BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Un mundo sin antibióticos: era el pasado, pero puede ser también el futuro

Ayer les contaba la historia del ruso Andrei Suchilin y la fascitis necrosante, una enfermedad rara pero no insólita: cada año se detectan en el mundo entre 4 y 10 casos por cada millón de habitantes, según las regiones. Si hacen la cuenta a la escala de la población mundial, comprobarán que esto supone decenas de miles de casos. Datos más concretos hablan de hasta 10.000 casos al año en EEUU, un país donde obviamente las condiciones higiénicas y sanitarias son mejores que en muchos otros. Pero lo más preocupante es que no solo esta terrible enfermedad, sino las infecciones bacterianas en general, podrían convertirse en una amenaza aún mayor debido a un fenómeno cada vez más preocupante.

Probablemente les asaltó una pregunta al leer el caso de Suchilin: si se trata de una infección bacteriana, ¿no puede curarse con antibióticos? En teoría, sí. Pero en su caso, el antibiótico oral que le prescribieron en el centro de salud canario al que acudió, y donde subestimaron el alcance de su infección, no pudo nada contra el caos que ya estaba extendido por su cuerpo. El día del viaje en el avión, la vida de Suchilin ya estaba sentenciada.

Según los expertos, la detección temprana de la fascitis necrosante es vital para la curación. El tratamiento urgente incluye extirpar los tejidos muertos y contaminados –lo que en muchos casos requiere amputaciones– y suministrar una mezcla de antibióticos en vena. Pero esto puede no ser suficiente: una revisión de 2015 sobre infecciones en entornos acuáticos encontró que la mayoría de las bacterias marinas son resistentes a muchos de los antibióticos disponibles. Pero el riesgo no solo acecha en el mar: en los últimos años se ha detectado un aumento de los casos de fascitis necrosante causados por una bacteria común de nuestra piel, el estafilococo; no un estafilococo cualquiera, sino uno llamado MRSA, o (en inglés) Staphylococcus aureus resistente al antibiótico meticilina.

Imagen al microscopio electrónico (coloreada) de estafilococos resistentes MRSA. Imagen de CDC / Wikipedia.

Imagen al microscopio electrónico (coloreada) de estafilococos resistentes MRSA. Imagen de CDC / Wikipedia.

El MRSA es una de las llamadas superbacterias, cepas bacterianas resistentes a los antibióticos. La capacidad de las bacterias para escapar a los antibióticos aparece de forma natural durante su evolución a causa de mutaciones aleatorias, pero se convierte en un rasgo predominante por la presión selectiva que ejerce la presencia de los antibióticos.

Un ejemplo de cómo funciona esta presión selectiva: si el mundo se inundara, la mayoría de la población humana moriría. Los humanos no criaríamos branquias, como en aquella de Kevin Costner, pero probablemente los bajau sobrevivirían. Estos nativos del sureste de Asia, llamados los “nómadas del mar”, dedican la mayor parte de su tiempo a la pesca submarina. Un estudio reciente descubría que ciertas adaptaciones genéticas resultan en un bazo más grande, que les proporciona una reserva extra de glóbulos rojos para aguantar la respiración durante tres minutos. Este rasgo, que pudo surgir por mutaciones aleatorias, se ha extendido entre los bajau debido a su modo de vida, pero es minoritario en la población humana en general. En un mundo inundado, la supervivencia de los bajau llevaría a que en unas pocas generaciones ellos fueran la población humana mayoritaria.

En el caso de las bacterias, el mar es el antibiótico; es el factor de presión que lleva al predominio de esas poblaciones resistentes. Esta presión comienza probablemente en la propia naturaleza: muchos antibióticos son de origen natural, y de hecho se han encontrado bacterias resistentes en poblaciones que nunca han tenido contacto con entornos humanos ni ambientes contaminados por nuestros productos.

Pero obviamente, la mayor parte de este efecto se debe a nuestro uso indiscriminado de los antibióticos: se prescriben sin medida, se venden sin prescripción en muchos países, se guardan y reutilizan, se tiran a la basura, y tradicionalmente se han despachado a los animales de granja como si fueran caramelos. Todo este inmenso caudal de antibióticos se vierte a las aguas, se infiltra en el suelo y se deposita en los vegetales que comemos, seleccionando bacterias resistentes en el suelo, en el agua, en los animales y en nuestros propios cuerpos.

Las bacterias resistentes pueden transmitirse por el contacto físico directo, por la contaminación de superficies y objetos o por el consumo de alimentos contaminados, pero además estos microbios poseen curiosos mecanismos para contagiarse esta resistencia entre ellas. Mediante ciertos procesos moleculares, una bacteria de esta población puede fabricar una copia del gen responsable de esta capacidad y pasarlo a otra bacteria de la misma especie o de otra distinta. Así, a menudo ocurre que el uso de los antibióticos selecciona bacterias resistentes de nuestra flora microbiana que de por sí no son peligrosas, pero que si entran en contacto con otras que sí lo son pueden convertirlas en superbacterias.

Las consecuencias de todo este panorama no son hipotéticas, sino muy reales: hoy se calcula que cada año fallecen en el mundo unas 700.000 personas por infecciones bacterianas que no remiten con ningún antibiótico disponible. Pero las previsiones son del todo alarmantes: los expertos calculan que hacia mediados de siglo la cifra podría ascender a unos 10 millones de muertes anuales. La Organización Mundial de la Salud alerta de que el peligro de las superbacterias no es una predicción apocalíptica, sino que hoy ya representa “una de las mayores amenazas a la salud global, la seguridad alimentaria y el desarrollo”.

Algunos expertos incluso llegan a insinuar que ya vivimos en una era post-antibióticos. Ante este escenario, hoy todas las autoridades sanitarias y las instituciones médicas con competencias en el asunto están inmersas en campañas para controlar el abuso de los antibióticos y su vertido al medio ambiente, además de restringir el uso de los más especializados solo para los casos en que falle todo lo demás.

Resistencia a antibióticos: a la izquierda, las bacterias no crecen alrededor de los discos de papel que contienen los fármacos. A la derecha, las bacterias resisten la acción de varios antibióticos. Imagen de Dr Graham Beards / Wikipedia.

Resistencia a antibióticos: a la izquierda, las bacterias no crecen alrededor de los discos de papel que contienen los fármacos. A la derecha, las bacterias resisten la acción de varios antibióticos. Imagen de Dr Graham Beards / Wikipedia.

Pero evidentemente, una gran parte de esta responsabilidad está en nuestras propias manos. Algunas medidas son obvias, como evitar la automedicación y utilizar los antibióticos solo bajo prescripción. Hay que repetirlo una y mil veces: muchas enfermedades contagiosas –como la gripe y los catarros– no están causadas por bacterias sino por virus, y contra estos los antibióticos tienen la misma utilidad que un plumero en un tiroteo.

En cambio, otras medidas no son tan obvias. Por ejemplo, la rápida acción de los antibióticos lleva a muchas personas a suspender el tratamiento antes de tiempo, cuando ya se encuentran bien. Grave error: este golpe débil a las bacterias ayuda a que proliferen aquellas que son moderadamente resistentes. Lo mismo ocurre cuando se guardan los antibióticos y se consumen ya caducados: en este caso la dosis que se toma es insuficiente, lo que produce el mismo efecto que un tratamiento incompleto. El sobrante no debe conservarse, sino llevarse a un punto de recogida de medicamentos.

Hoy lo hemos olvidado, pero antes de la penicilina infinidad de mujeres morían después de dar a luz por infecciones contraídas durante el parto. Fallecían más pacientes por infecciones postoperatorias que por la propia cirugía o la enfermedad que la motivaba. Cualquier ingreso en un hospital era como un cara o cruz contra la posibilidad de contraer alguna bacteria letal. Cualquier herida grave en una pierna o en un brazo era casi el preludio seguro de una gangrena y una amputación. Los niños morían de escarlatina, una enfermedad que hoy sigue presente pero que ya no preocupa; y que, por cierto, está causada por el mismo estreptococo responsable de muchos casos de fascitis necrosante.

Y por supuesto, está la fascitis necrosante. Esta temible pesadilla puede convertirse en algo mucho más frecuente si los antibióticos de primera línea no logran contener lo que comienza como una infección leve. De hecho, algunos estudios revelan que los casos se han disparado en las últimas décadas, aunque aún no está claro si se debe más a un aumento de las resistencias bacterianas o a que ahora se diagnostican más casos que antes pasaban inadvertidos. Pero depende de todos evitar que volvamos al pasado: si hoy asustan enfermedades como el cáncer o el alzhéimer, la perspectiva de vivir en un mundo sin antibióticos es infinitamente más aterradora.

La trágica historia del hombre que olía mal, y por qué debería preocuparnos

Tal vez hayan conocido la historia a través de los medios. Pero lo que probablemente no les hayan contado es que lo ocurrido al ruso Andrei Suchilin, lejos de tratarse de una rareza imposible, no solo podría sucedernos a cualquiera, sino que cada vez va a ser más probable que algo así pueda sucedernos a cualquiera.

La historia se narró en dos partes. La primera se contó dentro de esas secciones de curiosidades que suelen embutirse en los programas de radio para desahogar al oyente de tanto bombardeo político: que Google Maps encuentra un pene gigante dibujado en el suelo en Australia, o que un tipo se tatúa la cara de Rajoy en el brazo. En este caso, la noticia decía que a finales de mayo un avión de la compañía Transavia que volaba de Gran Canaria a Holanda se había visto obligado a un aterrizaje no planificado en Faro (Portugal) debido al insoportable hedor que despedía uno de los pasajeros, y que a algunos incluso llegó a provocarles el vómito.

Noticias parecidas suelen aflorar de vez en cuando: un avión hace una escala de emergencia a causa de algún incidente provocado por un pasajero por motivos variados, ya sea una borrachera o un episodio de flatulencia incontenible. En este caso la tripulación trató de resolver el problema esparciendo ambientadores, pero ni siquiera confinando al pasajero en el baño consiguieron aliviar el hedor. Finalmente y ante las protestas del resto del pasaje, el responsable del percance fue desalojado del avión en Faro y trasladado a un hospital. Otro viajero declaró entonces que era como si aquel hombre no se hubiera lavado en varias semanas.

Después del suceso el pasajero en cuestión, el guitarrista ruso Andrei Suchilin, de 58 años, publicó en su Facebook que durante sus vacaciones en Canarias había contraído algo que el médico español al que acudió había diagnosticado como “una infección normal de playa”. “Lo trágico y lo cómico de toda esta situación es que cogí una enfermedad que (no digamos cómo ni por qué) hace que un hombre apeste”, escribía Suchilin.

El guitarrista ruso Andrei Suchilin en 2017. Imagen de Krassotkin / Wikipedia.

El guitarrista ruso Andrei Suchilin en 2017. Imagen de Krassotkin / Wikipedia.

Por desgracia, la segunda parte de la historia demostró que la situación no tenía nada de cómico, y sí mucho de trágico. A finales de junio se supo que Suchilin había fallecido en el hospital portugués en el que fue internado. La causa de su mal olor resultó ser una fascitis necrosante, una terrible enfermedad bacteriana que puede describirse como una descomposición progresiva del organismo cuando el paciente aún está vivo; partes de él ya han muerto y están descomponiéndose, por lo que el olor es el de un cadáver. Cuando la infección alcanza a los órganos vitales, el paciente muere.

Lo terrorífico de la fascitis necrosante es que no se trata realmente de una enfermedad infecciosa definida con una causa específica, como la malaria o el ébola, sino de una fatal complicación de lo que puede comenzar como una infección cotidiana e inocente. De hecho y aunque son varios los tipos de bacterias que pueden causarla, uno de ellos es un estreptococo, un microbio que convive habitualmente con nosotros provocándonos las típicas infecciones de garganta y otras dolencias leves.

En muchos casos estas infecciones no avanzan más allá de la piel y los tejidos superficiales. Pero si llegan a afectar a la fascia, la capa que conecta la piel con los músculos, la infección puede empezar a progresar en los tejidos profundos, diseminándose por la sangre a todo el organismo y destruyendo los órganos vitales. Y todo ello sin que desde el exterior se note nada demasiado visible; el dolor y el olor, como el de Suchilin, pueden revelar que algo espantoso está sucediendo por dentro, pero a menudo un diagnóstico rápido en una consulta externa puede pasarlo por alto. Se calcula que la cuarta parte de los afectados fallecen; en algunos casos, incluso en solo 24 horas.

Bacterias Streptococcus pyogenes al microscopio en una muestra de pus. Imagen de PD-USGov-HHS-CDC / Wikipedia.

Bacterias Streptococcus pyogenes al microscopio en una muestra de pus. Imagen de PD-USGov-HHS-CDC / Wikipedia.

Pero si el hecho de que la causa pueda ser una simple bacteria común y corriente ya es de por sí un dato inquietante, en realidad son otros dos los que deben ponernos los pelos de punta. Primero, y ahora que estamos en plena temporada de vacaciones, es preciso recordar una advertencia médica que contradice un mito muy extendido: el agua del mar NO desinfecta ni cicatriza las heridas. Pensar en el mar como un desinfectante es sencillamente un inmenso contrasentido, ya que está lleno de vida, grande y pequeña, por lo que es una peligrosa y frecuente fuente de infecciones en las llagas abiertas.

Sobre todo, los expertos alertan de los cortes producidos directamente dentro del agua, ya que pueden introducirnos en tejidos profundos algunas bacterias que viven en el medio marino, que crecen mejor sin aire y que preferiríamos sinceramente no tener dentro de nosotros, como Vibrio y Aeromonas. En particular, las Vibrio han sido la causa de la fascitis necrosante en varios casos descritos de turistas heridos durante excursiones de pesca, y un estudio de 2010 demostró la presencia de estas bacterias en la costa valenciana. Hasta donde sé, no se ha publicado cuál fue la bacteria o bacterias que causaron la muerte al infortunado Suchilin, pero es muy posible que contrajera la infección en el mar.

El segundo motivo es infinitamente más preocupante y requiere una explicación aparte. Porque no solo afecta a la fascitis necrosante, sino a muchas otras infecciones bacterianas, y es el motivo por el que casos como el de Suchilin no solo nos deberían llevar a lamentar su mala suerte y compadecer a su familia, sino también a hacer todo cuanto esté en nuestra mano para evitar un futuro en el que cualquiera podríamos vernos en una situación similar. Mañana seguimos.

¿Existen los “pilares de la creación” en la nebulosa del Águila?

Lo que ven en esta foto podría no existir:

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 2014. Imagen de NASA, ESA y Hubble Heritage Team (STScI/AURA).

Pero no, no se trata de una manipulación digital como la falsa imagen de las puertas del Cielo que les traje aquí ayer.

En este caso se trata de una fotografía real llamada “los pilares de la creación”, una de las más famosas tomadas por el telescopio espacial Hubble. Se obtuvo en 1995 y muestra las nubes de polvo y gas en la nebulosa del Águila, a 7.000 años luz de nosotros, talladas por la luz de las nuevas estrellas hasta formar esos rascacielos cósmicos de 4 años luz. En realidad la que pueden ver arriba es una nueva versión, obtenida por el Hubble en 2014 en homenaje a la imagen original, esta que sigue, y que acompaño con un panorama más amplio de la nebulosa mostrando la ubicación de esta estructura.

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Los pilares de la creación, imagen tomada por el telescopio espacial Hubble en 1995. Imagen de NASA, Jeff Hester y Paul Scowen (Arizona State University).

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los "pilares de la creación". Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Imagen del telescopio espacial Spitzer de la nebulosa del Águila, con la ubicación y el detalle de los “pilares de la creación”. Imagen de NASA/JPL-Caltech/N. Flagey/MIPSGAL Science Team.

Pero lo que ven en estas fotos podría no existir porque quizá fue destruido hace unos 6.000 años. Lo que están viendo es el pasado, una estructura cósmica tal como era hace 7.000 años, el tiempo que ha tardado en llegarnos la luz de la nebulosa a través del universo. En 2007 un equipo de científicos dirigido por el francés Nicolas Flagey analizó las imágenes del Águila tomadas por el telescopio espacial Spitzer, capaz de ver la luz infrarroja que entonces era invisible para el Hubble. Flagey y sus colaboradores observaron lo que parecía una inmensa burbuja de gas y polvo calientes causada por la explosión de una supernova, acercándose a toda velocidad hacia los pilares. Esta burbuja es la masa roja que se observa en la imagen anterior de infrarrojos.

Dado que aquella región es una de las incubadoras de estrellas más activas y mejor estudiadas, los astrónomos consideran que varias de las estrellas masivas formadas cumplen las condiciones para estallar como supernovas, por lo que una hecatombe estelar allí es casi un desastre anunciado.

Según calculaban los investigadores en su estudio, publicado en 2009, las imágenes del Spitzer sugerían que, en aquella foto fija del Águila, a la onda expansiva de la supernova le faltaban unos 1.000 años para arrasar los pilares, por lo que la humanidad tendría que esperar unos 1.000 años para ver cómo aquellas torres quedaban deshilachadas como quien sopla un pompón de diente de león. Pero dado que nuestro retraso en recibir noticias de la nebulosa del Águila es de 7.000 años, esto implicaría que los pilares habrían dejado de existir cuando los humanos aún íbamos por el Neolítico.

Flagey calculaba que la explosión de la supernova se produjo hace entre 8.000 y 9.000 años, lo que significa que el fogonazo de este cataclismo debería haber llegado a la Tierra hace 1.000 o 2.000 años. El astrofísico, por entonces estudiante de doctorado, dijo que había identificado algunos posibles eventos candidatos en las crónicas históricas de la antigua China.

Claro que he comenzado diciendo que los pilares podrían no existir, y no que no existen. Porque no todos los expertos están de acuerdo con Flagey. En el momento de la publicación de su estudio ya hubo alguna opinión que cuestionaba la interpretación de la supernova, alegando que lo observado en las imágenes de infrarrojos podría deberse al calentamiento de la nube por estrellas masivas de la propia estructura, y no a un fenómeno que debería producir una huella de radiación mucho mayor.

Hace unos meses, el astrofísico y divulgador Ethan Siegel publicaba en su blog Starts With a Bang un artículo en el que rebatía la hipótesis de Flagey. Siegel ha analizado las nuevas imágenes tomadas por el Hubble en 2014, las ha comparado con las de 1995 y ha añadido las tomas en infrarrojo aportadas por una nueva cámara de este telescopio, concluyendo que no hay rastro de supernova y que la dinámica de las estructuras de la región se debe exclusivamente a las estrellas presentes.

Así, Siegel considera refutada la teoría de la destrucción de los pilares, que seguirán existiendo durante eras cósmicas hasta que el material de incubación de las estrellas acabe evaporado por la luz de las que ya se han formado. Pero en otro estudio publicado en 2011, Flagey admitía que la hipótesis de la supernova era algo especulativa.

Lo cual simplemente debería advertirnos contra los titulares periodísticos del estilo “los pilares de la creación ya no existen”, tanto como contra los del estilo “los pilares de la creación continúan existiendo”. El periodismo clásico odia los titulares interrogativos tanto como los condicionales. Pero la ciencia siempre está en construcción, y a veces todo lo que tiene son preguntas y condicionales. ¿Existen los pilares de la creación? Podría ser. Y podría ser que no.

Ayala, ¿más conocido ahora por las denuncias de acoso sexual que por su ciencia?

El gran científico de origen español Francisco José Ayala ha sido obligado a abandonar su puesto en la Universidad de California, y su nombre ha sido borrado de programas, edificios y becas (es un prominente mecenas de la institución), después de que una minuciosa investigación interna haya considerado fundadas las denuncias de acoso sexual de cuatro colaboradoras suyas.

No vengo aquí a juzgar el comportamiento de Ayala o lo justificado de las denuncias, ya que como es obvio desconozco por completo ambas cuestiones. No voy a unirme a ese frívolo juego tan popular de morder la carnaza sin saber antes a fondo de qué está hecha. Entrevisté a Ayala un par de veces o tres por teléfono hace ya muchos años, y como es lógico me dejó la impresión esperada, la de un brillante pensador cercano y amable, con un gran amor por la ciencia y una notable capacidad divulgadora.

He conocido al Ayala científico, no al Ayala persona. Si bajo esa fachada se escondía alguien que aprovechaba su doble condición de hombre y poderoso para someter a una humillación silenciosa a otras personas por su doble condición de mujeres y subordinadas, merecería el mismo desprecio que cualquier otro tipo con el mismo perfil, ya sea el jefe de un taller de costura o un premio Nobel. Simplemente pensando en lo que yo sentiría si algo semejante le ocurriera a una mujer que amo, puedo aproximarme un poco a lo que sentiría ella, pero sabiendo que lo que sentiría yo solo sería una fracción de lo que sentiría ella.

Francisco J. Ayala. Imagen de Xiao Dai / Wikipedia.

Francisco J. Ayala. Imagen de Xiao Dai / Wikipedia.

Pero si por el contrario, como ha asegurado al diario El Mundo su colaborador Camilo José Cela Conde (hijo del escritor), a Ayala le han acusado por “decirle a una mujer que es guapa y elegante” y por saludar besando en las mejillas (un gesto que, es cierto, en EEUU se considera raro, y totalmente inapropiado en el ámbito profesional), el asunto cambiaría radicalmente.

Esto último no es necesariamente inconcebible. Recuerdo que, durante mis años de tesis doctoral, supe de un compañero que se había marchado a EEUU con un postdoc y que había sido tildado de acosador por una colaboradora por haber colocado en su despacho una estatuilla de la Venus de Milo. Claro, él procedía de un laboratorio cuyo director tenía un condón femenino pegado a la ventana, y que en las cenas de grupo solía contar sus aventuras juveniles en una comuna hippie donde un chico negro le practicó una penetración anal.

Recuerdo haber leído hace unos años un divertido blog de una chica estadounidense (siento no recordar algún dato más concreto para rebuscarlo y poner aquí un enlace) que residía en España y trabajaba como auxiliar de conversación de inglés en un colegio. Comentando las diferencias culturales entre EEUU y España, algo le había llamado enormemente la atención, y es que en las paredes del colegio colgaban, decía ella, imágenes de mujeres desnudas. Eran fotos de cuadros como la maja desnuda de Goya o la Venus del espejo de Velázquez. Decía sentirse incomodada por aquellas imágenes, que en su país jamás estarían expuestas a la vista de los niños.

El propio Ayala ha difundido una declaración en estos términos:

Lamento profundamente que lo que yo siempre he considerado como los buenos modales de un caballero europeo –saludar a las mujeres afectuosamente, con un beso en ambas mejillas, halagarlas sobre su belleza– haya hecho sentir incómodas a colegas a las que respeto. Nunca fue mi intención. No quiero someterlas a ellas, a mi familia o a esta institución a un largo proceso de investigaciones, audiencias, apelaciones y demandas. Tengo mucho respeto por ellas, y mucho trabajo por hacer. Continuaré mi investigación con vigor renovado y agradezco su apoyo a mis colegas de todo el mundo.

Por su parte, en el diario The New York Times la abogada de tres de las denunciantes, Micha Liberty, alegaba que “hay una gran diferencia entre los modales de caballero y el acoso sexual en el trabajo. No estaríamos aquí si estuviéramos hablando de modales y galantería”. Liberty añadía que se trataba de “comentarios inapropiados y otro tipo de conductas”, incluyendo tocamientos no deseados, y que entre algunas personas circulaban comentarios como “no te quedes a solas con él” o “no subas en el ascensor con él”.

En el bando contrario, el diario señalaba que “algunos de los colegas del Dr. Ayala han expresado su consternación ante las alegaciones presentadas contra él”. La astrofísica Virginia Trimble ha declarado: “es un buen ser humano. No sé decirlo de otra manera”. Trimble le ha enviado un email a Ayala con el asunto “no me creo una palabra”. El matemático Donald Saari ha calificado el asunto de “perturbador”. “Contradice todo lo que sé sobre el Dr. Ayala”, ha dicho. En la revista Science la colaboradora de Ayala Kristen Monroe, politóloga de la misma universidad, apunta: “Estoy impactada y sorprendida por los cargos contra el profesor Ayala, ya que nada en nuestra interacción durante más de 20 años ha sugerido que trate a las mujeres de otro modo que con respeto y cortesía”.

Estos son los hechos y tengo poco más que añadir, salvo que si algo parece meridianamente claro es que el caso de Ayala no es ni remotamente cercano al de Harvey Weinstein (el productor de cine que motivó la campaña #MeToo), ni tampoco al de James Watson (más sobre Watson abajo). Mi impresión personal perfectamente opinable es que tal vez un hombre de 84 años no ha sabido adaptarse a un cambio cultural necesario: el de considerar machistas ciertos comportamientos diferenciales hacia hombres y mujeres que en su época de crianza eran de uso común, como entonces también lo eran ciertos comportamientos diferenciales hacia personas con distintos colores de piel.

Pero si traigo hoy el caso de Ayala es porque me interesa destacar dos aspectos relacionados al hilo del asunto. El primero de ellos lo planteo en forma de pregunta: ¿cuántos sabían quién es Francisco J. Ayala antes de este episodio?

Ayala forma parte de una escuela y una generación de biólogos evolutivos que reactualizaron las teorías de Charles Darwin a las nuevas disciplinas, enfoques y herramientas científicas nacidas en el siglo XX, como la genética molecular y la biología de poblaciones. Sus contribuciones han sido muy destacadas en campos como la evolución comparada en humanos y otros primates o la determinación de distancias evolutivas, además de haber investigado también el proceso evolutivo de enfermedades como la malaria. Es uno de los biólogos evolutivos más admirados y prestigiosos del mundo y toda una institución en su campo, exasesor del entonces presidente Bill Clinton y expresidente de la Asociación de EEUU para el Avance de la Ciencia, la primera institución científica del mundo, editora de la revista Science. Si Ayala no tiene un Nobel, es sencillamente porque no existe el Nobel de Biología.

Y a pesar de todo ello, Ayala es probablemente un desconocido para el ciudadano medio español. En este país tan carcomido por los nacionalismos de una y otra bandera, el hecho de que Ayala se nacionalizara estadounidense le ha dejado fuera de una popularidad científica detentada en su lugar por otros (nótese el verbo). Pero Ayala solo hizo lo lógico y natural: emigró de un país pobre en ciencia (entonces más que ahora) a la primera potencia científica del mundo, comprobó lo bien que se investiga allí y lo bien que se vive de investigar allí, y se quedó. A España vienen los futbolistas.

Lo irónico de todo el asunto es que muchos habrán conocido a Ayala no como el gran científico que lleva siendo durante gran parte de sus 84 años, sino como el acosador sexual que parece ser ahora. Desde luego, si realmente lo es, merece que su nombre quede unido indisolublemente a esta mancha. Pero ojalá hubiera sido tan conocido aquí antes, cuando solo era uno de los mejores biólogos evolutivos del mundo.

El segundo aspecto está relacionado con lo anterior, y es que, con independencia de que Ayala sea realmente un acosador sexual o no, tanto en ciencia como en cualquier otro aspecto de la creación humana debemos aprender a separar a la persona de su obra. Tenemos una estúpida tendencia a dar por hecho que el autor de una obra admirable debe ser por fuerza una persona admirable, y en infinidad de casos no es así. Como ejemplos, rescato algo que escribí aquí hace unos meses, con una profusión de enlaces para que quien quiera pueda acudir a las fuentes:

Quien piense que no es posible admirar la creación sin admirar a su creador, debería abstenerse de disfrutar de las obras de los antisemitas Degas, Renoir o T. S. Eliot, los racistas Lovecraft y Patricia Highsmith, el fascista Céline, los pedófilos Gauguin y Flaubert, el machista Picasso, el maltratador y homófobo Norman Mailer, el incestuoso Byron o incluso la madre negligente y cruel Enid Blyton (autora de Los cinco). Y por supuesto, jamás escuchar a Wagner, el antisemita favorito de Hitler. Esto, solo por citar algunos casos; con demasiada frecuencia, una gran obra no esconde detrás a una gran persona.

No pretendo comparar a Ayala con los personajes mencionados, algo que –de acuerdo a lo publicado– sería profundamente injusto incluso desde la postura más extrema. Lo que propugno es que, incluso en los casos demostradamente más deleznables, debemos distinguir al autor de su obra. Puede aprovecharse aquello de valioso, si es que lo hubo, que pudiera haber aportado a la psquiatría infantil el médico nazi Hans Asperger sin necesidad de recordar ni mucho menos homenajear su nombre.

Tal vez el ejemplo científico que mejor ha plasmado este conflicto sea el de James Watson, cuya contribución sí ha sido tan esencial –el descubrimiento de la estructura del ADN– como lamentables han sido sus declaraciones y actitudes racistas y misóginas. Así de acertadamente lo exponía en 2014 el genetista británico Adam Rutherford en el diario The Guardian:

“Nadie quiere admitir que existo”, dice Watson. No es eso. Es más bien que nadie está interesado en sus visiones racistas y sexistas. Watson, junto con Crick, siempre será el descubridor de la doble hélice, a mi juicio la revolución científica del siglo XX. Este es nuestro reto: celebrar la ciencia cuando es grande, y a los científicos cuando lo merecen. Y cuando resultan ser unos fanáticos horribles, seamos honestos también con ello. Resulta que, igual que el ADN, la gente es conflictiva, complicada y a veces llena de errores espantosos.

La foto del Hubble de las puertas del Cielo: ni Cielo, ni Hubble, ni foto

En este mundo traidor sí hay verdad y mentira, aunque en muchos casos lo segundo parezca lo primero cuando se mira a través de ese cristal que es internet y, sobre todo, las redes sociales. Posiblemente a Ramón de Campoamor le habría costado un rato más rimar esta versión actualizada de su famoso poema que obviamente contradice su visión relativista.

Hoy ningún ámbito informativo se libra de la plaga de las fake news. Tampoco la ciencia. Y en contra de lo que podría parecer, también en este campo las noticias falsas pueden ser peligrosamente tóxicas: un claro ejemplo lo tenemos en los bulos de las pseudomedicinas o de los presuntos riesgos de las vacunas. De hecho, desinformaciones de este tipo pueden contarse entre las más dañinas imaginables, porque no ponen en juego la reputación o la carrera de un político, sino que cuestan vidas.

Hoy traigo un caso mucho más amable e inocuo, que confirma además una regla de las fake news: van y vienen en oleadas recurrentes, sin que los desmentidos como este que estoy escribiendo sirvan en el menor grado para desbancarlas.

En los días pasados me ha llegado por círculos familiares un notición de incalculables proporciones: el telescopio espacial Hubble ha fotografiado en el espacio profundo una increíble estructura que ha dejado estupefactos a los astrónomos de la NASA, y que ciertas fuentes han identificado como las puertas del Cielo; el Cielo con mayúscula. Ese mismo. Esta es la foto:

Imagen retocada digitalmente de la nebulosa Omega o del Cisne. Creación de Adam Ferriss sobre imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

Imagen retocada digitalmente de la nebulosa Omega o del Cisne. Creación de Adam Ferriss sobre imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

Cuentan que, cuando el cosmonauta Yuri Gagarin regresó de su histórico vuelo espacial, dijo que no había visto a Dios allí arriba. Cuentan, pero no es cierto, ya que no existe ninguna fuente acreditada y fiable de esta presunta anécdota (internet no ha inventado las fake news). Pero no se trata de una cuestión de creencias; de hecho cuentan, y esto sí parece contrastado, que Gagarin bautizó a su hija Yelena poco antes de su viaje. Pero la cuestión es más bien que alguien con la formación, la madurez y el buen juicio de Gagarin nunca habría creído en serio que uno podía darse una vuelta por el espacio y ver por allí a un Dios sentado en un trono flotante; o apuntar un telescopio muy potente a la profundidad del cosmos y divisar las puertas de un Cielo.

Como todos somos víctimas del fondo cultural de nuestra infancia, debo confesar que, más que las puertas del Cielo, el primer vistazo a la foto me sugirió aquel chalecito que Supermán tenía en el polo. Y si se trata de puertas, desde luego que así es como uno podría imaginarse la puerta de Tannhäuser.

De hecho, para los no creyentes en un Dios pero sí en cualquier fake news que se les pone a tiro, la imagen ha circulado también con un pie de foto alternativo según el cual lo mostrado son esculturas cósmicas de hielo en la nebulosa de la Quilla (también llamada Carina).

Pero lo que era de todo punto evidente al primer golpe de vista es que la imagen es falsa. ¿Un castillo de hielo de varios años luz de altura flotando en el espacio? Sencillamente, la naturaleza no funciona así. Y cuando los cazadores de fakes han indagado en el origen de la imagen, han descubierto que no solo es, como cabía esperar, una manipulación digital, sino que nada de lo dicho es cierto: ni astrónomos estupefactos, ni nebulosa de la Quilla, y ni siquiera el telescopio Hubble.

La web sobre leyendas urbanas Snopes.com y el astrónomo Phil Plait, autor del blog Bad Astronomy, se ocuparon de rastrear en detalle el origen de la imagen… hace más de dos años. Y como ya he dicho, de poco sirve que fuentes tan inquisitivas y autorizadas como Plait o Snopes zanjen el asunto; nunca queda zanjado. Los bulos vienen y van, pero siempre vuelven.

Esta es la historia de la imagen. La foto original fue obtenida en 2011 no por el Hubble desde el espacio, sino por el VLT Survey Telescope (VST) del Observatorio Europeo Austral (ESO) en el desierto de Atacama, en Chile. Lo que muestra no es la nebulosa de la Quilla, sino la Omega o del Cisne. Y por supuesto, aunque la imagen es de por sí sobrecogedora, no muestra nada que se parezca a unas presuntas puertas del Cielo o a esculturas cósmicas de hielo. Esta es la foto tomada por el VST:

La nebulosa Omega o del Cisne. Imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

La nebulosa Omega o del Cisne. Imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

Y esta es la misma, girada y recortada por Phil Plait para ajustarse al encuadre de la versión manipulada:

La nebulosa Omega o del Cisne. Imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

La nebulosa Omega o del Cisne. Imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

Y así llegamos a la versión manipulada:

Imagen retocada digitalmente de la nebulosa Omega o del Cisne. Creación de Adam Ferriss sobre imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

Imagen retocada digitalmente de la nebulosa Omega o del Cisne. Creación de Adam Ferriss sobre imagen de ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute.

La modificación es obra del artista digital Adam Ferriss, que aplicó en la parte central un filtro llamado pixel sorting para reordenar los píxeles por columnas en función de su brillo. Al reagrupar los trocitos de la imagen verticalmente por su nivel de luz, el resultado son esas agujas de aspecto sólido. Ferriss nunca pretendió engañar a nadie haciendo creer que la imagen era real, sino que aplica la manipulación digital para crear visiones ficticias.

Lo más curioso es que, según descubrió Plait, las referencias a la NASA, al Hubble y a las esculturas cósmicas de hielo en la nebulosa de la Quilla tienen un origen fidedigno, aunque sin ninguna relación con la imagen anterior. En 2010, la NASA publicó esta otra fotografía de la Quilla obtenida por el Hubble, que muestra cómo la radiación de estrellas masivas empuja sobre las nubes de polvo y gas helado, tallando huecos en la nebulosa. La imagen se publicó bajo el título “esculturas cósmicas de hielo”. Cómo llegó este texto real a mezclarse con la obra de Ferriss, solo internet lo sabe.

La nebulosa de la Quilla o Carina. Imagen de NASA, ESA, and the Hubble Heritage Project (STScI/AURA).

La nebulosa de la Quilla o Carina. Imagen de NASA, ESA, and the Hubble Heritage Project (STScI/AURA).

Las lluvias de primavera traen nubes de moscas negras bebedoras de sangre

Como habitante de la zona serrana de Madrid, llevo muchos años compartiendo mis veranos al aire libre con un visitante pelmazo y nunca invitado, la mosca negra. Pero aún me sorprende lo poco conocido que es este molesto bicho entre mis convecinos.

Por esta época no falta algún amigo que, por aquello de que muchos consideran erróneamente a un biólogo molecular como algo parecido a un médico, me muestran monstruosas picaduras asegurándome que las arañas les están robando la sangre chupito a chupito. Primero, les explico que las arañas no van de eso, y que tienen cosas mucho mejores que hacer que andar picando a la gente; por ejemplo, cazar los insectos de los que necesitan alimentarse, ya que no beben sangre. Segundo, les muestro mis propias picaduras monstruosas, y les aclaro cuál es el monstruo que las causa: la mosca negra. ¿Qué mosca negra?, preguntan siempre.

Esta mosca negra:

Una mosca negra (simúlido). Imagen de Fritz Geller-Grimm / Wikipedia.

Una mosca negra (simúlido). Imagen de Fritz Geller-Grimm / Wikipedia.

Su ficha policial: alias simúlidos, insecto díptero (dos alas, como las moscas y los mosquitos), más corto que un mosquito (unos 3 milímetros) pero más corpulento, del color que indica su nombre, y con un inconfundible perfil chepudo. Algún otro verano anterior he hablado aquí de ella, explicando que no pica limpiamente como el mosquito, que bebe su sopa con pajita, sino que la mosca negra abre una herida con sus piezas bucales, espera a que mane la sangre y entonces se pega un festín. La hembra necesita componentes de la sangre para incubar los huevos.

Suele decirse que la mordedura de la mosca negra no duele, y para explicarlo a menudo se supone que inyecta algún anestésico local. Pero en 2011 un estudio analizó la saliva de un simúlido y catalogó 164 proteínas presentes en ella, sin encontrar ningún compuesto con este efecto. En su lugar, el entomólogo molecular y parasitólogo británico Mike Lehane proponía que tal vez los insectos hematófagos (bebedores de sangre) liberen enzimas que destruyen los mensajeros químicos encargados de transmitir el “¡ay!” en las terminaciones nerviosas de la herida. Por mi parte, y dado que puedo añadir mi experiencia personal a lo que dicen los estudios, puedo decir que no es un caso como el mosquito: este pica de incógnito absoluto, a no ser que nos remueva el vello de la piel al posarse; pero la mordedura de la mosca negra sí puede sentirse como una ligera punzada.

Ignoro el motivo por el que estos insectos son bastante ignorados por nuestras latitudes, pero es equivocado pensar que los mosquitos y otros chupadores de sangre son una plaga típica de lugares cálidos y tropicales. Cualquiera que haya viajado en verano a regiones húmedas templadas o frías habrá comprobado que los bichos picadores pueden ser una plaga infinitamente más molesta en Escocia, Finlandia o Canadá que en el Caribe.

Nube de moscas negras en Canadá. Imagen de NicolasPerrault / Wikipedia.

Nube de moscas negras en Canadá. Imagen de NicolasPerrault / Wikipedia.

En Escocia el llamado Highland Midge, que por allí también llaman cariñosamente “diminuto bastardo”, puede arruinar cualquier momento de disfrute en un idílico páramo. No es una mosca negra, sino un culicoide, otro tipo de díptero vampiro más estilizado. En Nueva Zelanda a las moscas negras las conocen como sandflies, moscas de la arena, aunque en otros lugares del mundo se llama sandflies a los flebotomos, los insectos que transmiten la leishmaniasis y que no son moscas negras. Muchos bichos, muchos nombres, una única costumbre fastidiosa: chuparnos la sangre.

En concreto en España tenemos decenas de especies de moscas negras, según el último inventario global actualizado en 2018. Imagino que estos bichos deben de ser mucho más familiares para los habitantes del valle del Ebro, ya que por allí se informa con frecuencia de su molesta invasión. En la provincia de Madrid algunos informes parecen restringir su presencia a los valles del Jarama y el Henares, así que invito con gusto a los expertos en la materia a que se den una vuelta por la zona del Guadarrama para añadirnos a sus mapas de distribución.

Este año el problema es especialmente acuciante; las moscas negras forman auténticas nubes, algo que imagino tendrá mucho que ver con la primavera excepcionalmente lluviosa que hemos tenido por aquí. Estos insectos se crían en los cursos de agua y suelen frecuentar las zonas húmedas y con vegetación.

Mosca negra. Las que se encuentran por Madrid son parecidas pero los ojos son oscuros como el cuerpo. Imagen de Mark Span / Wikipedia.

Mosca negra. Las que se encuentran por Madrid son parecidas pero los ojos son oscuros como el cuerpo. Imagen de Mark Span / Wikipedia.

Esto es lo que hace falta saber sobre la picadura de la mosca negra, según los estudios y de acuerdo a mi propia experiencia de convivir durante años con estos insidiosos vecinos:

  • Pican de día, pero normalmente solo en las horas de menos calor, al amanecer y al atardecer. Hace tres años escribí aquí que el verano de 2015 venía anormalmente cálido, y que las moscas negras estaban picando a pleno sol en los días más suaves. En aquella ocasión, rebuscando por ahí encontré un libro ruso sobre dípteros (los científicos somos así de friquis) según el cual las moscas negras podían adaptarse a temperaturas más cálidas si el ambiente las forzaba, así que los insectos acostumbrados de este modo podían salir a buscar su ración de sangre a mediodía cuando el tiempo venía más fresco.
  • Al menos en mi experiencia, pican sobre todo en la parte posterior de las piernas, tanto en el muslo como en la pantorrilla. Cubrirse estas zonas al atardecer evita bastante la molestia. Como mínimo, obliga a las moscas negras a picar en zonas más visibles, lo que facilita el recurso del manotazo.
  • No pican a través de la ropa, ya que no pinchan con un estilete como los mosquitos, sino que muerden con sus piezas bucales.
  • La picadura duele en diferido. Al cabo del rato la zona se inflama, se enrojece, se calienta y pica horriblemente. Cada persona puede tener una sensibilidad diferente a los compuestos de la saliva del insecto, pero a veces la molestia se extiende a la pierna entera. La hinchazón y el picor suelen durar varios días. La mordedura en sí puede tardar en cicatrizar, y en algunos casos deja una marca permanente.
  • Por suerte, en nuestras latitudes la mosca negra no transmite ninguna enfermedad. Menos afortunados son los habitantes de las regiones tropicales, donde estos insectos son vectores de la oncocercosis o ceguera de los ríos.
  • Aunque suele recomendarse el uso de mosquiteras en las ventanas abiertas, en mi experiencia las moscas negras jamás entran en casa; son animales de exterior. Es posible que en mi caso las atraigan la vegetación y el estanque del exterior, pero nunca llegan a franquear una puerta abierta.
  • Dicen que los repelentes de insectos con alto contenido en DEET (los más utilizados contra los mosquitos en las regiones tropicales) son efectivos, aunque personalmente no los he probado contra la mosca negra.

Un microparque del Pleistoceno en una placa de cultivo: minicerebros neandertales

Es curioso cómo esto mismo que estoy haciendo ahora, escribir, algo que una inmensa cantidad de humanos hacemos a diario (desde el WhatsApp a los estudios de metafísica), ha tenido un poder tan inmenso en nuestro conocimiento del pasado. Llamamos historia a lo que podemos leer de un modo u otro, y prehistoria a aquello de lo que aún no quedaba registro escrito. Los investigadores dedicados a estudiar aquel periodo que nadie pudo contarnos –arqueólogos, paleontólogos, paleoantropólogos, paleoclimatólogos, paleobotánicos, paleozoólogos y otros paleos– tenían que bastarse tradicionalmente con intentar leer los vestigios que nuestro planeta dejó enterrados, como un juego de pistas.

Y es asombroso cómo estas investigaciones están cambiando gracias a la tecnología y al cruce de disciplinas. Los arqueólogos utilizan la física atómica para fechar las piezas, conocer la historia de su conservación, estudiar su estructura interna o incluso conocer el interior de una pirámide sin entrar. Los paleontólogos aplican modelos de computación para saber si un ave prehistórica podía volar o a qué velocidad corría un tiranosaurio.

Ayer hablaba de esto último entre los mitos y realidades de los dinosaurios a propósito de la nueva entrega de la saga jurásica en los cines. Y mencionaba también que, a una escala mucho más modesta que la imaginada por Michael Crichton, la reconstrucción del pasado es ya uno de los métodos que hoy se utilizan para conocerlo. Como he contado aquí y en algún otro medio, el paleontólogo Jack Horner y otros investigadores tratan de recrear los rasgos de los dinosaurios en las aves actuales.

Pero gracias al ingenio y a la tecnología, tampoco es necesario llegar a resucitar especies largamente extinguidas para aprender algunos de sus rasgos. Estudiando los cráneos de antiguos homininos y relacionando su estructura con la de nuestro cerebro, los investigadores han llegado a deducir cómo era el suyo y cuáles eran sus facultades mentales.

Ahora, los científicos han llevado esta reconstrucción del pasado un poco más allá, creando una especie de microparque del Pleistoceno en una placa de laboratorio: minicerebros neandertales en una placa de cultivo.

Cráneo de Homo sapiens (izquierda) frente a otro de neandertal. Imagen de hairymuseummatt (original photo), DrMikeBaxter (derivative work) / Wikipedia.

Cráneo de Homo sapiens (izquierda) frente a otro de neandertal. Imagen de hairymuseummatt (original photo), DrMikeBaxter (derivative work) / Wikipedia.

La tecnología de los minicerebros, o en general organoides, consiste en el uso de células madre para crear un pequeño bloque de tejido que reproduce la matriz celular tridimensional de un órgano a escala diminuta, en el tamaño de un grano de arroz. La tecnología, desarrollada en esta década, se está aplicando sobre todo a la creación de minicerebros.

Si tenemos en cuenta que el cerebro de un ratón es aproximadamente como un garbanzo, un minicerebro no está tan alejado de un órgano real. Y aunque su estructura es más simple y solo representan un estado temprano de desarrollo, los investigadores han conseguido que sus neuronas formen conexiones y funcionen como pequeños circuitos. Algunos científicos que trabajan en este campo dicen que esto equivale a una forma primitiva de pensamiento, y creen que en un futuro próximo los minicerebros llegarán a ejecutar tareas sencillas de computación, que al fin y al cabo es lo que las neuronas saben hacer.

Sí, parece ciencia ficción, pero ya no lo es. De hecho, un equipo de la Universidad de California en San Diego (UCSD) está estudiando la manera de conectar minicerebros humanos a pequeños robots con forma de cangrejo para que aprendan a controlar sus movimientos. Por supuesto que estos organoides no llegarán a simular un cerebro humano completo, pero dado que al fin y al cabo se trata de células cerebrales humanas, células pensantes, también se están desarrollando estándares éticos que regulen el tratamiento y el alcance de estas investigaciones.

Además de la utilidad más obvia, que sería investigar el funcionamiento del órgano al que simulan, los organoides servirán también para ensayar el efecto de los medicamentos, reemplazando a los animales de laboratorio. Otra de las aplicaciones más jugosas es estudiar cómo funcionan los cerebros enfermos: modificando los genes de las células madre, pueden obtenerse minicerebros con alzhéimer o, por ejemplo y como ya se ha hecho, entender cómo el virus del Zika provoca esas terribles malformaciones en el cerebro de los fetos.

Pero si es posible modificar genéticamente las células madre para que creen un minicerebro enfermo, ¿por qué no un cerebro neandertal? La desaparición de estos primos nuestros que convivieron con nosotros miles de años atrás es un eterno misterio, para cuya resolución los científicos solo cuentan con esas pistas enterradas durante la prehistoria. Pero hoy se conoce el genoma neandertal, que pudo secuenciarse a partir de algunos de esos huesos, y esta información abre la posibilidad de manipular el genoma de las células madre para neandertalizarlas, crear minicerebros, y ver si sus diferencias con los humanos puede revelar alguna otra pista sobre cómo eran distintos a nosotros.

Minicerebro humano. Imagen de Robert Krencik y Jessy van Asperen.

Minicerebro humano. Imagen de Robert Krencik y Jessy van Asperen.

Dos equipos de investigadores están trabajando en esta línea, uno en el Instituto Max Planck de Alemania, y el segundo es el mismo de la UCSD que intenta conectar los minicerebros humanos a los cangrejos robots. En una conferencia reciente la directora de este grupo, Alysson Muotri, presentó un estudio que se publicará próximamente y en el que ha conseguido minicerebros neandertalizados (los llama neanderoides) cambiando una sola letra (o base) del ADN de las células madre; solo una base en un gen llamado NOVA1, que está implicado en el desarrollo del cerebro y que presenta esta ínfima diferencia entre nosotros y los neandertales, y el cambio provoca una reacción en cadena que afecta a otro centenar de proteínas, las cuales comienzan a producirse en sus versiones neandertales.

En su trabajo, que han titulado “Reconstruir la mente neandertal en una placa de cultivo”, los investigadores han comprobado que el impacto de este minúsculo cambio es brutal: mientras que los minicerebros humanos son esféricos, los neandertalizados crecen con forma de palomita de maíz, crean menos conexiones neuronales y forman redes anómalas. Muotri compara algunos de los cambios a los que se han observado en personas con Trastornos del Espectro del Autismo (TEA).

Durante la presentación, según cuenta Science, Muotri aclaró que ni mucho menos pretende comparar a las personas con TEA con los neandertales; ella misma tiene un hijastro con uno de estos trastornos. Pero si el cableado cerebral que tenían los neandertales les dificultaba la socialización y la comunicación al mismo nivel que los humanos actuales neurotípicos, quizá aquellos parientes nuestros estaban peor adaptados para el desarrollo de sociedades complejas. Y de hecho, esta es una posible razón para la extinción de los neandertales que ya ha sido previamente propuesta por otros investigadores.

Los dinosaurios de la saga jurásica: ¿distingues la realidad de la ficción?

Hay dos constantes que han acompañado siempre a la imagen popular de los dinosaurios. Primero, que fascinan a la gente; no tanto desde que el nombre de este grupo de reptiles fue acuñado en 1842, pero sí desde comienzos del siglo XX, cuando novelas como El mundo perdido de Arthur Conan Doyle –no la primera, pero sí la más exitosa– comenzaron a popularizarlos. Segundo, que casi siempre su retrato se desvía de la realidad, precisamente para exagerar todo aquello que fascina a la gente. Es como si los dinosaurios hubieran contratado a una agencia publicitaria: ¿es esto muy diferente del marketing?

Las novelas de Michael Crichton y la saga de películas que han inspirado no son una excepción; más bien son el caso típico. Pero esto no debe interpretarse como una crítica desdeñosa; al contrario, lo que los dinosaurios de Spielberg y sus sucesores han aportado al interés de los niños en la ciencia difícilmente se consigue en el colegio. Y Crichton tampoco era ningún papanatas, sino un bioantropólogo y médico que escribió buena ciencia ficción y que se documentaba conciencizudamente para sus novelas. Y aunque llegó a flirtear con las pseudociencias, su visión de la recreación de los dinosaurios por ingeniería genética estaba muy adelantada a su tiempo allá por 1990.

Imagen de Universal Pictures.

Imagen de Universal Pictures.

Es más: el traslado de los dinosaurios de Crichton al cine ha contado desde el inicio de la saga con la asesoría del paleontólogo Jack Horner, que dirige su propio proyecto de tuneado de pollos para asemejarlos a los dinos clásicos, y que por cierto hacía un cameo en Jurassic World, en la primera escena de Owen (Chris Pratt) con los velocirraptores.

Pero sea por licencias creativas, por errores no intencionados o por nuevos descubrimientos que refutan ideas anteriores –66 millones de años después, los dinosaurios continúan actualizándose–, lo cierto es que la saga cae en una serie de inexactitudes que al menos merece la pena conocer. Aquí están, en formato interactivo.

El premio Princesa de Asturias se obstina en olvidar a Francis Mojica

En 2015 el jurado del premio Princesa de Asturias de Investigación Científica y Técnica resolvió galardonar a la estadounidense Jennifer Doudna y a la francesa Emmanuelle Charpentier “por los avances científicos que han conducido al desarrollo de una tecnología que permite modificar genes, con gran precisión y sencillez en todo tipo de células, posibilitando cambios que suponen una verdadera edición del genoma”, decía el fallo.

Lo que las dos investigadoras habían desarrollado es el sistema CRISPR-Cas9, una herramienta de corrección de ADN que ha facilitado y acelerado inmensamente la edición genómica, que ya emplean innumerables laboratorios de todo el mundo para la investigación en biología molecular y que pronto comenzará a ensayarse para remediar enfermedades genéticas en humanos. Tal es el potencial de CRISPR que ya tiene un título casi oficial en cualquier artículo científico-periodístico al respecto: la revolución genética del siglo XXI.

Sin embargo, en general las herramientas de biología molecular no se crean, sino que se desarrollan y se adaptan a partir de sistemas presentes en la naturaleza, sobre todo en los microbios. También es el caso de CRISPR, fruto de la modificación de un sistema de defensa antiviral presente en bacterias y arqueas. Pero en su concesión del premio, el jurado dejó fuera al investigador que primero descubrió, describió y nombró este sistema, y dedujo su función. Es decir, a quien entregó en bandeja a la biotecnología el tesoro natural del que se derivaría la revolución genética del siglo XXI. Por si no fuera suficiente agravio, se añade además que el científico en cuestión comparte nacionalidad con la institución que concede los premios: Francisco Juan Martínez Mojica, de la Universidad de Alicante.

El investigador Francis Mojica. Imagen de Roberto Ruiz / Universidad de Alicante, utilizada con permiso.

El investigador Francis Mojica. Imagen de Roberto Ruiz / Universidad de Alicante, utilizada con permiso.

¿Por qué el jurado del Princesa no premió también a Francis Mojica? En realidad, no lo sé. Pero aquí va mi terrible sospecha, que no deja de ser una hipótesis, aunque a continuación explico mis motivos:

Porque no le conocían. Porque jamás habían oído hablar de él.

La trayectoria de CRISPR ha sido meteórica. Era en agosto de 2012 cuando Charpentier y Doudna, que habían entablado amistad en un congreso apenas el año anterior, publicaban lo que en ciencia suele llamarse el “seminal paper“, o el estudio que influye de manera determinante sobre desarrollos posteriores (y que no debería traducirse como “estudio seminal”, ya que el DRAE no recoge este significado).

Aquel trabajo publicado en Science venía a representar la acuñación de CRISPR como herramienta biotecnológica, aunque aún debería pasar por desarrollos posteriores para convertirse en el sistema que hoy conocemos. Pero solo tres años después Doudna y Charpentier ya estaban en la cresta de la ola: en 2015 recibían el Breakthrough Prize in Life Sciences, el premio de biomedicina mejor dotado económicamente en todo el mundo. Unos meses después, al rebufo de esta importantísima distinción, llegaba el fallo del Princesa de Asturias que en su día muchos aplaudimos, como conté aquí.

¿Y qué ocurría con Francis Mojica? Lo que ocurría era que por entonces aún era un perfecto desconocido para la mayoría (y me incluyo), dado que su contribución había permanecido casi oculta. En su seminal paper, Doudna y Charpentier no citaban los estudios en los que el alicantino había descrito el sistema CRISPR, limitándose a enterrar uno de sus estudios posteriores entre las numerosas referencias incluidas en la bibliografía. Cuando en 2014 Doudna y Charpentier, ya ascendidas al estrellato, publicaban en Science una revisión sobre “la nueva frontera de la ingeniería genómica con CRISPR-Cas9”, sí incluían entre sus muchas referencias los trabajos fundamentales de Mojica publicados en 2000 y 2005, pero en el texto se limitaban a mencionar que “unos pocos laboratorios de microbiología y bioinformática a mediados de los 2000 comenzaron a investigar los CRISPR, que habían sido descritos en 1987 por investigadores japoneses…”.

Lo cual no solo era vago, sino incluso erróneo: lo descubierto en 1987 por los japoneses no era ni mucho menos CRISPR, ni en el fondo (se trataba solo de la observación anecdótica de unas ciertas secuencias en el genoma de una bacteria) ni en la forma (el término CRISPR lo inventaría Mojica muchos años más tarde). Y si bien es cierto que el laboratorio de Mojica no era el único investigando aquellas secuencias ni fue el único que dio con el descubrimiento clave, sí fue el primero en publicarlo, y también en ciencia the winner takes it all.

Bien lo saben las propias Charpentier y Doudna, ya que el lituano Virginijus Siksnys, que desarrolló el sistema CRISPR en paralelo a ellas pero perdió la carrera de la publicación, no ha disfrutado ni mucho menos del mismo reconocimiento. Hoy la ciencia en general ya no es el descubrimiento de un lobo solitario, sino un esfuerzo colectivo y distribuido. Pero dado que los premios se empeñan en continuar destacando individualidades, si hay que atribuir a un nombre la primicia en la publicación del descubrimiento de CRISPR, ese es sin duda Mojica.

El rumbo de esta historia viró bruscamente para Mojica en enero de 2016. Entonces se publicaba un extenso artículo titulado “The Heroes of CRISPR” (los héroes de CRISPR), que por primera vez indagaba en la historia y el desarrollo de esta tecnología para poner en claro quiénes eran los protagonistas de este gran avance de la biología molecular. Y el veredicto era claro: una gran parte del artículo estaba dedicada a Francis Mojica; la historia de CRISPR comenzaba con él y con su hallazgo del sistema en los microbios de las salinas de Santa Pola.

Resultaba además que aquel artículo no era el trabajo de un periodista para un medio general, sino que se publicó en la revista Cell, la primera del mundo en biología, y su autor era Eric Steven Lander, profesor del Instituto Tecnológico de Massachusetts (MIT), director y fundador del Instituto Broad del MIT y la Universidad de Harvard, asesor científico del expresidente Barack Obama… Uno de los biólogos más prestigiosos del mundo se había calzado la visera y los manguitos del periodista para investigar la historia de CRISPR y señalar con su divino dedo para decir a toda la comunidad científica: hey, ahí está, es a ese a quien se lo debéis. Y ese era el microbiólogo alicantino Francis Mojica.

De la noche a la mañana, todo cambió para Mojica. A partir de entonces no solo su trabajo comenzó a ser reconocido como merecía, sino que su propia figura salió de entre las sombras para convertirse en el objetivo de todos los flashes. Su rápida aparición repentina en la Wikipedia es solo un detalle anecdótico, pero revelador. Por fin llegaron los premios merecidos, en su país, como el Rey Jaime I de Investigación Básica en 2016 y el Fundación BBVA Fronteras del Conocimiento en 2017, pero también en el ámbito internacional, como el Albany Medical Center Prize, el cuarto mejor dotado del mundo en biomedicina en todo el mundo y el segundo en EEUU, por detrás del Breakthrough.

Y mientras, los responsables del Princesa de Asturias continúan silbando y mirando hacia otro lado, desperdiciando ya tres oportunidades sucesivas para enmendar su crasa equivocación. Sería discutible si puede comprenderse o no que en 2015 se ignorara a Mojica. Es cierto que para el científico ha existido una era pre-Lander y otra post-Lander, aunque si algo se esperaría del jurado de un premio como el Princesa, aparte de las estancias en hoteles de lujo y las grandes cenas, es que hicieran lo que hizo Lander, indagar en la historia de un hallazgo para esclarecer a quién se le debe su reconocimiento.

Por desgracia, a menudo el fallo del Princesa de Asturias de Investigación deja la incómoda sensación de que el jurado premia a golpe de titular periodístico. El último ejemplo lo tenemos este mismo mes: el ganador en la edición de este año es el biólogo sueco Svante Pääbo “por haber desarrollado métodos precisos para el estudio del ADN antiguo que han permitido la recuperación y el análisis del genoma de especies desaparecidas hace cientos de miles de años”.

El mérito de Pääbo es indudable, y su trabajo admirable e inmensamente valioso. Pero tanto como el de otros: al premiarle en solitario, el jurado no ha distinguido a quien –como dice el fallo– “ha abierto un nuevo campo de investigación, la paleogenómica”, sino al más mediático de entre los científicos responsables de esta aportación. Dado que el Princesa, a diferencia del Nobel, no establece un número máximo de premiados, una distinción en paleogenómica debería haber incluido otros nombres con tantos merecimientos como Pääbo, aunque con menos entrevistas en la prensa y menos fotos sosteniendo cráneos; como mínimo, Eske Willerslev y David Reich.

Bueno, quizá también Beth Shapiro, Johannes Krause… Lo cierto es que cada vez es más difícil e injusto destacar solo un nombre entre muchos, por ese carácter colaborativo y global de la ciencia actual. Pero dado que los premios se empeñan en el personalismo, hay algo incuestionable, y es que el premio Princesa de Asturias tiene una deuda pendiente con uno de los científicos españoles actuales más sobresalientes. Y no quieran las carambolas cósmicas que Mojica salga en la lista de los Nobel este próximo octubre (pero sí, ojalá lo quieran). Porque si fuera así, a ver con qué se limpia ese borrón.

El Nobel de Química que murió en España

Los nombres de Santiago Ramón y Cajal y Severo Ochoa son hoy de sobra conocidos incluso para el ciudadano medio sin conocimientos de ciencia. Pero esto, más que un motivo para celebrar, es una razón para el sonrojo: son las dos únicas personas nacidas en España que han alcanzado el reconocimiento de un Nobel de ciencia.

El número de españoles ganadores de un Nobel de Literatura más que duplica esta cifra (cinco, para ser exactos). El historiador del CSIC Ricardo Campos, en un estudio sobre la eugenesia del franquismo (que conté en detalle aquí), escribía que el psiquiatra franquista Juan José López Ibor definía al hombre español como “estoico, sobrio, buscador de gloria militar y literaria, despectivo hacia la ciencia y la técnica e impasible frente la muerte”. Y así hemos llegado a donde estamos.

Para un estadounidense o un británico, aprenderse la lista de sus científicos laureados con el Nobel sería casi misión imposible. Y ni siquiera la diferencia entre su potencia científica y la nuestra es suficiente justificación: como conté aquí en una ocasión, España es el undécimo país en número de publicaciones científicas (de hecho, cuando lo conté éramos los décimos, pero la reciente edad oscura para la ciencia española nos ha hecho perder un puesto que será muy complicado volver a recuperar), pero se queda en un vergonzoso vigésimo séptimo lugar en número de premios Nobel de ciencia, a la altura de Luxemburgo o Lituania.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Wendell Meredith Stanley en 1946, el año en que ganó el Nobel de Química. Imagen de Wikipedia.

Todo lo anterior me ha venido al hilo del recuerdo de un episodio poco conocido, y es que si este país solo ha alumbrado dos Nobel de ciencia, en cambio ha matado a uno más. Es un decir, claro; en realidad fue su corazón lo que mató a Wendell Meredith Stanley el 15 de junio de 1971, unas horas después de pronunciar una conferencia en la Universidad de Salamanca. Al día siguiente, 16 de junio, el diario ABC (que daba la noticia a toda página bajo el epígrafe “vida cultural”) contaba que Stanley, profesor de la Universidad de Berkeley y Nobel de Química en 1946, había fallecido de madrugada a la edad de 67 años por un infarto de miocardio en su alojamiento, el Colegio Fonseca.

Stanley había viajado a Barcelona con motivo de un congreso científico en compañía de Severo Ochoa, con quien mantenía amistad, y había sido invitado a Salamanca por el bioquímico Julio Rodríguez Villanueva, quien antes de la conferencia de Stanley advirtió de que “las preguntas que formularan al premio Nobel se le hicieran despacio, a causa de que había sufrido varios ataques al corazón”, contaba ABC. La preocupación de Villanueva no pudo ser más premonitoria.

Pero ¿quién era Wendell Meredith Stanley? Resulta curioso que para un país como EEUU un Nobel de ciencia sea algo tan de andar por casa que algunos de ellos sean casi unos completos desconocidos. Fuera de los círculos de la microbiología y la biología molecular (y tal vez dentro), el nombre de Stanley solo invita a encoger los hombros, e incluso su página en la Wikipedia inglesa no le dedica más de cuatro o cinco párrafos.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Casi oculto, Wendell Stanley asoma la cabeza al fondo de esta foto tomada en la Casa Blanca en 1961, durante un encuentro con científicos del presidente John F. Kennedy. Imagen de White House / Wikipedia.

Y sin embargo, podríamos decir que Wendell Stanley fue nada menos que el descubridor de los virus. Para los iniciados en el tema esta afirmación puede ser discutible, pero démosle la vuelta: si hubiera que nombrar a un solo científico/a como descubridor de los virus, ¿quién merecería este título más que Wendell Stanley?

En la segunda mitad del siglo XIX el francés Louis Pasteur y el alemán Robert Koch sentaron la teoría microbiana de la enfermedad, según la cual las infecciones estaban provocadas por los microbios. Pasteur, Koch y otros científicos comenzaron a identificar las bacterias responsables de numerosas enfermedades, y las infecciones dejaron de ser un misterio a medida que iban cayendo una tras otra bajo el microscopio de los investigadores.

Pero una se les resistía: la rabia. Nadie era capaz de aislar bajo las lentes una bacteria a la que culpar de la rabia. Lo mismo ocurría con ciertas enfermedades de las plantas, en las cuales los investigadores buscaban causas bacterianas al hilo de los trabajos de Pasteur y Koch, pero sin éxito. Uno de estos científicos era el químico alemán Adolf Mayer, que en 1886 describió una plaga a la que denominó mosaico del tabaco, que arruinaba las hojas de esta planta entonces tan apreciada. Mayer extraía savia de una planta afectada y la inoculaba en un ejemplar sano, observando que la enfermedad se transmitía. Pero cuando estudiaba la savia al microscopio, no encontraba nada.

Mayer y otros investigadores, como el ruso Dmitri Ivanovsky, descubrieron que el misterioso causante del mosaico del tabaco era algo capaz de atravesar no solo un papel de filtro, sino también unos filtros de porcelana inventados por el francés Charles Chamberland y que servían para limpiar un líquido de bacterias. ¿Qué era lo que causaba aquella infección del tabaco?

La teoría de la época suponía que se trataba de una toxina o de una bacteria diminuta, hasta que en 1898 el holandés Martinus Beijerinck se atrevió a aventurar que aquella enfermedad del tabaco estaba causada por otro tipo de agente infeccioso que no era una bacteria, al que llamó “virus”, “veneno” en latín, un término que ya se había empleado siglos antes en referencia a agentes contagiosos desconocidos. Beijerinck acertó al sugerir que el virus era algo más o menos vivo (no como una toxina), ya que solo afectaba a las células que se dividían. Pero se equivocó al proponer que era de naturaleza líquida.

A partir de los experimentos de Beijerinck, los microbiólogos comenzaron a llamar “virus” a todo agente infeccioso invisible al microscopio y que atravesaba los filtros. El primero en detectarse en animales fue el de la fiebre aftosa, y después llegaron los humanos, el de la fiebre amarilla, la rabia, la viruela y la poliomielitis. Pero aunque ya era de conocimiento común que todas estas enfermedades eran víricas, en realidad aún no se tenía la menor idea sobre qué y cómo eran estos virus. Aún se seguía admitiendo generalmente que no eran partículas, sino misteriosos líquidos infecciosos, una especie de veneno vivo.

Aquí es donde entra nuestro Stanley. En la década de los 30 apareció el microscopio electrónico, una herramienta que permitía hacer visible lo invisible al microscopio óptico tradicional. Y con el potencial que ofrecía esta nueva tecnología, en 1935 Stanley se propuso destripar de una vez por todas la naturaleza del virus del mosaico del tabaco, emprendiendo uno de esos trabajos penosos que alguien tenía que hacer en algún momento: despachurró una tonelada de hojas de tabaco, extrajo su jugo, lo purificó, y de todo ello finalmente obtuvo una exigua cucharadita de polvo blanco. Pero allí estaba el virus del mosaico del tabaco, una especie de minúsculo ser con forma alargada que seguía siendo infectivo incluso cuando estaba cristalizado; es decir, lo que llamaríamos más o menos muerto.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

El virus del mosaico del tabaco al microscopio electrónico. Imagen de Wikipedia.

En realidad fueron otros investigadores los que después obtuvieron las primeras imágenes de microscopía electrónica del virus del mosaico del tabaco, y Stanley se equivocó en algunas de sus hipótesis, como cuando propuso que el virus solo estaba compuesto por proteínas. Pero no solo su virus fue realmente el primer virus que ya era algo más que un nombre, sino que aquella extraña capacidad de infectar incluso cuando estaba cristalizado descubrió para la ciencia el rasgo fundamental de los virus, y es que no son exactamente seres vivos, o al menos no como los demás. Pero esta ya es otra historia.