinamarca: 9
  26. Finlandia: 2
  27. Grecia: 0
  28. República Checa: 3
  29. México: 1
  30. Noruega: 5
  31. Hong Kong: –
  32. Singapur: 0
  33. Portugal: 1
  34. Suráfrica: 5
  35. Nueva Zelanda: 3
  36. Malasia: 0
  37. Argentina: 3
  38. Hungría: 11
  39. Irlanda: 2
  40. Ucrania: 4
  41. Rumanía: 2

58. Lituania: 2

81. Luxemburgo: 2

Producción científica (por número de publicaciones, eje vertical izquierdo) y premios Nobel de ciencia (eje vertical derecho) por países. El eje horizontal muestra ordenados los 41 países con mayor producción científica, a los que se añaden Lituania y Luxemburgo. Elaboración propia con datos de SCImago y Wikipedia.

Producción científica (por número de publicaciones, eje vertical izquierdo) y premios Nobel de ciencia (eje vertical derecho) por países. El eje horizontal muestra ordenados los 41 países con mayor producción científica, a los que se añaden Lituania y Luxemburgo. Elaboración propia con datos de SCImago y Wikipedia.

Lista de países por número de premios Nobel de ciencia. En la lista figuran los 41 países con mayor producción científica, más Lituania y Luxemburgo. Elaboración propia con datos de SCImago y Wikipedia.

Lista de países por número de premios Nobel de ciencia. En la lista figuran los 41 países con mayor producción científica, más Lituania y Luxemburgo. Elaboración propia con datos de SCImago y Wikipedia.

Interesante, ¿no? El primer gráfico nos sugiere una idea curiosa: el perfil de España, en cuanto a la brutal diferencia entre su producción científica y su número de premios Nobel, es similar al de países llamados emergentes, como China, India, Corea del Sur o Brasil. En el caso de los países asiáticos, incluyendo Japón, se da además la circunstancia de que permanecieron desconectados de la ciencia occidental, y por tanto de los premios Nobel, durante buena parte del siglo XX. Sin embargo, los dos premios Nobel españoles datan de 1906 y 1959.

Dejo además aquí otros datos para la reflexión. La organización de los premios Nobel publica las nominaciones a sus galardones 50 años después (¿será para asegurarse de que los posibles agraviados ya fallecieron?). Por lo tanto, hasta hoy se han publicado las candidaturas desde la primera edición de los premios, en 1901, hasta 1964 (aún no han introducido los datos de 1965). Una nominación se produce cuando alguna autoridad científica, normalmente invitada por el comité organizador, propone el nombre de un candidato.

Pues bien, y aquí está el dato interesante: para que Ramón y Cajal fuera agraciado con el premio de Fisiología o Medicina en 1906, tuvo que recibir un total de 65 nominaciones desde la primera edición de los premios en 1901. Y para que juzguen si esto es poco o mucho, una comparación: al italiano Camillo Golgi, que compartió el premio con Cajal, le bastó con menos de la mitad, 31 nominaciones.

La lista de los nominados españoles revela otros detalles jugosos. Por no concernir a este blog, no voy a comentar las candidaturas a los premios de Literatura o de la Paz, aunque les recomiendo que no se las pierdan. En lo que se refiere a ciencia, y hasta 1964, cuatro investigadores fueron candidatos en la categoría de Fisiología o Medicina y nunca premiados. El pionero catalán de la bacteriología Jaume Ferran i Clua recibió seis nominaciones; las mismas que el fisiólogo, también catalán, August Pi i Sunyer. El médico e investigador vallisoletano Pío del Río Hortega, considerado un continuador de Cajal, fue nominado en tres ocasiones. Por último, tres nominaciones obtuvo también alguien que en la web de los Nobel aparece como “Joseph G. Ocaña”, y que imagino debe referirse al médico malagueño José Gómez Ocaña, investigador del cerebro. Último dato: según la web de los Nobel, ningún español fue jamás nominado hasta 1964 para un premio de Física o Química.

Parece que ya iría siendo hora de un nuevo reconocimiento a la buena ciencia que se hace por aquí, ¿no creen?

Mi carta a los reyes: quiero una Torre Eiffel

Más allá de su hermosa imagen como puente metálico hacia el cielo, la Torre Eiffel se erigió con el propósito de no tener propósito. Es, quizá, el más grandioso de todos los monumentos inútiles, o el más inútil de todos los grandiosos (si acaso, en enconada pugna con el monte Rushmore). Sí, de acuerdo; la espícula de su cumbre sostiene varias antenas, pero es obvio que esto no es un fin, sino un pretexto. La construcción de la torre no respondía a otro principio que el de “mirad lo que podemos hacer”. Y podían.

Nombres de científicos franceses en el friso de la Torre Eiffel. Ricce.

Nombres de científicos franceses en el friso de la Torre Eiffel. Ricce.

La cuestión que quiero pescar aquí, y que justifica hablar del monumento parisino en este blog y en este día, es por qué podían. Cualquiera que se haya arriesgado, como el viajante de Miller, a partirse el cuello para ver la estrella más brillante de la ciudad de la luz, habrá observado que el friso en torno a la primera planta está decorado con una serie de inscripciones. Aquí la grandeur desperdició la oportunidad de colocar un discurso elegíaco para, en su lugar, limitarse a enumerar una lista de nombres. Concretamente, setenta y dos. Son grandes monstruos de la ciencia y la ingeniería francesas que cualquier estudiante de estas disciplinas ha debido esculpirse en hierro en el friso de su cerebro: Lavoisier, Coulomb, Lagrange, Laplace, Poncelet, Cuvier, Ampère, Gay-Lussac, Becquerel, Coriolis, Cauchy, Poinsot, Foucault, Fourier, Carnot… Y así hasta setenta y dos. Impresionante currículum científico para un país.

Llegamos a la respuesta a la pregunta: ¿por qué podían? Podían gracias a esos setenta y dos, y a otros como ellos. La Torre Eiffel fue un icono de modernidad futurista cimentado sobre el trabajo de los científicos franceses. Ellos, más que metafóricamente, sostienen la torre.

Ahora, volvamos a casa. No es algo frecuente que un estudiante de ciencias se tope en sus textos con un Teorema de García, una Ley de Jiménez o una Ecuación de Romerales. Hace un siglo, dos mentes preclaras debatían a propósito de la europeización de España, algo que incluía la necesidad de abrazar el cambio productivo hacia la ciencia y la tecnología (¿les suena?). Uno de los dos, Miguel de Unamuno, repitió machaconamente esa frase lapidaria tantas veces citada y de la que ya nos hemos desprendido intelectuamente, pero cuyos efectos continuamos arrastrando: “¡Que inventen ellos!”.

Nosotros no tenemos una Torre Eiffel porque no hemos asentado los cimientos científicos y tecnológicos para tenerla. No nos la hemos ganado. Tenemos ortegas, unamunos, dalís, quevedos y fallas, pero no heisenbergs, darwins ni fermis (y un solo Cajal). En cambio, hemos tenido grecos, boccherinis y daríos; artistas a los que acogimos en su expatriación.

De acuerdo: la ciencia es un asunto global. Ya lo era antes de que se hubiera inventado la globalización. Pero sus repercusiones a largo plazo en el desarrollo engrandecen sobre todo al país que la alimenta. Severo Ochoa fue un científico estadounidense que consiguió un premio Nobel para Estados Unidos. Reproduzco lo que escribía hace un año en El País la microbióloga española Purificación López-García, directora de investigación del CNRS francés:

La investigación que yo hago es internacional, pero si tuviera que ser de alguien, sería francesa y europea, pues son instituciones francesas y europeas, pero no españolas, quienes la hacen posible. La ciencia que hacemos los cerebros fugados ya no pertenece a España. Si España quiere enorgullecerse de su ciencia, que la financie.

Sobre lo acontecido ayer en Madrid, que fue una verdadera noticia (en el estricto sentido de nueva; algo que solo tiene precedente 39 años atrás, a gran diferencia de lo que suele gastar la tinta de los diarios a diario), no pretendo entrar aquí en la discusión relativa al modelo de Estado o su jefatura. Primero, porque cantar a coro me produce anafilaxis, algo probablemente derivado de mi espíritu de animal de sabana. Pero sobre todo, porque este es un blog de ciencia y, en el fondo, qué demonios importa a nadie lo que yo opine al respecto. En cambio, y desde el territorio de este blog, en especial el de la ciencia expatriada, quiero aprovechar tan señalada ocasión para escribir mi carta a los nuevos reyes.

Dicen que el nuevo monarca es un tipo del siglo XXI (cosa que no alcanzo a comprender, pues nací solo un mes antes que él), y que alberga un empeño personal en que la ciencia ocupe el lugar que le corresponde en este país. Como mínimo, es ciertamente fresco y alentador escuchar la siguiente rarity en un discurso de proclamación de un rey, por obvia que resulte la proposición en otros contextos: “Tenemos ante nosotros el gran desafío de impulsar las nuevas tecnologías, la ciencia y la investigación, que son hoy las verdaderas energías creadoras de riqueza”.

Aunque el rey reine, y no gobierne, desde esa posición de “árbitro y moderador” puede ejercer una influencia decisiva para promover la cultura científica y el impulso a la investigación en España, si asume este objetivo como tarea urgente y se compromete a que estas ideas formen parte integral y permanente de su discurso y de la línea de actuación de su reinado. Así que, en la esperanza de que algún día Ortega tumbe por fin a Unamuno, desde aquí le pido al nuevo rey Felipe VI: quiero una Torre Eiffel.

Los neutrinos esquivan el telescopio europeo (y España esquiva el futuro gran telescopio europeo)

No ha habido suerte. ANTARES (acrónimo de Astronomy with a Neutrino Telescope and Abyss environmental Research project), el gran telescopio europeo de neutrinos, no ha podido emular al IceCube, la instalación antártica que el pasado año confirmó por primera vez la detección de este tipo de partículas procedentes del espacio lejano. El observatorio europeo, fruto de la colaboración de unos 150 científicos, ingenieros y técnicos de ocho países, acaba de dar a conocer los resultados de seis años de investigación en un estudio enviado a la web de prepublicaciones arXiv.org, como paso previo a su difusión en una revista científica.

Los neutrinos son partículas subatómicas sin carga y con una masa muy pequeña que apenas interaccionan con otros elementos, por lo que atraviesan el espacio e incluso la materia sin desviarse. Los físicos calculan que cada centímetro cuadrado de la Tierra sufre el bombardeo de unos 65.000 millones de neutrinos solares por segundo. Otras fuentes lejanas que disparan rayos cósmicos producen los llamados neutrinos astrofísicos o de alta energía, lo que convierte a estas partículas en testigos que pueden delatar el origen de esta misteriosa radiación. En palabras del viceportavoz de ANTARES, Juan José Hernández Rey, investigador del Instituto de Física Corpuscular (IFIC) del CSIC y la Universidad de Valencia, “el neutrino es la pistola humeante que te dice: sí, hay rayos cósmicos”.

 

Ilustración artística de ANTARES. J. A. Aguilar.

Ilustración artística de ANTARES. J. A. Aguilar.

Para evitar la interferencia de los rayos cósmicos y otras radiaciones de fondo en la detección de los neutrinos, estos telescopios suelen construirse bajo tierra, hielo o agua. El IceCube está compuesto por un kilómetro cúbico de sensores enterrados bajo el Polo Sur, mientras que ANTARES, con una disposición similar de módulos unidos por cables, está sumergido en el Mediterráneo, a 2,5 kilómetros de profundidad frente a la costa francesa de Tolón. Estos detectores pueden revelar el paso de los neutrinos gracias a la llamada radiación de Cherenkov, un chispazo de luz que se produce en raras ocasiones por la interacción de estas partículas con el hielo o el agua.

Desde el corazón de la galaxia

En noviembre de 2013, los investigadores del IceCube publicaron en la revista Science la detección de 28 neutrinos astrofísicos, más difíciles de atrapar que los solares. “Ahora dicen que ya han llegado a 35”, señala Hernández a Ciencias Mixtas. “El anuncio de IceCube nos entusiasmó, porque el fondo del mar dispersa menos luz que el hielo y por tanto tiene mayor resolución de detección”.

Los científicos de ANTARES han tratado de verificar siete eventos detectados por el IceCube que se concentraban en dirección al centro de la galaxia, “un lugar muy interesante por lo que ocurre allí, como la posible existencia de un agujero negro supermasivo”, apunta Hernández. Sin embargo, el telescopio ha logrado pescar neutrinos solares, pero no astrofísicos. “Vemos pequeñas fluctuaciones, pero no son significativas para decir que hemos visto algo. No tenemos una señal clara”, admite el investigador.

La decepción es solo relativa, ya que ANTARES, un enano en comparación con el IceCube, ha probado su valor. “Hemos demostrado la tecnología y la física, que hace una década estaban en discusión. En el fondo marino podemos ver neutrinos con la precisión adecuada y gracias a una estructura que era un reto técnico, ya que nunca se había construido algo así en el mar”, alega Hernández. Siendo así, ¿cuál será el siguiente paso? “Hacerlo más grande”, afirma. “Ya sospechábamos que necesitábamos algo mayor”.

Y ese “algo mayor” ya está en marcha. Será el KM3NeT, el Kilómetro Cúbico, aunque en realidad sus sensores llegarán a ocupar un volumen marino de cinco a seis kilómetros cúbicos una vez que su construcción se haya completado. El nuevo telescopio europeo de neutrinos será “50 veces mayor que ANTARES y casi diez veces más sensible que el IceCube en su configuración actual”, detalla Hernández. El KM3NeT repartirá sus sensores entre dos emplazamientos en las costas de Italia y Francia.

España no participa

¿Y España? “Hay fosas marinas adecuadas, en torno a los 2.500 metros, por ejemplo en la costa balear”, reseña Hernández. Pero la norma es sencilla: el que paga, manda. Y de la financiación aprobada de 30 millones para la Fase 1, que finalizará en 2016, España no aportará un solo euro, ni ha promovido la campaña de estudios y mediciones que se habría precisado para proponer una localización idónea en nuestra costa mediterránea. “En Francia e Italia incluso participan las regiones concernidas, pero aquí la administración no se ha comprometido. No hemos dado el paso adelante”, se lamenta Hernández. “Se ha producido un parón de muchas infraestructuras de ciencia debido a la crisis, incluso de aquellas que ya estaban aseguradas”.

Pese a todo, Hernández y el resto de sus colegas del IFIC y de las Universidades Politécnicas de Valencia y Cataluña continuarán participando a través de sus propios presupuestos de investigación. “Estamos en un impass a ver qué ocurre, pero no queremos descolgarnos”, relata el físico, seguro de que el KM3NeT logrará replicar la señal del IceCube y descerrajar los secretos que ocultan las fuentes de rayos cósmicos. “Es una nueva era para la astronomía”, concluye.