Entradas etiquetadas como ‘biología animal’

Los piojos han inventado uno de los pegamentos más potentes del mundo

Ayer les decía que el verdadero problema de los piojos no son los propios bichos, sino las liendres. Si estos huevos, que la hembra pone a razón de hasta 10 al día, se eliminaran fácilmente con un lavado o un cepillado, cualquier intruso en nuestras cabezas acabaría muriendo tarde o temprano sin dejar herederos a los que legar ese paisaje capilar hasta donde se extiende la vista. Sería enormemente sencillo librarnos de ellos, y probablemente los piojos se habrían extinguido mucho tiempo atrás.

Así, la mayor parte del éxito de la estrategia evolutiva del piojo, la que le ha permitido seguir infestando cada año a cientos de millones de humanos, descansa en ese firme agarre de la liendre al pelo que lo resiste casi todo, y contra el que poco pueden hacer incluso los insecticidas: el huevo solo está comunicado con el aire exterior por un poro llamado opérculo, en el que nuestras lociones apenas consiguen entrar. Digan lo que digan las campañas publicitarias, los expertos aseguran que ningún producto mata el 100% de las liendres, y ninguno de ellos es capaz de desprenderlas del pelo eficazmente.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Una liendre muerta en un pelo humano. Imagen de Gilles San Martin / Flickr / CC.

Por este motivo, conocer el sistema de adhesión de la liendre al cabello es un buen primer paso para lograr, tal vez, diseñar nuevos productos antipiojos que ataquen el problema desde su raíz. Ahora, gracias a un grupo de investigadores coreanos y a su estudio publicado en la revista Scientific Reports, conocemos mucho mejor la respuesta a esta incógnita. Y la respuesta es esta: la fuerte unión de la liendre al pelo se debe a un increíble pegamento producido por los piojos hembras, y que no se parece a ningún otro conocido hasta ahora.

Analizar los componentes de la cubierta de la liendre no ha resultado tan fácil como podría preverse. Cuando los científicos quieren hacer un estudio de este tipo, lo que hacen es disolver el material de base, en este caso las liendres, utilizando algún disolvente apropiado, y después se determina la composición de la muestra líquida utilizando un aparato llamado espectrómetro de masas.

Antes se creía que la cubierta de las liendres estaba compuesta por quitina, el polisacárido (azúcar) que forma el exoesqueleto de los insectos y los crustáceos; la cáscara de la gamba, digamos. Sin embargo, estudios recientes sugerían que en su lugar parecía más bien de naturaleza proteica, así que los investigadores sumergieron las liendres en un disolvente de proteínas: la urea.

Después de este tratamiento, comprobaron que todos los embriones de los huevos habían muerto y que sus proteínas se habían disuelto en la solución de urea. Pero en cambio, las cubiertas de las liendres seguían sin inmutarse. Así que probaron con otro tratamiento más fuerte, y luego con otro, y otro. Todos fallaron. Ni los disolventes orgánicos como el DMSO (dimetilsulfóxido), el etanol o el ciclohexano, ni los detergentes de laboratorio como el SDS (dodecil sulfato sódico), el Triton X-100 o el DDAO (N-óxido de N,N-dimetildodecilamina) lograron destruir los huevos.

Ante esta especie de adamantium piojil, a los investigadores solo les quedó la opción de analizar las liendres por otros métodos indirectos y luego tratar de encajar las piezas del puzle. En primer lugar, confirmaron la naturaleza proteica de la liendre empleando una técnica llamada espectroscopía de infrarrojos de transformada de Fourier (FTIR), que es capaz de revelar las estructuras de las proteínas intactas incluso en una muestra sólida. Utilizando una sola liendre, consiguieron verificar que su cemento estaba hecho de proteínas, aunque no lograron desentrañar la estructura de estas.

A continuación pasaron al método radical: ácido clorhídrico concentrado. Por suerte, los piojos aún no han completado el camino para convertirse en los aliens de Ridley Scott. El ácido destruyó los huevos, pero también las proteínas. El resultado de este tratamiento fue una sopa de aminoácidos, los eslabones que forman las proteínas. Pero esta sopa solo contiene los eslabones sueltos, como si al agitar un libro todas sus palabras se mezclaran; imposible conocer cómo son las proteínas originales.

Sin embargo, lo que sí puede conocerse de este caldo es su lista de ingredientes, los aminoácidos concretos presentes (como glicina, alanina, valina…), y sus porcentajes. Con estos datos, los investigadores se fueron a la base de datos que contiene la secuencia del genoma del piojo. Dado que el ADN se traduce en proteínas, la tarea consistía en buscar genes de cuyas secuencias pudieran predecirse proteínas con la misma composición de aminoácidos y los mismos porcentajes que los obtenidos en la sopa de aminoácidos de liendres.

Y allí aparecieron dos genes, que los investigadores coreanos han denominado Proteína de la Cubierta de la Liendre del Piojo 1 y 2, respectivamente (en inglés, Louse Nit Sheath Protein o LNSP 1 y 2). Por último, se trataba de comprobar si efectivamente estas proteínas existían en el piojo, y de producirlas in vitro para estudiar qué hacían.

En cuanto a lo primero, el resultado mostró que los investigadores habían dado en el clavo: las LNSP 1 y 2 existen en los piojos, pero más concretamente en las hembras adultas en fase de puesta de huevos, y aún más concretamente están presentes en su glándula accesoria, la que segrega el pegamento encargado de fijar la liendre al pelo.

Para lo segundo, los autores del estudio introdujeron un fragmento del gen de la LNSP 1 en bacterias Escherichia coli, utilizadas en los laboratorios como diminutas vacas lecheras para producir cualquier proteína que se desee. De este modo, las bacterias fabricaban una LNSP 1 parcial, que luego podía purificarse para estudiar sus propiedades.

Ya al estudiar la secuencia de aminoácidos de LNSP 1 y 2, los modelos bioinformáticos utilizados por los investigadores habían pronosticado que se trataría de proteínas con una tendencia a formar cadenas β que se compactarían fuertemente en láminas β; dicho de otro modo, que serían bastante pegajosas.

Esto se confirmó al poner en marcha la producción en bacterias: a medida que aumentaba la concentración de la proteína en la solución, los investigadores vieron que se volvía pringosa, y que al evaporarse el agua era capaz de adherir un pelo humano a un tapón de plástico, o un tubo de plástico a una placa Petri.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

La proteína de la liendre LNSP 1 adhiere el pelo a un tapón de plástico y un tubo a una placa Petri. Imagen de Park et al, Scientific Reports 2019 / CC.

Para evaluar el poder adhesivo de LNSP 1, los científicos lo compararon con el Tisseel, un pegamento biológico comercial que se usa en cirugía para cerrar heridas y que está compuesto por fibrina, una proteína implicada en la coagulación de la sangre. El resultado fue que el pegamento de la liendre es unas 500 veces más potente que el Tisseel, y esto solo para el fragmento parcial producido en las bacterias; según los modelos, la proteína completa será aún más potente. Y a esto se añade que probablemente el pegamento del piojo contenga otras proteínas además de LNSP 1 y 2.

De hecho, y aunque en algunos aspectos estas proteínas se parecen a la tela de araña, otras peculiaridades de sus secuencias las diferencian de cualquier otro adhesivo biológico conocido, asemejándolas más a las proteínas que se acumulan y forman grumos en el cerebro en ciertas enfermedades neurodegenerativas como el Huntington.

En resumen, todo indica que los piojos han inventado uno de los pegamentos más potentes que existen. Los investigadores sugieren que, una vez se conozca su composición con más detalle, podría desarrollarse industrialmente como adhesivo biológico de alto rendimiento. Esto ya se ha hecho, por ejemplo, con el pegamento que utilizan los mejillones para aferrarse a las rocas y a partir del cual se ha creado un adhesivo más potente que el Super Glue y resistente al agua. Al menos tal vez acabemos sacando algo aprovechable de la lacra de los piojos.

Esto es lo que les pasará a los insectos con el cambio climático

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No, no le ocurre nada a su ordenador o móvil (¿recuerdan aquella tentadora intro de Más allá del límite?). Tampoco es un error de edición. Si al entrar en esta página se han encontrado con un gran espacio en blanco sobre estas líneas y bajo el título, es porque la respuesta más honesta a la pregunta planteada es precisamente esa: en realidad, nadie sabe con certeza qué les sucederá a los insectos con el cambio climático, una incógnita que mantiene a los entomólogos rascándose la cabeza en busca de los escenarios más plausibles.

Como decíamos ayer, los insectos se esfuman con el frío y conquistan el planeta con el calor, así que la pregunta parecería de examen de primaria: si el cambio climático trae más calor, los bichos heredarán la Tierra. Fin de la historia. ¿No?

Insectos en un girasol. Imagen de pxhere.

Insectos en un girasol. Imagen de pxhere.

Pero evidentemente, no es tan sencillo. Basta pensar en lo que conté ayer: dado que el frío del invierno aumenta la tolerancia de los insectos tanto a temperaturas altas como bajas, sin este choque glacial sus cuerpos estarán menos preparados para soportar el calor. Precisamente es en primavera y en otoño cuando su capacidad de aguantar temperaturas extremas es menor, y por tanto una primavera cálida después de un invierno templado podría matarlos.

Pero mejor lo cuentan cuatro entomólogos especializados en biología térmica de los insectos, a los que he formulado esta pregunta. Henry Vu, coautor del estudio que conté ayer sobre cómo el frío prepara a los insectos para tolerar el calor, lo detalla así:

Con el cambio climático, es probable que observemos más ciclos de congelación y descongelación, primaveras más tempranas y cálidas, y tiempo más extremo. De mis observaciones, yo esperaría que los insectos se vean más afectados por el cambio climático en primavera, ya que entonces se encuentran a unos 5 o 6 °C de su límite superior de temperatura de supervivencia. La primavera es cuando más cerca se encuentran de su límite de temperaturas letales, porque es cuando pierden su tolerancia al calor y encuentran temperaturas más altas al no contar con la protección de la cobertura de hojas. Debido al cambio climático, las primaveras más cálidas podrían acercarlos aún más a ese límite letal de temperaturas altas.

La misma idea la resume Simon Leather, de la Universidad Harper Adams (Reino Unido):

Algunos insectos, como ocurre con la llamada vernalización en las plantas, requieren un periodo frío para resetear sus relojes. Si no reciben suficiente frío, algunos insectos no emergerán en primavera.

Efímera al atardecer. Imagen de Bob Fox / Flickr / CC.

Efímera al atardecer. Imagen de Bob Fox / Flickr / CC.

Por su parte, David Denlinger, de quien también hablé ayer y que descubrió varias proteínas de choque térmico en los insectos, destaca otro aspecto, y es que si los insectos no sufren el golpe de frío que les ordena entrar en diapausa (su versión de la hibernación) para pasar el invierno en reposo, se verán obligados a consumir sus reservas de energía en una época del año en que no hay recursos suficientes para reponerlas:

Esto puede sonar contrario a la intuición, pero los inviernos más cálidos no necesariamente son buenos para los insectos. Como ectotermos [lo que tradicionalmente se ha llamado de sangre fría], su tasa metabólica depende de la temperatura, y una de las ventajas del invierno para los insectos es que las bajas temperaturas les ayudan a conservar sus reservas de energía. Cuando las temperaturas son demasiado altas, pueden quemar sus reservas demasiado rápido y quizá no aguanten hasta que regresen las condiciones favorables.

Por último, Brent Sinclair, experto en criobiología de los insectos de la Universidad Western de Ontario (Canadá), resume: “¡Ja! ¡El invierno es complicado!”.

Los inviernos cambiantes dependerán de una combinación de temperatura media, variabilidad y precipitación. Por ejemplo, si la temperatura media es más alta, puede haber menos cobertura de nieve, lo que significa que los insectos del suelo experimentarán temperaturas más frías [paradójicamente, la nieve actúa como aislante térmico]. De modo similar, si la temperatura es más variable, la nieve podría fundirse, y entonces las temperaturas bajas más extremas serían más bajas. Por otra parte, si hay más precipitación en forma de nieve, puede tardar más en derretirse en primavera, haciendo los inviernos más largos para los insectos que se ocultan debajo.

En resumen, y si parece haber algo claro, es que el cambio climático desbarata el actual equilibrio ecológico del que dependen no solo los insectos, sino todas las criaturas vivas, y de un modo demasiado rápido. A estas alturas ya debería saberse que, exceptuando las repercusiones más directas como la crecida del nivel del mar en islas y costas, las principales consecuencias del cambio climático son biológicas, incluyendo las de impacto económico como el efecto sobre las cosechas. La naturaleza es una mesa de mezclas llena de palancas que no pueden tocarse sin ton ni son, porque el sonido resultante ya no será el mismo.

Por qué las avispas son tan insidiosas al final del verano

Muchos urbanitas tal vez no se hayan percatado, pero quienes hacemos vida de exterior estamos acostumbrados al fenómeno anual de zombificación de las avispas al final del verano: los que durante el resto de la estación habían sido simples transeúntes de nuestro espacio aéreo, pacíficos insectos que iban a lo suyo y que solo picaban si nosotros agredíamos primero (intencionadamente o no), se transforman de repente en una legión de hambrientos seres que ansían nuestra comida y convierten cualquier almuerzo al aire libre en una nube zumbante de amarillo y negro. No es una impresión subjetiva ni una rareza casual; realmente ocurre que las avispas son infinitamente más insidiosas al término del verano que con los primeros calores.

Pero ¿por qué? ¿Hay más avispas según va terminando la estación calurosa? Desde luego, las hay, ya que el número de insectos va aumentando a medida que la colonia crece durante la primavera y el verano. Pero esta no es la causa de que por estas fechas se lancen en blitzkrieg a invadir nuestros platos de comida. El motivo es mucho más interesante y tiene su origen en el complejo ciclo de vida de las colonias. Resumiendo, podemos decir que las avispas que infestan nuestras barbacoas están desesperadas por conseguir alimento, y que incluso si logran remontar el vuelo con el botín de un pedazo de carne, la mayoría de ellas no vivirá mucho tiempo más.

Una avispa reina construyendo su nido. Imagen de Alvesgaspar / Wikipedia.

Una avispa reina construyendo su nido. Imagen de Alvesgaspar / Wikipedia.

Pero comencemos por el principio, la primavera, el momento en que los insectos comienzan a regresar a la vida. Las maneras que los bichos han encontrado para sobreponerse a los meses oscuros y fríos son tan diversas que no hay un solo patrón común. En el caso de las avispas, la mayoría de los miembros de una colonia han muerto durante el invierno; no de frío, sino de hambre. En general, solo las reinas sobreviven hibernando en algún hueco templado. Con la subida de las temperaturas, despiertan de su hibernación y se lanzan a buscar un enclave adecuado para su nuevo nido.

Una vez que la reina ha elegido su hogar para la nueva temporada, comienza a masticar madera para construir las primeras celdas en las que depositar sus huevos. Aquí entra en juego un sorprendente logro de la naturaleza: la fundadora no se ha apareado desde el otoño anterior. Desde entonces ha conservado el esperma dentro de su cuerpo para dosificarlo y fertilizar sus primeros huevos que darán lugar a hembras, avispas obreras.

Durante este periodo la reina se alimenta de néctar de flores. Pero cuando los huevos eclosionan, las larvas empiezan a reclamar comida, lo que obliga a la fundadora a cazar insectos y buscar carroña para nutrir a sus pequeñas. Lo que ocurre entonces es otro maravilloso artefacto de la evolución: cuando las larvas comen insectos, degradan la quitina de su exoesqueleto en azúcares simples, produciendo un líquido dulce que sustituye al néctar para la alimentación de la reina. Así, cuando esta se centra en el cuidado de las crías, no tiene que preocuparse de buscar su propia comida, ya que las larvas se encargan de alimentarla.

Unas tres semanas después de la puesta de los huevos, las larvas ya se han convertido en obreras adultas, que reemplazan a la reina en la construcción del avispero y el cuidado de las nuevas larvas. Estas avispas son las que normalmente vemos durante el verano; las que pican. Pero no suelen invadir nuestro territorio, porque se alimentan del jugo azucarado que producen las larvas.

La colonia llega entonces a su máximo esplendor. A la reina se le han acabado las reservas de esperma de la cosecha anterior, y necesita aparearse. Para evitar la consanguinidad, lo hará con machos de otros nidos. A su vez, pone sus propios huevos de avispas zánganos que se emparejarán con reinas de otras colonias. Para los huevos de los machos no se necesita esperma, ya que proceden directamente de óvulos sin fertilizar. Los machos apenas vivirán lo necesario para buscar pareja, lo que dará a las reinas una ración fresca de esperma para fecundar los huevos destinados a producir nuevas hembras, algunas de las cuales serán elegidas para perpetuar la dinastía. Mediante este sistema las avispas conseguirán salvar el parón invernal y mantener su diversidad genética.

Una colonia en construcción con avispas obreras y huevos. Imagen de Bob Peterson / Flickr / CC.

Una colonia en construcción con avispas obreras y huevos. Imagen de Bob Peterson / Flickr / CC.

Es entonces, ahora, entre finales del verano y principios del otoño. cuando comienza el declive de la colonia. Cuando las últimas larvas de la temporada ya han crecido, se acabó la barra libre de refresco azucarado. Ya quedan pocas flores de las que chupar néctar, así que la multitud de obreras hambrientas debe buscar otras fuentes de alimento, en la basura o en nuestras apetitosas mesas repletas de manjares.

Pero aunque por el momento logren llevarse algún bocado, ni siquiera estos recursos serán suficientes para mantener a un ejército de avispas famélicas. Dentro de un par de meses, la mayoría habrán muerto, a excepción de las reinas, que con su nueva provisión de esperma a buen recaudo buscarán un refugio para capear los rigores del invierno. Y vuelta a empezar.

Conocer mejor el ciclo de vida de estas criaturas puede ayudar a temerlas un poco menos y apreciarlas un poco más, sobre todo para respetar sus ritmos naturales y no cometer exterminios innecesarios, como eliminar avisperos al comienzo del verano simplemente porque caen dentro de nuestros dominios. A menos que su emplazamiento realmente interfiera con nuestra vida diaria, durante la mayor parte de la existencia de la colonia las avispas no van a molestarnos. Y a diferencia de las colmenas de abejas, los avisperos son de un solo uso, por lo que no hay riesgo de que vayan a seguir creciendo al año siguiente. Quien prefiera guiarse por criterios ecológicamente responsables solo debería destruir los avisperos bien entrado el otoño, cuando las reinas ya han emigrado y de todos modos la colonia está próxima a extinguirse.

Y para terminar hablando de avispas, qué mejor que hacerlo con sus homónimos. Y con una lenta, que la morriña del cercano otoño lo pide. Con ustedes, W.A.S.P.