Entradas etiquetadas como ‘canica azul’

Pasen y vean una alucinante reacción en cadena que descubre el orden del caos

Imagino que habrán visto infinidad de vídeos de efecto dominó, esos en los que la caída de una primera ficha pone en marcha una reacción en cadena que tumba otros miles de piezas formando figuras, hinchando globos y disparando pirotecnia. Supongo que continuarán celebrándose aquellos concursos en los que un japonés muy concentrado acababa dando saltos de alegría cuando su montaje funcionaba a la perfección hasta la traca final, pero ya no aparecen en los telediarios con tanta asiduidad como antes. Será que lo hemos visto tantas veces que ya no nos sorprende.

Pero este vídeo que les traigo hoy les va a sorprender. Del creador de esta loca genialidad solo sé lo que figura en su canal de YouTube, que se hace llamar Kaplamino y que le llevó tres meses de trabajo y más de 500 rondas de ensayo y error llegar a crear esta maravilla de la ingeniería física de mesa, que convierte un aparente caos de objetos sobre un plano inclinado en una increíble coreografía ajustada al milímetro y sincronizada a la centésima de segundo.

Imagen de Kaplamino / YouTube.

Imagen de Kaplamino / YouTube.

Los montajes de efecto dominó juegan con el concepto físico clásico de la cantidad de movimiento, una magnitud que es constante en un sistema cerrado ideal, y que un objeto puede transferir a otro dentro de ese sistema. Cuando el taco de billar golpea una bola, le transfiere su cantidad de movimiento, que a su vez la bola golpeada puede transmitir a otras al hacer carambolas. Un ejemplo de escritorio muy kitsch y nerdie es el péndulo de Newton, ese conjunto de bolitas suspendidas donde el movimiento de la primera se transmite a la última pasando por las intermedias, pero sin que estas se muevan. No lo inventó Newton, sino el francés Edme Mariotte, aunque el inglés lo mencionó en sus Principia.

Esta transferencia de la cantidad de movimiento es la que funciona cuando las fichas de dominó se empujan unas a otras o se emplean para mover bolitas u otros mecanismos. Otra manera de expresarlo es mediante la energía, que tienen los cuerpos en movimiento (cinética) o en altura (potencial), y que se va transmitiendo de unos elementos a otros, ya que (también idealmente) la energía total del sistema no varía.

Los sistemas de efecto dominó tienen que jugar con estas magnitudes para conseguir que la cantidad de movimiento y la energía no se disipen, sino que vayan transmitiéndose en cadena de unos elementos a otros. Las fichas no se mueven a lo largo del circuito, sino que es la energía la que se mueve. Los montajes que además utilizan otros tipos de objetos, como pelotas o varillas, suelen utilizar la tercera dimensión para añadir algo de energía potencial al sistema; es decir, aprovechan los desniveles para que algo al caer mueva otra cosa.

Lo que tiene de especial el montaje de Kaplamino es que la canica azul encargada de iniciar la reacción es la que va moviéndose a lo largo de todo el circuito, como en un pinball; no se limita a ceder su energía y pararse para que otros objetos tomen el relevo, sino que va recuperando energía para continuar moviéndose hasta el final. Y todo ello sobre un plano, en solo dos dimensiones. La mesa está inclinada para aprovechar algo de energía potencial en la caída de la canica, y el resto es cosa de imanes y palancas, que van devolviéndole a la canica altura y velocidad para conseguir que nunca deje de moverse. Otra genialidad del autor es aprovechar los dobles recorridos de algunos elementos para conseguir efectos diferentes en cada uno de ellos.

Es cierto, esto no sirve absolutamente para nada. ¿Y por qué debería servir? Aprovechando que se celebra ahora en Madrid la feria ARCO, ¿podríamos decir que este es el arte de la física?

Esta canica azul y su bolita gris, vistas desde Marte

Tras la visita de la sonda New Horizons al explaneta Plutón en julio de 2015, la Tierra alberga ya un inmenso álbum fotográfico de todos los principales objetos del Sistema Solar. Este año tendremos nuevos retratos inéditos de Júpiter, gracias a la sonda Juno, y de Saturno, por mediación de la Cassini, que morirá en el planeta anillado el próximo 15 de septiembre.

Pero al contrario que el terrícola medio, la Tierra aún tiene carencias en su repertorio de selfies. Entiéndase: fotos del planeta se disparan todos los días a mansalva desde satélites de diversos tipos. Pero la gran mayoría de ellas se toman desde la órbita baja y solo nos muestran porciones concretas de la superficie terrestre, como quien se hace un selfie de la nariz o los dientes.

En cambio, no tenemos tantas oportunidades de mirarnos desde lejos, y por eso cada nueva foto que nos muestra nuestro hogar en su conjunto suele convertirse en una imagen icónica. Ocurrió con la «canica azul», como se llamó a un hermoso claro de Tierra fotografiado en 1972 por la tripulación del Apolo 17 de camino hacia la Luna, y que luego ha tenido imágenes sucesoras obtenidas por sondas no tripuladas. Aún más estremecedora fue la fotografía tomada a petición de Carl Sagan por la Voyager 1 a 6.000 millones de kilómetros de distancia, bautizada como «el pálido punto azul».

Hoy tenemos una nueva foto para el álbum. Como parte de las operaciones de calibración de su cámara, la sonda de la NASA Mars Reconnaissance Orbiter (MRO) ha enviado esta vista de la Tierra y la Luna fotografiadas desde la órbita marciana. Aunque la imagen aparezca borrosa y pixelada, lo que revela realmente es la asombrosa capacidad de la cámara: desde Marte, la Tierra se ve solo como un puntito luminoso. La ampliación de la fotografía es enorme, y aun así pueden distinguirse perfectamente los detalles: Australia en el centro, sobre ella el sureste de Asia y la Antártida en la parte inferior. Las otras manchas blancas son masas de nubes.

Imagen tomada el 20 de noviembre de 2016 por la sonda MRO. NASA/JPL-Caltech/University of Arizona.

Imagen tomada el 20 de noviembre de 2016 por la sonda MRO. NASA/JPL-Caltech/University of Arizona.

La imagen es en realidad una superposición de dos capturas a distintas exposiciones, ya que la Tierra es mucho más brillante que la Luna. Llama la atención la aparente cercanía entre ambas, pero esto es solo un efecto de la perspectiva: en el momento de la foto, la Luna se disponía a pasar por detrás de la Tierra en su órbita. En realidad la distancia entre las dos es de unas 30 veces el diámetro terrestre.

Este último dato nos recuerda lo difícil que es apreciar las escalas cuando escapamos de la Tierra, algo que ya les traje aquí con algunos de esos magníficos vídeos que se publican por ahí y que nos ayudan a sentirnos todo lo pequeños que realmente somos (aquí y aquí). Así que aprovecho la ocasión para traerles otro más: este vídeo, producido por la agencia espacial rusa Roscosmos, nos enseña cómo sería el aspecto de nuestro cielo si el Sol se reemplazara por alguna otra estrella de las que conocemos, como el sistema Alfa Centauri, Arturo, Vega, Sirio o, en el gran final, Polaris, la estrella polar. ¿Piensan que el Sol es grande? Miren y pásmense.