Archivo de abril, 2021

Cierres perimetrales por zonas y descenso de los contagios: ¿causalidad o simple correlación?

Como ya he mencionado aquí antes, la lucha contra la pandemia de COVID-19 se ha convertido en el mayor experimento epidemiológico de la historia: cientos de países sufriendo oleadas sucesivas de contagios y aplicando medidas dispares con distinta temporalidad; todo ello va a dar a la ciencia infinidad de datos para mejorar la respuesta contra la próxima pandemia. Es evidente que a la actual el mundo llegó con poco conocimiento: las medidas más básicas, como las mascarillas, los cierres y las cuarentenas ya se aplicaban en la gripe de 1918. No había más armas. No se sabía qué hacer. Se reaccionó improvisando, porque ningún país occidental estaba preparado contra una pandemia.

Curiosamente, en estos días en que ha aparecido la conocida como ley de nueva normalidad, toda la preocupación parece haberse centrado en si habrá que llevar mascarilla en la playa, lo cual revela un extraño orden de prioridades. Por ejemplo, habrá quienes piensen que esto es una enorme trivialidad cuando también se ha puesto en juego un derecho tan básico como es la inviolabilidad del domicilio. Estos mismos quizá piensen que solo en las peores distopías de la ficción las autoridades se arrogan el privilegio/abuso de prohibir a un ciudadano hacer en su propia casa algo que no solamente no es un delito, sino que además está permitido en otros lugares también interiores, pero de propiedad ajena y donde hay que pagar. Y por ello quizá también estos mismos piensen que el deber de las autoridades es tomar todas las medidas que sean necesarias en el ámbito público antes de cometer la osadía de meter la mano en algo tan sagrado como es la intimidad del hogar de las personas.

Pero en fin, esto son opiniones. En el fondo, el problema sigue siendo el mismo: ¿qué medidas funcionan mejor? ¿Cuáles son simplemente teatralidad con poca o nula efectividad práctica? Aquí he contado anteriormente en varias ocasiones cuál es la respuesta a la que apuntan la mayoría de los estudios: en general, cualquier medida que suponga una restricción de la movilidad o de la interacción parece correlacionarse con un descenso de los contagios. En concreto, las que más puntos acumulan en los estudios son las ya mencionadas aquí mil veces: cierre de establecimientos no esenciales, cierre de centros laborales y educativos, y cancelación de grandes reuniones y eventos públicos. Sobre el confinamiento domiciliario, hay serias dudas. La desinfección de superficies es entre inútil y perjudicial. En cuanto a los toques de queda, aún faltan datos. Y respecto al cierre de fronteras, los estudios apuntan a más teatro que efectividad.

Pero, en el fondo, todo esto no deja de ser aún un trazo demasiado grueso, sobre todo porque se trata en general de medidas con las cuales el remedio puede ser tan malo como la enfermedad, en términos de impacto económico y social. Además hay otro gran problema, y es el verbo destacado en el párrafo anterior: “correlacionarse”. Dado que en el mundo real es muy complicado eliminar todos los factores de confusión y establecer los controles adecuados, ¿realmente esas medidas son la causa que provoca un efecto en el descenso de contagios? ¿O es simplemente una correlación entre ambas cosas sin una causalidad directa?

Una calle de Madrid en octubre de 2020. Imagen de Efe / 20Minutos.es.

Una calle de Madrid en octubre de 2020. Imagen de Efe / 20Minutos.es.

Hace unos días, un editorial en la revista The Lancet Infectious Diseases hacía una llamativa observación: comentando la situación de la pandemia en Europa y las esperanzas depositadas en la vacunación, el artículo decía esto: “Inevitablemente, el resultado de las distintas estrategias es que la UE ha visto 27 experimentos diferentes en el control de la COVID-19. El hecho de que diferentes niveles de restricciones hayan conducido a situaciones epidemiológicas similares se ha añadido al debate sobre qué medidas son necesarias, llevando a una creciente presión pública para relajar las medidas de control“.

Es importante pararse y repetir esta idea: a pesar de todas las idas y venidas, picos y valles, olas y resacas y bailes de cifras, uno de los sellos editoriales más prestigiosos del mundo en medicina como es The Lancet, y más concretamente su sección especializada en enfermedades infecciosas, concluye que los distintos tipos e intensidades de medidas restrictivas adoptadas en los distintos países de la UE han conducido a “situaciones epidemiológicas similares”. ¿Tira esto por tierra todo lo que creemos saber sobre las medidas que funcionan?

Quizá no sea para tanto. Pero sí deberíamos tener en cuenta que el paso siguiente en los niveles de la evidencia científica, pasar de la correlación a la causalidad, es muy complicado de superar. Un ejemplo: los cierres perimetrales por zonas, supuestamente las de mayor incidencia, en la práctica no necesariamente. En ciertos lugares esta medida se ha tomado y presentado como el agua bendita contra la COVID-19, porque después de aplicar estos cierres, los contagios bajan. Pero ¿hay relación causa-efecto entre una cosa y otra?

Un estudio aún sin publicar (con todas las precauciones que esto conlleva) concluye que no. Un grupo de médicos madrileños ha estudiado la evolución de los contagios en la Comunidad de Madrid a partir de septiembre de 2020, cuando comenzaron a aplicarse los cierres perimetrales por zonas, comparando además las zonas cerradas con otras abiertas. La conclusión: el descenso en la curva epidémica comenzó antes de que pudiera reflejarse el impacto de los confinamientos perimetrales”. Es más, los autores encuentran que “los confinamientos perimetrales no aumentaron la velocidad de descenso de los casos“.

En resumen, los contagios bajaron en todo Madrid, en zonas confinadas y en zonas no confinadas, y sin que en las primeras descendieran de forma más rápida. Pero el descenso general en los contagios no se debió al confinamiento de algunas zonas, dado que comenzó antes de la aplicación de las medidas. O sea, simple correlación, no causalidad.

Surgen dos preguntas: primera, por qué los confinamientos perimetrales por zonas no funcionan. Segunda, por qué la curva de contagios puede descender antes de aplicar las medidas.

Con respecto a la primera, los autores explican lo ya evidente: los presuntos confinamientos perimetrales no tienen prácticamente ninguna aplicación real, dado que en sociedades tan interconectadas poca gente vive, trabaja y lleva a los niños al colegio dentro de su misma área, mucho menos en particiones tan ignotas para el público como son las Zonas Básicas de Salud. Pero ni siquiera en los pueblos periféricos, como sabemos quienes vivimos en ellos. En concreto, dicen los autores, la movilidad se permitía para actividades esenciales como trabajar, lo que representa la mayoría de la movilidad de los residentes de las zonas afectadas“. Además, los confinamientos perimetrales tampoco impiden las situaciones de alto riesgo, como las actividades en interiores. Los investigadores citan otro ejemplo de cómo en Chile los contagios en zonas confinadas se extendieron rápidamente a las zonas vecinas no confinadas.

En cuanto a la segunda pregunta, cómo es posible que los contagios puedan descender antes de la aplicación de las medidas, hay dos respuestas, una corta y sencilla, otra larga y mucho más complicada. La primera es la de los propios autores: según apuntan, el descenso observado puede estar asociado a otras medidas aplicadas en las semanas previas, como la limitación de las reuniones sociales, el cierre de los locales nocturnos o la limitación de la capacidad de los restaurantes“.

Podríamos dejarlo aquí, y serviría. Pero merece la pena explicar la segunda respuesta, mucho más complicada. Y para ello recurrimos a otro estudio. Hace varias semanas, la Universitat Rovira i Virgili de Tarragona colgó un estudio en internet (una vez más, aún no publicado, con todas las cautelas que esto conlleva) que modelizaba el primer pico de la pandemia en España. En los medios se comentó bastante la conclusión más de trazo grueso de este estudio: que si las medidas drásticas de la primavera de 2020 se hubieran aplicado una semana antes, en ese primer pico podrían haberse salvado 23.000 vidas.

(Nota: lo de “trazo grueso” es por un motivo evidente, y es que el estudio solo modelizaba el primer pico; dado que las sucesivas oleadas están determinadas por la heterogeneidad de susceptibilidad de la población, de modo que en cada una se va reduciendo el reservorio de población más susceptible y expuesta, lo más probable es que la porción del sector más susceptible que no redujera su exposición después del primer pico acabara afectada en posteriores oleadas, de modo que el número de muertes podría haber sido mayor que el observado en esas olas sucesivas y por lo tanto la reducción total de la mortalidad habría sido menor, salvando el hecho de que las medidas iniciales sí compraban tiempo para mejorar y no saturar la respuesta sanitaria).

Pero, en cambio, hay una observación de este estudio que en ningún medio se ha mencionado, a pesar de lo brutalmente llamativa. Y es que los contagios en España comenzaron a bajar antes del confinamiento, antes de la aplicación de ninguna medida: El número de reproducción empieza a descender entre el 5 y el 6 de marzo. El descenso temprano precede a la introducción de cualquier medida de contención, también a nivel regional“, escriben los autores, añadiendo que la reducción de la movilidad, según datos de Google, no comenzó hasta el 9-10 de marzo, cuando se aplicaron las primeras medidas previas al confinamiento general.

Una vez más, es importante pararse y repetir esta idea: al menos de acuerdo a este estudio, el descenso del pico de contagios de la primera ola comenzó antes de que comenzaran a implantarse las primeras restricciones. Cuando se decretó el confinamiento general el 15 de marzo, ya se había superado el pico de contagios y la tendencia era descendente (sobra decirlo, o no, que en todos estos estudios se habla de cuándo se producen los contagios, no de cuándo se reportan y contabilizan, ya que hay un retraso de hasta unas dos o tres semanas entre ambas fechas).

Hay posibles explicaciones que los autores apuntan: sensibilización de la población ante las informaciones cada vez más presentes en los medios, o incluso que la proporción de casos detectados a casos reales comenzó a caer en picado cuando la demanda de test aumentó drásticamente, saturando la oferta. Estas explicaciones son razonables.

Pero ¿podría haber algo más? No aporta mucho caer en especulaciones infundadas. Pero tampoco hace daño, siempre que se comprenda que son eso, simples especulaciones. Y es que llama la atención ver cómo se parecen estos dos gráficos. El primero es el de la evolución de los casos de COVID-19 en España desde la primera ola hasta hoy. El segundo es el de la evolución de la gripe de 1918 (en este caso solo se reflejan las muertes, y en un lugar concreto, el estado de Michigan).

Evolución de la incidencia acumulada de COVID-19 en España desde la primera ola hasta el 5 de abril. Imagen de Carlos Gámez / 20Minutos.es.

Evolución de la incidencia acumulada de COVID-19 en España desde la primera ola hasta el 5 de abril. Imagen de Carlos Gámez / 20Minutos.es.

Muertes atribuidas a la gripe de 1918 en el estado de Michigan entre 1918 y 1920. Imagen de The Conversation.

Muertes atribuidas a la gripe de 1918 en el estado de Michigan entre 1918 y 1920. Imagen de The Conversation.

Es por lo menos curioso ver cómo se parecen las dinámicas del primer año de pandemia de una enfermedad de hace un siglo y otra actual, teniendo en cuenta la gran diferencia entre la severidad de las medidas aplicadas entonces y ahora, y dado que ahora todos damos por hecho que son las escaladas y desescaladas de dichas medidas, o sus incumplimientos, las que están marcando el curso de la pandemia. Pero ¿es realmente así? ¿O las medidas pueden afectar a las cifras absolutas (más o menos casos y muertes), pero no tanto a la evolución general (volvemos a The Lancet)? ¿Hay más correlación que causalidad en los efectos de las medidas sobre esas curvas? ¿Será que la estacionalidad está jugando un papel mucho más relevante que el que hasta ahora se le ha atribuido a la COVID-19? ¿Habrá otros factores todavía desconocidos que impongan una dinámica intrínseca de olas y resacas?

Especulaciones y nada más. Por el momento, quedémonos con la conclusión de que los datos, aunque preliminares, no apoyan el funcionamiento de los cierres perimetrales. Y en cambio, lo que sí está bien establecido es que los cierres en general perjudican en mayor medida a la población más pobre; el último estudio de muchos coincidentes se ha publicado ahora en PNAS, donde investigadores de la Universidad de Nueva York descubren que los cierres reducen el riesgo de contagio de la población con mayores ingresos –por relocalización a segundas residencias y teletrabajo– y en cambio aumentan el de los sectores medios y bajos, que trabajan fuera de casa y aumentan su actividad local debido a los cierres. Como titulaba el diario The New York Times cuando comenzaron los cierres perimetrales, “En Madrid, la resurgencia de COVID-19 divide a ricos y pobres — Las nuevas medidas de confinamiento afectan desproporcionadamente a las personas económicamente más vulnerables en la región capital“.