Archivo de septiembre, 2020

Sí, es posible infectarse dos veces con el coronavirus, y quizá las vacunas no lo impidan

En semanas pasadas he destacado aquí un importante mensaje que los expertos están repitiendo y que debería ir calando: que la ventilación y la filtración del aire pueden ser armas fundamentales en la lucha contra el coronavirus SARS-CoV-2 de la COVID-19; no solo por su capacidad potencial de reducir enormemente los contagios, sino también por tratarse de medidas cuya aplicación es relativamente fácil (una legislación oportuna y una adaptación de los locales que requeriría una cierta inversión) y que son sostenibles a largo plazo, lo que permitiría quizá relajar otras más disruptivas e insostenibles. Su único inconveniente, si acaso, es que son menos teatrales que las actuales, y algunos expertos ya han advertido de que los gobiernos parecen a veces más interesados en implantar medidas muy visibles que fomenten la sensación de seguridad y la impresión de que se está haciendo algo, aunque su utilidad práctica sea limitada, dudosa o nula, o simplemente no se apoye en ninguna evidencia científica (termometría ambulante, felpudos desinfectantes, prohibiciones de fumar en las terrazas…).

Pero cuando comento este asunto, suele surgir una pregunta: ¿a largo plazo? ¿Qué largo plazo? ¿Seis meses, un año, dos…? Durante este tiempo y por incómodo que resulte, suelen decir, podríamos tirar con distancias, cierres, algún confinamiento local y ocasional, limitaciones de aforo y mascarillas, puesto que de aquí a un año, dos a lo sumo, nos dicen que todos estaremos vacunados y que la COVID-19 solo será un mal recuerdo.

Respuesta: largo plazo es… siempre. Porque incluso si disponemos de una o varias vacunas de aquí a un año, o dos, esto no va a eliminar el virus. La COVID-19 no va a desaparecer de la faz de la Tierra. Ninguno de los virus contra los que existen vacunas ha desaparecido por el mero hecho de que una parte de la población se vacune (el ser humano únicamente ha erradicado un par de enfermedades infecciosas, con intensas campañas globales a lo largo de décadas). Y si bien algunas de las vacunas existentes, como la de la fiebre amarilla, pueden llegar a protegernos de por vida, en cambio otros patógenos son capaces de infectarnos cada año, como la gripe. Y cuanto más se sabe sobre la inmunidad al SARS-CoV-2, más se va pareciendo al ejemplo de la gripe que al de la fiebre amarilla.

Ahora sabemos a ciencia cierta que es posible que una persona contraiga el virus, enferme, desarrolle inmunidad, se cure, y pocos meses después vuelva a infectarse por segunda vez.

En los primeros tiempos de la pandemia surgieron observaciones anecdóticas sobre pacientes que parecían haber contraído una segunda infección por el coronavirus después de haber sanado. Pero en aquellas ocasiones, la ciencia optó por la hipótesis más prudente: que esas personas no hubiesen eliminado todos los restos del virus en su organismo y que esa segunda detección correspondiera a trozos rotos del virus que aún no habían desaparecido.

Nótese que “prudente”, si se trata de ciencia, tiene un significado distinto que si se habla de salud pública. En este último caso, sin duda lo más prudente era advertir a las personas curadas de la cóvid de que no bajaran la guardia y siguieran tomando precauciones, por si acaso. Por el contrario y desde el punto de vista científico, mientras no se demostrara lo contrario, la hipótesis de los restos virales no eliminados era más prudente que la de una reinfección, un fenómeno en principio más raro.

Pero ya se ha demostrado lo contrario.

Viales de la vacuna candidata rusa Gam-COVID-Vac/Sputnik V. Imagen de Mos.ru/Wikipedia.

Viales de la vacuna candidata rusa Gam-COVID-Vac/Sputnik V. Imagen de Mos.ru/Wikipedia.

En realidad, la demostración es sencilla cuando, en efecto, una persona ha sufrido dos infecciones sucesivas e independientes: basta con secuenciar los genomas de ambos virus, el de la primera detección y el de la segunda, y compararlos. Si es el mismo virus, no podrá concluirse nada con total seguridad. Pero si ambos son virus distintos, formas diferentes del SARS-CoV-2 que están circulando entre la población, entonces queda demostrado que esa persona se ha infectado dos veces. En los primeros casos reportados en primavera no pudieron compararse ambos virus, por lo que no pudo confirmarse la reinfección.

A finales de agosto, investigadores de la Universidad de Hong Kong divulgaron a los medios la confirmación de que un paciente de 33 años, que había contraído el coronavirus hacía cuatro meses y medio y había sanado, se había infectado por segunda vez. A su regreso de España, y al pasar por los test obligatorios a la entrada en Hong Kong, una PCR detectó el virus en su organismo. Al secuenciar su genoma y compararlo con el de la primera infección, los científicos comprobaron que se trataba de dos linajes diferentes (no es correcto hablar de “cepas”, ya que los virólogos suelen reservar este término para virus cuyas propiedades biológicas son distintas): el primer virus correspondía a la variante que circulaba en marzo y abril, mientras que el segundo era el que predominaba en Europa durante el verano. Dado que este último ha ido acumulando mutaciones con el tiempo, los investigadores descartan que el paciente pudiera haber adquirido los dos virus al mismo tiempo, antes de que su organismo desarrollara inmunidad.

Aunque debido a la trascendencia de la noticia los científicos comunicaron sus resultados de inmediato a través de los medios, el estudio ha sido aceptado para su publicación en la revista Clinical Infectious Diseases, por lo que podemos darlo por bueno. Pero aunque aún no puede descartarse que se trate de un fenómeno raro, sí sabemos que no es el único: posteriormente se han reportado nuevos casos en Bélgica, Holanda y EEUU.

¿Qué implicaciones tiene esto de cara a las vacunas? O dicho de otro modo: ¿es posible conseguir con una vacuna una protección mejor, más completa y duradera, que con la infección natural?

La respuesta corta: sí, es posible, pero no es lo más habitual, y lo malo es que no siempre es fácil conseguirlo.

La respuesta larga: existen casos en que una vacuna consigue una inmunidad mejor que la infección natural. Por ejemplo, los niños pequeños no logran montar una respuesta inmune extensiva contra ciertas bacterias cuyos principales antígenos son azúcares complejos (polisacáridos) presentes en la membrana celular, porque su sistema inmune aún no ha aprendido a hacerlo. En estos casos, una vacuna que lleve esos azúcares anclados a proteínas consigue estimular el sistema inmune de los niños de un modo más eficaz que la propia infección. En otros casos, la mayor concentración del antígeno en la vacuna que en el propio patógeno consigue estimular una respuesta más fuerte que este; ocurre, por ejemplo, con la vacuna contra el Virus del Papiloma Humano. Las vacunas llevan además sustancias llamadas adyuvantes que potencian la respuesta. Y por último, la vía de administración de la vacuna también puede ayudar a optimizar su efecto.

Pero, en general, lo normal es esperar que una vacuna provoque una inmunidad comparable a la de la infección natural; la ventaja de la vacuna es que permite inmunizarse como si se hubiera pasado la enfermedad, pero sin pasarla y de forma totalmente segura. El sistema inmune es muy complicado, y aún oculta grandes misterios. Y aunque una vacuna no se “descubre”, no es un hallazgo afortunado, sino un producto de ingeniería diseñado y fabricado siguiendo recetas estandarizadas de eficacia probada, existe cierto grado de incertidumbre, menor cuanto más se conoce cómo responde el sistema inmune a la infección natural con el patógeno.

Aquí ya se ha comentado que la inmunidad contra el coronavirus en las personas que han pasado la infección aún oculta muchas incógnitas. Algunos estudios han descubierto que los anticuerpos desaparecen rápidamente, en un par de meses, pero ni siquiera este es un asunto cerrado: un reciente estudio en Islandia ha descubierto niveles sostenidos de anticuerpos contra el SARS-CoV-2 cuatro meses después de la infección. Entre la comunidad inmunológica cunde la idea de que probablemente la memoria a largo plazo de la infección con este coronavirus, como ocurre con otros parecidos, podría no recaer tanto en los anticuerpos, producidos por los linfocitos B, sino en los linfocitos T, otro departamento de la respuesta inmune adquirida que tiene un papel crucial y que no se detecta en los test serológicos.

Pero mientras continúa la investigación sobre la inmunidad al virus, ya es un hecho innegable que la reinfección a los pocos meses existe. Y dado que aún no hay motivos para esperar que las vacunas en desarrollo inmunicen mejor que la infección, sería conveniente moderar el tono de los mensajes sobre las vacunas, a veces teñido en los medios de un exceso de optimismo, para no inflar las expectativas. En palabras de los autores del estudio de Hong Kong, “puede que las vacunas no proporcionen una protección de por vida contra la COVID-19”.

Entre las incógnitas aún pendientes, queda una crucial, y es si una segunda infección puede pasarse de forma más leve que la primera. En principio, podría e incluso debería ser así; el sistema inmune no olvida del todo: no solo perduran las células B de memoria, esperando en silencio a que el virus aparezca de nuevo para lanzar una segunda andanada de anticuerpos, sino que también las células T pueden prolongar la protección mucho más allá de lo que dura la primera oleada transitoria de anticuerpos. Y esto es posiblemente lo que sucedió en el paciente de Hong Kong, quien ha pasado la segunda infección sin síntomas. Pero por desgracia, esto tampoco es aplicable a todos los casos: un paciente reinfectado en Nevada (EEUU) ha sufrido una cóvid más grave en su segunda infección que en la primera.

En resumen, no perdamos la esperanza de que alguna de las vacunas en desarrollo, o versiones posteriores, consigan una protección fuerte y duradera que nos permita recuperar la vida tal y como era antes. En ocasiones, y si los antígenos clave del virus no varían a lo largo del tiempo, podría bastar con dosis sucesivas de recuerdo para mantener la protección. Pero, por el momento, es más realista moderar las expectativas de que “la” vacuna sea LA solución definitiva contra el coronavirus. Sin duda, las vacunas serán un hito crucial en la lucha contra esta lacra, pero aún ni hay motivos para confiar demasiado en que vayan a protegernos totalmente y para siempre, ni mucho menos en que vayan a borrar el virus del mundo. La lucha deberá seguir: como escribían los autores del estudio del paciente de Hong Kong, “probablemente la COVID-19 continuará circulando entre la población humana, como ocurre con otros coronavirus”.

Si hay vida en Venus, quizá no sea tan alienígena

Si los autores del reciente hallazgo sobre un nuevo y posible indicio de vida en Venus logran confirmar su descubrimiento –es decir, verificar la señal en otras longitudes de onda para comprobar que es real y no un artefacto del procesamiento de los datos–, sería de esperar que en adelante nuestro planeta vecino suba puestos en la consideración de quienes aprueban las misiones espaciales, para poder enviar algo a aquella atmósfera cuanto antes, algo que sea capaz de sacarnos de dudas antes de que no nos queden uñas que mordernos.

El administrador de la NASA ya ha dicho que es hora de priorizar Venus, y se espera que esta agencia apruebe al menos una de dos misiones ya propuestas antes del descubrimiento. Nuestra ESA tiene también un par de propuestas pendientes para enviar sondas a Venus, mientras que Rusia e India tienen misiones ya en desarrollo. Incluso alguna empresa privada podría entrar en el juego: de inmediato tras el anuncio de la detección del gas fosfano en Venus, Breakthrough Initiatives, el proyecto fundado en 2015 por el magnate ruso-israelí Yuri Milner y centrado en la búsqueda de vida alienígena, anunció la puesta en marcha de un amplio estudio multidisciplinar destinado a indagar en la posible existencia de vida en Venus y a analizar las posibilidades de enviar una sonda que solvente la incógnita.

Pero en cualquier caso, deberemos esperar. Curiosamente y dado que el anuncio del fosfano ha pillado a las agencias espaciales con el paso cambiado, más centradas en Marte, asteroides y el Sistema Solar Exterior, quien podría llegar primero a Venus es un actor insospechado: la misión india Shukrayaan-1, un orbitador que observará la atmósfera y la superficie de Venus, tiene su lanzamiento previsto para 2023, aunque no sería raro que se retrasara. La Venera-D rusa no se lanzará antes de 2026, y las misiones propuestas por la NASA y la ESA difícilmente estarán preparadas antes de finales de esta década o comienzos de la próxima.

Para entonces, es muy probable que ya se hayan hallado nuevos indicios, a favor o en contra de la presencia de vida. Al contrario de lo que siempre hemos visto en cine y televisión, viene tendiendo a ser algo improbable que la confirmación de la vida alienígena llegue con un ovni aterrizando en el jardín de la Casa Blanca o fundiendo la torre Eiffel con un rayo; más bien será algo como esto, sospechas de vida microbiana en otros mundos del vecindario solar, analizadas paso a paso, de forma muy dilatada a lo largo del tiempo, y lo peor será que tal vez nos cueste mucho llegar a dar el último paso, el de la prueba irrefutable.

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

¿Hay vida entre las nubes de Venus? Imagen de NASA/JPL (David Seal).

Más aún cuando ni siquiera está del todo claro a qué podremos llamar “vida alienígena”. En cuanto a “vida”, y como ya conté aquí, no existe una definición científica formal universalmente aceptada. Y no existe porque, si existiera, probablemente sería errónea. Según me decía recientemente con ocasión de un reportaje para otro medio el astrofísico Charley Lineweaver, un escéptico de la vida alienígena inteligente de quien ya he hablado aquí en alguna ocasión, hasta tal punto no nos aclaramos que ni siquiera los biólogos nos ponemos de acuerdo sobre si los virus, los organismos más abundantes de la Tierra, están vivos o no (yo opino que sí, pero esa es otra historia).

Y en cuanto a “alienígena”, si algún día llegamos a confirmar la presencia de microbios en otro mundo del Sistema Solar, ¿serán realmente alienígenas? Es decir, ¿podremos estar seguros de que su origen es independiente del de la vida terrestre? A propósito del mismo reportaje mencionado, el astrobiólogo español Alfonso Dávila, que investiga en el centro Ames de la NASA, me subrayaba algo ya conocido: durante la infancia del Sistema Solar, hubo un tráfico pesado de rocas entre los diferentes planetas; cientos de miles de rocas terrestres se estrellaron en Marte, y millones en Venus, según Dávila. Estos asteroides podrían haber transportado microbios de un lugar a otro, por lo que, incluso si se confirma la vida venusiana, tal vez aquellos organismos y nosotros procedamos de un mismo antepasado común.

Lo cual abre las apuestas: si llega a encontrarse algo vivo por ahí fuera, ¿serán parientes nuestros o no? Lo malo es que quizá no lleguemos a poder estar seguros; incluso si su biología básica se parece a la nuestra, con un ácido nucleico (ADN o ARN) que codifique la producción de proteínas, no necesariamente significaría que somos parientes, ya que en muchos casos la evolución sigue caminos comunes de forma separada (se llama evolución convergente).

Tradicionalmente se ha propuesto como posible prueba de orígenes separados de la vida el hecho de que, mientras que ciertos bloques básicos de la vida –aminoácidos de las proteínas o azúcares del ADN y ARN– pueden adoptar dos conformaciones que son imágenes en el espejo una de la otra, a la derecha (dextrógiros) o a la izquierda (levógiros), en los seres terrestres los aminoácidos son levógiros y los azúcares dextrógiros; dado que no hay una razón biológica para esta exclusividad, se suponía que fue una elección casual al principio de los tiempos, y que si se encontraran seres en otro mundo cercano con la misma quiralidad (así se llama esta propiedad) que la terrestre, probablemente estaríamos ante un origen común. Pero hoy sabemos que quizá tampoco esto sea necesariamente así, ya que la quiralidad predominante en los seres vivos podría no ser algo elegido al azar, sino que podría venir marcada por el distinto efecto de los rayos cósmicos sobre cada una de estas dos conformaciones. Dicho de otro modo: la radiación que barre el espacio podría determinar una misma quiralidad homogénea en bichos que nacen en planetas distintos a partir de orígenes totalmente independientes.

Lo cierto es que la pregunta de si posibles microbios venusianos y nosotros procedemos del mismo antepasado común es de enorme trascendencia: si la respuesta es sí, seguiríamos como antes; no sabríamos si la vida podría haber surgido en otros lugares. Si la respuesta es no, entonces podríamos tener la casi seguridad de que la vida debe de ser algo muy común en todo el universo, allí donde se dan las condiciones adecuadas.

Lo cual nos lleva a la pregunta: con las condiciones infernales de Venus, ¿es posible que la vida haya surgido allí? Vaya por delante que realmente aún no sabemos cómo nació la vida aquí, en la Tierra. Pero hay escenarios probables. Y todos ellos tienen algo en común: necesitan agua líquida a temperaturas moderadas –no los actuales 400 grados en la superficie de Venus– y en un pequeño entorno local donde pueda acumularse una alta concentración de moléculas biogénicas, aquellas que reaccionarán para producir alguna entidad autorreplicativa, con una fuente de energía disponible y una fuente de carbono.

Venus no ha sido siempre el infierno que es hoy. Suele decirse que Venus y la Tierra fueron planetas gemelos al comienzo de su historia (aunque la antigua existencia de océanos allí aún es motivo de debate). Y mientras que aquí fue la colonización de los mares por las cianobacterias la que logró reconducir el clima, la química atmosférica y la geodinámica para hacer de este mundo un lugar habitable, en cambio Venus fue el Anakin Skywalker del Sistema Solar, arrastrado hacia el lado oscuro a través de un catastrófico efecto invernadero que le hizo perder casi toda su agua y lo convirtió en el infierno actual.

Pero si en un principio las condiciones en ambos planetas no eran muy diferentes, esto significa que allí podrían haberse dado los mismos procesos que tuvieron lugar aquí y que dieron origen a la vida primigenia. O quizás, según lo dicho, la vida llegó a Venus desde la Tierra. Pero en cualquier caso, en momentos tempranos de la historia de los dos planetas, ambos podrían haber estado en situación parecida respecto a la presencia de algún tipo de microorganismo muy simple para nuestros cánones actuales de vida, muy sofisticado para lo que entonces era la química planetaria.

Sin embargo, el salto de aquellos posibles microbios acuáticos de la superficie de Venus a la presencia actual –si existe– de una comunidad biológica a decenas de kilómetros de altura, flotando en las nubes, no es inmediato. Hay científicos que en estos días se han mostrado muy escépticos. Pero tampoco es imposible. Aquí en la Tierra, sabemos que la vida es extraordinariamente resistente; ha colonizado la práctica totalidad de los hábitats terrestres. Incluyendo la atmósfera: varios estudios han demostrado la presencia de bacterias y hongos en la estratosfera terrestre, a decenas de kilómetros sobre el suelo.

Claro que esto no permite trazar una analogía directa con el caso de Venus. Algunos de los microbios encontrados en la estratosfera terrestre estaban en forma de esporas, fases latentes que ciertos microorganismos adoptan cuando las condiciones del entorno no les permiten crecer y multiplicarse. Es decir, son microbios transeúntes, dependientes de la superficie terrestre para volver a su estado activo. Estos no nos sirven, ya que en Venus cualquier posible organismo presente debería ser un habitante exclusivo de la atmósfera, puesto que no tiene tierra habitable a la que regresar.

También en nuestro planeta se han encontrado especies bacterianas que no se habían detectado antes en la superficie. Pero esto tampoco implica necesariamente que sean habitantes exclusivos de las alturas, evolucionados para nacer, crecer y morir en los aerosoles flotantes sin importarles si debajo existe una tierra habitable o no. Con todo, también es cierto que los moradores de la atmósfera venusiana tendrían algunas ventajas respecto a los de la estratosfera terrestre: a 55 kilómetros de altura sobre Venus, la temperatura y la presión son equivalentes a la Tierra a nivel del suelo; si bien también deberían enfrentarse a una química mucho más hostil, sin apenas agua y con nubes de ácido sulfúrico.

Pero aunque la posibilidad de comunidades microbianas totalmente autónomas en la atmósfera de Venus aún no convence a muchos científicos, la ubicuidad de la vida terrestre nos enseña que la vida, una vez presente, se abre camino. Venus no se convirtió en un infierno de la noche a la mañana. Y durante su lento tránsito de millones de años hacia el lado oscuro de la habitabilidad planetaria, quizá ciertos organismos mejor preparados para soportar una vida atmosférica pudieron sobrevivir y evolucionar hasta convertirse en moradores flotantes como los que imaginó Carl Sagan, comiendo minerales volantes y chupando las escasas gotitas de agua o el vapor de la atmósfera de Venus. Quién sabe. Al fin y al cabo, aún sabemos muy poco sobre eso que llamamos vida, sin saber realmente por qué lo llamamos vida.

Ya hay al menos tres indicios de posible vida microbiana en la atmósfera de Venus

Venus no es el gran olvidado de las misiones espaciales. O sí. Depende de a quién se pregunte. En 2017, un artículo en The Atlantic firmado por David Brown alegaba que la estrategia de la NASA de “seguir el agua” había arrumbado a nuestro vecino más cercano, porque no hay agua líquida en la superficie de Venus. Pero como reconocía el propio Brown, hay otras razones, y es que Venus es un infierno difícilmente explorable: temperatura en la superficie, más de 400 grados; presión atmosférica en la superficie, 100 atmósferas, más o menos la equivalente a 1.000 metros bajo el agua aquí en la Tierra.

Pero no, Venus no es un hueco en blanco en la historia de la exploración espacial. De hecho, fue el primer planeta visitado por sondas terrestres, sobrevolado por primera vez por la soviética Venera 1 en 1961, después por la estadounidense Mariner 2 al año siguiente, hollado (presuntamente) por la Venera 3 en el 66, y después por las 4, 5, 6, 7 y 8, las dos últimas con aterrizajes suaves; fotografiado en la superficie por la Venera 9, visitado por las Pioneer Venus de la NASA, etcétera, etcétera… Hay una buena cantidad de chatarra humana sobre la superficie de Venus; de hecho, más que en Marte.

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Así vio (en imagen UV) Venus la sonda de la NASA Pioneer Venus en 1979. Imagen de NASA

Sin embargo, es cierto que nada ha aterrizado allí desde la soviética Vega 2 en 1984, ni penetrado en su atmósfera desde la estadounidense Magellan en 1994. Pero es que ningún aparato ha llegado a funcionar durante más de 127 minutos en aquel infierno. Y cuando los fondos para la exploración espacial no hacen sino disminuir cada vez más, los científicos tratan de sacar más ciencia por menos dinero, y Venus no es el destino más adecuado para esto.

Hubo un tiempo en que Venus era el gran candidato a albergar vida extraterrestre del tipo más deseado, la que piensa. Su tamaño similar a la Tierra y su gruesa atmósfera invitaban a pensar que podía ser una versión tropical de nuestro planeta. El hecho de que una densa capa de nubes ocultara a la vista los detalles de su superficie no hacía sino disparar las fantasías sobre una gran civilización venusiana. Todavía a mediados del siglo XX, autores de ciencia ficción como Ray Bradbury escribían sobre la vida en Venus.

Hasta que la ciencia vino a aguar la fiesta. Fue en los años 60 cuando las sondas espaciales revelaron que nada vivo puede existir en la superficie de Venus, puesto que no hay posibilidad alguna de bioquímica, moléculas biológicas, a 400 grados centígrados. Ningún “pero ¿y si…?”. Nada que podamos llamar vida, salvo que llamemos vida a otras cosas que no lo son.

Sin embargo, también la ciencia a veces abre una puerta cuando cierra otra. Y quedaba un resquicio: la atmósfera de Venus, allá arriba en las nubes. En una franja aproximada entre los 50 y 60 kilómetros de altura, el rango de temperaturas es similar al terrestre, la presión atmosférica es tolerable y la radiación es moderada.

Hace unos años, la NASA ideó un concepto de exploración tripulada de la atmósfera de Venus mediante dirigibles que flotarían en un justo punto dulce a 55 kilómetros de altura: 27 grados de temperatura, gravedad casi como la terrestre, y media atmósfera de presión, más o menos la de una montaña terrestre de 5.500 metros. El gran truco consistiría en que, dada la mayor densidad de la atmósfera de Venus por su gran cantidad de CO2, estos dirigibles simplemente tendrían que ir rellenos de aire, nuestro aire normal y respirable, para flotar libremente sobre las nubes venusianas como los globos de helio flotan en la Tierra.

Con todo, esta posible habitabilidad es relativa: la atmósfera de Venus es mayoritariamente CO2, casi nada de oxígeno, poco vapor de agua y, sobre todo, nubes de ácido sulfúrico, que dificultan bastante cualquier intento de diseñar una nave que pueda funcionar y perdurar allí. De existir vida en la atmósfera de Venus, tendría que ser anaerobia; sin aire. Pero en la Tierra sí existe vida anaerobia: sobre todo células simples, bacterias y arqueas, pero en los últimos años se han descubierto algunos microorganismos multicelulares que también viven sin aire.

En 1967, justo cuando se confirmaba que la superficie de Venus era inhabitable, el ínclito Carl Sagan y el biofísico Harold Morowitz publicaban en Nature una hipótesis de vida en la atmósfera venusiana: una vejiga flotante del tamaño de una pelota de ping pong, rellena de hidrógeno que fabricaría por fotosíntesis absorbiendo agua de la atmósfera, y que comería minerales volantes a través de su superficie inferior pegajosa.

La propuesta de Sagan y Morowitz era una pura especulación teórica, pero tenía un fundamento, pues por entonces ya se conocía el que era:

El primer indicio de vida en Venus: el absorbedor desconocido de UV

Hace más de un siglo, las observaciones de Venus en el espectro de luz ultravioleta, más allá de la luz visible, revelaron extrañas manchas oscuras. Algo estaba absorbiendo la mayor parte de la luz UV solar e incluso algo del violeta, lo que inspiró la propuesta de Sagan y Morowitz de que podría tratarse de organismos fotosintéticos, capaces de captar la energía del sol para fabricar moléculas orgánicas a partir del agua y el CO2.

El “absorbedor desconocido de UV” de la atmósfera de Venus ha sido objeto de muchos estudios. El año pasado, las observaciones de los telescopios y las sondas espaciales descubrieron además un patrón de cambios a largo plazo que se corresponde con variaciones en el clima venusiano. Se ha propuesto que ciertos compuestos de azufre presentes en la atmósfera venusiana podrían ser en parte responsables de esta absorción, pero la posible participación de microbios no se ha descartado.

Pero si este es el más antiguo signo de posible vida en Venus, no es el único. Las observaciones de las diversas sondas que han analizado la atmósfera venusiana han revelado:

El segundo indicio de vida en Venus: sulfuro de carbonilo

La presencia de distintos compuestos en la atmósfera de Venus puede explicarse por las reacciones químicas que tienen lugar allí de forma espontánea. Pero algunos investigadores han llamado la atención sobre el hecho de que varios de ellos no se encuentran en el equilibrio químico que se esperaría. En la Tierra, la causa de estos desequilibrios es la presencia de vida, desde los microbios a la actividad humana.

Uno de los compuestos más intrigantes en la atmósfera venusiana es el sulfuro de carbonilo, o COS. Esta molécula es el compuesto de azufre más abundante de forma natural en la atmósfera terrestre, y en nuestro planeta se considera un indicador de vida, ya que no es fácil producirlo de forma inorgánica. Una parte de nuestro COS proviene de la actividad industrial, pero otra procede de los océanos y los volcanes. Y aunque la presencia de COS en Venus no es ni mucho menos garantía de que exista allí algo vivo, un dato intrigante es que a este compuesto se le atribuye un posible papel en el origen de la vida terrestre, ya que actúa como catalizador para unir entre sí a los aminoácidos, las unidades que forman las proteínas.

Conviene tener en cuenta que hasta hace muy poco se pensaba que la antigua actividad volcánica en Venus se había extinguido mucho tiempo atrás. Pero después de algunas observaciones previas que sugerían lo contrario, en enero de este año se publicó un estudio según el cual algunas coladas de lava solo tienen unos pocos años de edad; aún hay volcanes activos allí. Y aunque esto quizá podría justificar la presencia del COS, en cambio los expertos no creen que sirva para explicar:

El tercer indicio de vida en Venus: fosfano

Llegamos así a lo nuevo y último, lo publicado esta semana: la presencia en la atmósfera venusiana de un compuesto, PH3, llamado trihidruro de fósforo, fosfano o fosfina (pero NO fosfatina, como ya se ha escrito por ahí). Como el COS, el fosfano no debería estar allí, ya que en la Tierra es un indicador de vida. Aquí se produce sobre todo por microbios anaerobios, y puede encontrarse en la descomposición de la materia orgánica y en los intestinos de algunos animales. Más que un signo de vida, es un signo de muerte, pero donde hay algo muerto antes hubo algo vivo. Pero a pesar de la enorme cantidad de fuentes de fosfano en la Tierra, su presencia en la atmósfera es solo residual, porque se oxida rápidamente.

Sin embargo, resulta que en Venus el fosfano es mil veces más abundante que en la Tierra.

Existen otras maneras de fabricar fosfano que no necesitan algo vivo. En Júpiter y Saturno se genera en el interior denso y caliente de estos gigantes gaseosos. También las tormentas eléctricas o los impactos de meteoritos pueden producirlo. Y el rozamiento entre las placas tectónicas, o las erupciones volcánicas. Pero Venus no es un planeta gaseoso como Júpiter y Saturno, sino rocoso, y ninguno de estos mecanismos explica la gran cantidad de fosfano. Los autores del nuevo estudio, dirigido por la astrónoma de la Universidad de Cardiff Jane Greaves, calcularon que se necesitaría una actividad volcánica 200 veces mayor que la terrestre para justificarlo. De hecho, examinaron una a una casi cien maneras distintas de producir fosfano que no requirieran la presencia de vida. Ninguna de ellas servía para explicar la presencia abundante y sostenida de un gas que debería desaparecer rápidamente.

¿Significa esto que ya puede darse casi por segura la presencia de vida en Venus? Aún no. Aunque el nuevo estudio es concienzudo y riguroso, los expertos han advertido de que la señal de fosfano es débil, y que harán falta nuevas observaciones en otras longitudes de onda para confirmar que no es un artefacto introducido en el procesamiento de los datos. Los investigadores esperaban haber abordado ya estos estudios, pero la COVID-19 los ha demorado.

Incluso si se confirma la presencia de fosfano y no existe otra manera imaginable de explicarla, aún puede existir una manera todavía no imaginable. A lo largo de la historia de la búsqueda de algo vivo fuera de la Tierra, todo lo que se creía que eran signos de vida ha resultado ser el producto de fenómenos naturales inorgánicos, algunos de ellos descubiertos por primera vez gracias a esas observaciones intrigantes. En este caso, podría ser que un proceso químico aún no descrito o una actividad geológica insospechada estuvieran produciendo el misterioso gas.

En cualquier caso, parece claro que, a partir de ahora, el fosfano venusiano va a atraer tanta atención como el metano de Marte, otro gas cuyo origen podría revelar la presencia de microbios. El Sistema Solar huele cada vez más a vida, aunque este olor sea tan nauseabundo como el del fosfano.

En recintos cerrados y con mala ventilación no existe una distancia segura contra el coronavirus

Hace unos días contaba aquí que la comunidad científica experta está confluyendo en un mensaje común: la ventilación y la filtración son las nuevas armas clave que deben guiar la lucha contra el coronavirus SARS-CoV-2 de la COVID-19. Parece evidente que un virus de transmisión respiratoria, que se contagia tanto por el aire como por las gotitas expulsadas al hablar, cantar, estornudar o toser, y que invade el organismo sobre todo a través de la nariz, debería combatirse principalmente eliminándolo o dispersándolo del lugar donde supone una amenaza, el aire, dado que no es posible matarlo en las propias personas que lo incuban.

Más aún cuando, de hecho, la ventilación y la filtración sí son medidas preventivas fácilmente adoptables y sostenibles a largo plazo, a diferencia de la mayoría de aquellas que las autoridades reguladoras están imponiendo a la población y que parecen guiadas por una visión cortoplacista; recordemos lo que los expertos vienen remachando desde el comienzo de la pandemia y que se ha repetido aquí: una vez que un virus ha llegado a la existencia (este llegó hace algo así como medio siglo, pero saltó a los humanos el año pasado), no es posible devolverlo a la no existencia. Solo en un par de casos, con intensos esfuerzos globales a lo largo de décadas, el ser humano ha logrado librarse de un par de virus. Por lo tanto, y dado que el SARS-CoV-2 es algo con lo que deberemos convivir en adelante, parece lógico buscar las medidas que minimicen sus efectos permitiendo que la vida siga como antes.

De poco sirve marcar distancias en lugares cerrados si la ventilación es deficiente. Imagen de Steve Morgan / Wikipedia.

De poco sirve marcar distancias en lugares cerrados si la ventilación es deficiente. Imagen de Steve Morgan / Wikipedia.

Y no parece que los confinamientos, cierres, limitaciones de aforo y horarios, distancias ni mascarillas cumplan esta condición. En concreto, el problema de las mascarillas no es que no sirvan. Sirven; pero como he contado aquí, su mayor eficacia estriba en retener las gotitas expulsadas. Son menos útiles para contener los aerosoles y como protección para quienes las llevan, y globalmente los estudios clínicos y observacionales les otorgan una eficacia limitada; son mejor que nada, pero parece claro que no vamos a llevar mascarillas todos los días, a todas horas, durante el resto de nuestra vida (y a ver entonces cómo erradicamos esa falsa dicotomía de “mascarilla o muerte” que aparecía esta semana en el erróneamente aplaudido vídeo viral de una niña). Así, la resistencia de la población es esperable, sobre todo cuando existen experimentos en el mundo real de lugares donde se arreglan sin ellas (Suecia) y cuando es inevitable percibir arbitrariedades en la regulación y el uso que no pueden comprenderse ni justificarse.

Dos ejemplos de esto último: en un artículo en la revista The Atlantic que cité recientemente, el experto en aerosoles de la Universidad de Colorado José Luis Jiménez hacía notar una situación tan frecuente como absurda: una conferencia con público (charla, clase, seminario, e incluso las ruedas de prensa del propio Fernando Simón) en la que los asistentes, perfectamente distanciados entre ellos, portan mascarilla, mientras que el conferenciante no la lleva. Jiménez decía que, si solo existiera una única mascarilla en la sala, quien debe llevarla es precisamente la persona que está hablando, y no quienes escuchan, ya que hablar en voz alta expulsa una gran cantidad de gotitas que pueden dispersar el virus si el conferenciante está contagiado.

Segunda situación absurda: se ha impuesto a los niños la obligación de llevar mascarilla también en las clases de educación física, que en la mayor parte de los casos pueden hacerse al aire libre. Y sin embargo, no se aplica esta imposición a quienes hacen deporte por simple afición, ni siquiera cuando van en grupo, a pesar de que uno de los pocos casos de contagio al aire libre que se han podido demostrar fue el de dos personas que corrían juntas, cada una respirando el aire expulsado por la otra (y sí, corriendo en la misma dirección; eso de establecer un sentido único de circulación de las personas en ciertos lugares es otra demostración de cómo propuestas sin la menor base científica pueden triunfar en todo el mundo solo porque… ¿alguien sabe por qué?).

Así, y por mucho que el movimiento anti-mascarillas de los negacionistas del virus y de la pandemia esté perjudicando enormemente la lucha contra esta lacra, las autoridades deberían hacer su propia autocrítica sobre cómo las medidas que están adoptando, y que en algunos casos pulverizan libertades fundamentales de un plumazo, están cargadas en ocasiones de una falta de sustancia científica, una inconsistencia y una arbitrariedad que no pueden sino crear en muchos ciudadanos la sensación de estar gobernados por el pollo que corre sin cabeza. Que no falten los llamados “felpudos desinfectantes” a la entrada de los colegios, otra aberración contra la razón y el sentido común, pero las ventanas de las aulas se dejan cerradas con veinte niños respirando el mismo aire en su interior.

Es de esperar que, con el tiempo, el énfasis en la ventilación y la filtración del aire como medidas primordiales en la lucha contra el coronavirus vaya venciendo la ceguera de las autoridades y los organismos a la evidencia científica; el más alto de todos ellos, la Organización Mundial de la Salud, está a menudo lastrado por una inercia que lo llevó a resistirse incluso contra lo que ya era un clamor en la comunidad científica, que el virus también se estaba transmitiendo por el aire. Al menos comienza a verse algún signo de esperanza; una compañía de autobuses ya menciona la ventilación y la filtración del aire en sus anuncios en televisión. Por suerte, en los colegios de mis hijos están dejando las ventanas y puertas de las aulas abiertas en este comienzo de curso, pero es dudoso que continúen haciéndolo cuando llegue el frío, y entonces será aún más necesario que ahora.

Hoy traigo aquí un ladrillito más en esta muralla permanente que debemos ir construyendo contra el coronavirus, la de sanear el aire de los espacios que compartimos. En The Conversation, un grupo de ingenieros de la Universidad de Clarkson, especializados en dinámica de fluidos y aerosoles, se encarga de remachar algo también evidente: en recintos cerrados, mal ventilados y donde hay un grupo de gente, no existe la distancia de seguridad; no hay ninguna distancia que sea segura como protección contra el contagio.

Unos días atrás, en la revista BMJ (la que de toda la vida era el British Medical Journal), un grupo de científicos de la Universidad de Oxford y del Instituto Tecnológico de Massachusetts llamaba la atención sobre el hecho de que las normas aplicadas actualmente en todo el mundo sobre una presunta “distancia de seguridad”, que varía entre uno y dos metros según los lugares, están basadas en “ciencia obsoleta”.

Sí, como principio general, una mayor distancia reduce el riesgo de contagio. Pero fijar distancias concretas como normas universales sin considerar otros factores es sencillamente una ilusión, ya que la realidad es mucho más compleja. “La distribución de las partículas virales viene afectada por numerosos factores, incluyendo el flujo de aire”, escribían los autores. “Las evidencias sugieren que el SARS-CoV-2 puede viajar a más de 2 metros cuando se tose o grita”. Por lo tanto, concluían, “las reglas sobre la distancia deberían reflejar los múltiples factores que afectan al riesgo, incluyendo la ventilación, la ocupación y el tiempo de exposición”. De esta manera, añadían, podría conseguirse “una mayor protección en los escenarios de mayor riesgo pero también una mayor libertad en los de bajo riesgo, posiblemente permitiendo una vuelta a la normalidad en algunos aspectos de la vida económica y social”.

Mientras, nuestros gobernantes aumentan la distancia entre sillas al aire libre.

Los ingenieros del artículo en The Conversation abundan en esta misma cuestión, utilizando para ello un ejemplo conocido: el humo del tabaco. En ningún país existe una norma de simple distanciamiento como protección frente al humo del tabaco en recintos interiores; como todo el mundo sabe, en un lugar cerrado el olor del tabaco llena el recinto, ya que el humo se dispersa por todo el espacio. Y sin embargo, se está transmitiendo a la población la ficción de que en interiores existe una distancia segura para protegerse del coronavirus.

“El humo del tabaco comprende partículas que son similares en tamaño a las gotitas respiratorias más pequeñas expulsadas por los humanos, aquellas que permanecen suspendidas en el aire por más tiempo”, escriben los autores. “En una habitación mal ventilada no existe una distancia segura”, concluyen. “Las buenas estrategias de ventilación y filtración que introducen aire fresco son críticas para reducir los niveles de concentración de aerosoles, igual que abrir las ventanas aclara una habitación llena de humo”.

Finalmente, los autores añaden la necesidad de llevar mascarillas en recintos interiores, pero insisten en qué es lo que una mascarilla puede hacer por nosotros, algo que deben recordar tanto quienes creen en su completa inutilidad como quienes creen que es una protección garantizada contra el contagio (y, en su caso, la muerte):Reducen la concentración de las gotitas respiratorias que se expulsan a la habitación y dan algo de protección contra la inhalación de aerosoles infecciosos”.

Un nuevo estudio confirma que el coronavirus entra sobre todo por la nariz

A finales de julio, uno de los estudios más importantes que se han publicado sobre el coronavirus SARS-CoV-2 de la COVID-19 pasó prácticamente inadvertido en los medios, algo inexplicable cuando llegaba a una conclusión de enorme relevancia para la salud pública: el virus invade el organismo preferentemente a través de la nariz.

Esto no solo explicaría por qué, pese a los temores en los primeros tiempos de la pandemia, el virus ha mostrado consistentemente una ausencia de transmisión por el contacto con superficies (pese a que las autoridades continúen empeñadas en lo que algunos han bautizado como el “teatro de la higiene”, aunque en realidad un tanto más de limpieza y desinfección, sobre todo de manos, es algo que no le viene nada mal a la sociedad en general); sino que, además, supone una contundente advertencia contra esa extendida costumbre de colocarse la mascarilla por debajo de la nariz para respirar mejor.

Mascarilla bajo la nariz. Imagen de pixnio.

Mascarilla bajo la nariz. Imagen de pixnio.

Como ya conté aquí entonces, la fortaleza de aquella conclusión residía en que el estudio no era uno de esos preprints de seis páginas colgados en internet y hechos en un par de tardes con unos cuantos datos o una máquina de PCR, sino un riguroso, concienzudo y extenso trabajo de biología experimental abordado desde varios enfoques complementarios, con la construcción de virus reportadores, análisis de expresión de ARN in situ y de infectividad en cultivos celulares de distintas secciones del tracto respiratorio, y un rastreo de la infección en tejidos pulmonares de autopsias; todo ello, además, publicado en la revista Cell, la primera del mundo en biología.

Todos los experimentos llevaban a la misma conclusión: el punto de entrada a través del cual el virus consigue anidar en el organismo es la cavidad nasal, y no los pulmones, donde su capacidad infectiva es mucho menor. Por lo tanto, la neumonía devastadora que se observa en los pacientes más graves, y que a menudo se relaciona con la muerte, no se produce por una infección primaria del coronavirus en los pulmones, sino solo una vez que el patógeno se ha multiplicado en el epitelio de la nariz y los fluidos comienzan a arrastrarlo en grandes cantidades hacia las profundidades del tracto respiratorio. El mensaje esencial se resume fácilmente: es mucho más improbable contraer el virus a través de la boca, o al menos haría falta una dosis infectiva mucho mayor para que invadiera los pulmones sin pasar antes por una incubación en el interior de la nariz.

Pero a pesar de la robustez de aquel estudio, la ciencia siempre debe andar con pies de plomo, construyéndose y consolidándose con la confirmación de los resultados por otros enfoques, por otros investigadores y en diferentes laboratorios. Y esta semana ha llegado un nuevo estudio que apunta a la misma conclusión: la vía preferente de entrada del virus es la nariz.

En este caso se trata de un pequeño y breve estudio de la Universidad Johns Hopkins, también publicado previa revisión por pares, en la revista European Respiratory Journal. Los investigadores se han apoyado en evidencias previas que desentrañaban el misterio de la súbita pérdida de la capacidad olfativa en muchos enfermos de COVID-19, un síntoma que en muchos casos se cuenta entre los más tempranos.

Estudios anteriores habían identificado que el coronavirus no infecta directamente las células olfatorias de la nariz (neuronas especializadas), sino otras adyacentes a ellas que se encargan de prestar a las primeras un soporte estructural y que se conocen como células sustentaculares del epitelio olfativo. En julio, un estudio de la Universidad de Harvard en colaboración con otras instituciones y publicado en Science Advances mostró que dos receptores clave para la entrada del coronavirus en las células, llamados ACE2 y TMPRSS2, están presentes en mucha mayor medida en las células sustentaculares que en las propias neuronas olfativas encargadas de detectar los olores, y que probablemente era la infección de estas células la que producía la anosmia (pérdida de olfato) en los pacientes. Este estudio, a su vez, ratificaba en humanos lo que previamente ya se había observado en ratones. Otro estudio descubría que también en hámsters (un modelo animal adecuado para estudiar el SARS-CoV-2) el coronavirus infecta las células sustentaculares, provocando un daño transitorio masivo en la mucosa olfativa.

En el nuevo estudio, los científicos de la Johns Hopkins han ahondado más en esta dirección. Analizando distintas muestras de células humanas, descubren que el receptor ACE2 del coronavirus es 700 veces más abundante en las células sustentaculares de la parte alta de la cavidad nasal que en el resto de la mucosa que tapiza el interior de la nariz y que en las células de la tráquea. “Este patrón de expresión de ACE2 proporciona evidencia de que el tracto respiratorio superior, más que el inferior, es la sede inicial de la infección por el SARS-CoV-2”, concluyen los autores, quienes insisten en la necesidad de utilizar las mascarillas de forma correcta.

De esta pista cada vez más firme sobre el proceso de infección del coronavirus pueden extraerse además otras dos conclusiones interesantes. La primera, escriben los autores, “la menor expresión del gen de ACE2 en el epitelio nasal de los niños en comparación con los adultos puede ayudar a explicar la menor prevalencia de COVID-19 en ellos”.

La segunda es que este mecanismo de infección a través de la nariz podría sugerir nuevos tratamientos eficaces para las etapas preliminares de la enfermedad, cuando el virus aún no se ha adueñado de los pulmones. “Aún no se ha determinado si la irrigación salina nasal, un tratamiento común para las enfermedades sinonasales, es beneficiosa o contraproducente en la infección por el SARS-CoV-2”, apuntan los investigadores. “Sin embargo, debería considerarse la administración de agentes tópicos antivirales, como detergente o povidona yodada [tipo Betadine], dirigidos a los reservorios nasales y nasofaríngeos del virus”.

Por último, una advertencia: a la pregunta de si inhalar preferentemente a través de la boca podría ser o no una manera de reducir el riesgo de contagio, la única respuesta posible es que aún no hay estudios concretos sobre esto. Pero, en general, inhalar por la boca es algo no recomendado por los expertos; hace unos meses, en The Conversation, el farmacólogo de la Universidad de California Louis J. Ignarro insistía en la forma correcta de respirar: inhalar por la nariz, exhalar por la boca. Ignarro obtuvo un Nobel en 1998 por descubrir los efectos del óxido nítrico (NO) producido por el cuerpo en la circulación sanguínea y la oxigenación del cuerpo, y la producción de NO aumenta al inhalar por la nariz.

Las conclusiones de Ignarro continúan siendo hoy tan válidas como lo eran entonces, y el experto citaba un estudio según el cual el NO inhibía la replicación in vitro del coronavirus del SARS (pariente del actual), por lo que, sugería, el bombeo de NO hacia los pulmones al respirar por la nariz podría ayudar a combatir la infección del nuevo coronavirus. Claro que esto era antes de saberse que una misma dosis de virus tiene muchas más posibilidades de infectar si pasa por la nariz que si entra directamente en los pulmones a través de la boca.

Las nuevas palabras clave para contener la pandemia: ventilación y filtración

Resumiendo lo que la ciencia parece saber ya sobre el coronavirus SARS-CoV-2 de la COVID-19 con alguna garantía de certeza, podemos decir que se trata de un virus de transmisión respiratoria, aunque sus efectos pueden ser sistémicos; que la mayoría de las personas que lo contraen apenas infectan a nadie, y que el grueso de los contagios procede de unos pocos; que estos se producen por las gotículas exhaladas o por el aire a través de la cavidad nasal (hay pruebas previas de esto último que ya he contado aquí y a las que ahora se une un nuevo estudio que comentaré otro día), pero muy raramente o casi nunca por el contacto con superficies; y que la transmisión, restringida en su inmensa mayoría a los lugares cerrados (a pesar de que las autoridades se empeñen obstinadamente en ignorar este dato), requiere generalmente un contacto cercano y prolongado… excepto cuando los sistemas de circulación del aire de los edificios se encargan de propagarlo.

Pues bien, siendo todo esto así, surge una pregunta evidente, que de hecho ya se hacía en julio la profesora de la Universidad de Carolina del Norte Zeynep Tufekci en la revista The Atlantic: ¿por qué no estamos hablando más de ventilación y filtración, cuando es evidente que lo más esencial para evitar los contagios no está tanto en mascarillas, distancias o limitaciones de aforo o de horarios, sino en algo tan aparentemente sencillo como eliminar o dispersar el virus del aire que compartimos?

Imagen de pxfuel.

Imagen de pxfuel.

Cuando España comenzó a salir del confinamiento, proliferaron en internet ciertos vídeos grabados por usuarios de aerolíneas, indignados porque los aviones viajaban llenos, creyendo erróneamente que la nueva situación les daría derecho a un espacio a su alrededor libre de otros pasajeros. De hecho, por entonces incluso se publicaron artículos que aventuraban la idea de que coger un avión era poco menos que una garantía de contagio si había algún infectado a bordo.

Y sin embargo, durante todos estos meses de pandemia, con decenas o cientos de miles de casos rastreados, y hasta donde sé, no existe ni una sola evidencia demostrada de un contagio del coronavirus en un avión*. Durante mi reciente viaje a Suecia, el comandante de Iberia explicó detalladamente el sistema de ventilación de las aeronaves: el aire de la cabina se renueva por completo cada dos o tres minutos; cada pasajero disfruta de su propia columna de aire que no comparte con otros, formada por aire estéril procedente del sangrado de los motores y de la filtración con filtros HEPA (siglas en inglés de Absorción de Partículas de Alta Eficiencia) que retienen más del 99,9% de las partículas virales, y que fluye de arriba abajo, desde el techo hasta el suelo.

Claramente, un espacio reducido que decenas de personas comparten, incluso durante varias horas, y donde no se produce un solo contagio, es un modelo a seguir que a estas alturas ya debería haber llamado la atención de todas las autoridades reguladoras. Pero en su lugar, estas parecen obsesionadas por lo que algunos ya han bautizado como el “teatro de la higiene”, por medidas probadas ineficaces como los controles de temperatura, y por la pretensión de que hasta nueva orden, y esa nueva orden podría tardar años en llegar, vivamos respirando a través de una mascarilla (insisto de nuevo: las mascarillas funcionan, pero solo hasta cierto punto, y un país como Suecia ha conseguido mantener la propagación a niveles bajos sin recurrir a ellas).

Tampoco se trata de que en todos los espacios públicos tengamos el mismo nivel de calidad del aire que en un avión. Pero cuando uno desciende de dicho avión con la tranquilidad de que en el interior del aparato un contagio es algo muy improbable, resulta irónico introducirse en un taxi decorado con toda clase de pegatinas relativas al teatro de la higiene, pero donde las ventanillas traseras no pueden abrirse (era una furgoneta de tamaño familiar) y uno está respirando el mismo aire que el conductor durante todo el trayecto.

Así, existe una primera medida tan sencilla como eficaz: abrir las ventanas. Según escribía recientemente en The Conversation la ingeniera de la Universidad de Colorado Shelly Miller, experta en el control de la transmisión de patógenos aéreos en interiores, “el lugar interior más seguro es aquel en el que constantemente el aire estancado del interior se reemplaza con grandes cantidades de aire del exterior”.

Pero, naturalmente, cuando empiece a entrar el frío del otoño, la opción de abrir las ventanas resultará menos adecuada. Sin embargo, esto no implica que la ventilación no pueda y deba ser la necesaria. Según Miller, una habitación de unos 3×3 metros con tres o cuatro personas en su interior debería renovar todo el aire seis veces cada hora, quizá hasta nueve en caso de pandemia. Y sin embargo, añade la ingeniera, muchos edificios en EEUU (y no vayamos a suponer que es un problema solo de allí), sobre todo las escuelas, no cumplen las tasas recomendadas de ventilación. Pero según la experta, incluso algo tan sencillo como un ventilador incrustado en una ventana que expulse aire al exterior puede ayudar a prevenir los contagios en los espacios cerrados.

En muchos casos, abrir las ventanas sencillamente nunca es una opción, ya que no existen o no pueden abrirse; por ejemplo, en multitud de edificios de oficinas y locales. En este caso, el problema son los deficientes sistemas de renovación del aire. Durante el rastreo de contagios del virus de la cóvid, se han descubierto casos en los que el propio sistema de circulación del aire se encargó de propagar la infección. En un call center de Corea y en un restaurante de China la posición de los contagios se correspondía de forma precisa con el sentido de circulación de un aire que no hacía sino recircularse una y otra vez sin renovación. En el artículo de Tufekci, el español José Luis Jiménez, experto en aerosoles de la Universidad de Colorado, señalaba a la autora que los sistemas de ventilación de los edificios tienen una regulación de la cantidad de aire fresco que se deja entrar, pero que generalmente suele reducirse al mínimo por cuestiones de ahorro energético.

Otro estudio reciente, aún sin publicar, abunda en la idea de que los sistemas de aire acondicionado contribuyen a la propagación del virus. Según el coautor del estudio Bjorn Birnir, de la Universidad de California en Santa Bárbara, la mayoría de los sistemas de aire acondicionado de oficinas y apartamentos no son lo suficientemente potentes para manejar un mayor flujo de aire con filtros de poro tan pequeño como los HEPA. “Necesitamos una nueva generación de acondicionadores de aire para los espacios donde la gente pasa la mayor parte del tiempo”, dice Birnir. Pero aun a falta de esto, existe otra solución de transición: los purificadores de aire portátiles con filtros HEPA, que se venden incluso en Amazon.

En resumen, ventilación y filtración se están perfilando, a juicio de los expertos, como conceptos clave en el futuro de la contención de la pandemia, y una nueva regulación mucho más exigente sobre la calidad del aire en los espacios cerrados (y, sugiere Miller, la monitorización de la renovación por medidores de CO2) no solo comienza a postularse como una necesidad urgente, sino que además a medio plazo quizá permitiría relajar en cierto grado otras medidas más difícilmente sostenibles.

Sin embargo, también estos expertos suelen lamentar que hasta ahora las autoridades reguladoras apenas han prestado la menor atención a estos aspectos. Como ejemplo, la circular de inicio de curso del colegio de mis hijos, que sigue las directrices de la Comunidad de Madrid, se explaya profusamente con el teatro de la higiene, el ballo in maschera y la termometría ambulante; en cambio, lo más importante, el aire que nuestros hijos van a respirar, lo ventila (valga la ironía) con una simple frase: “Las clases y espacios comunes se ventilarán de manera frecuente según las indicaciones de las autoridades sanitarias”. Punto. ¿Qué hay de algo tan sencillo como mantener las ventanas y puertas siempre abiertas? Los escolares no tienen la opción de seguir el consejo de Miller: “Si entras en un edificio y el ambiente se nota caluroso, cargado y atestado, es probable que no haya suficiente ventilación. Da la vuelta y márchate”.

*Actualización a 9 de septiembre: a finales de agosto, la revista del Centro para el Control de Enfermedades de EEUU ha publicado un estudio de investigadores coreanos, revisado por pares, que informa de dos casos de contagio en sendos vuelos de evacuación de Italia a Corea en los que viajaban varios portadores asintomáticos del virus. En ambos casos se trata de un solo contagio en cada vuelo de un total de 299 y 205 pasajeros, respectivamente. Pero el estudio no ha podido probar si los contagios se produjeron durante el propio vuelo, con los pasajeros sentados en sus plazas, o al embarcar o desembarcar. Los autores escriben: “Considerando la dificultad de la transmisión durante el vuelo de una infección aérea a causa de los filtros de alta eficiencia de retención de partículas empleados en los sistemas de ventilación de los aviones, puede haber desempeñado un papel crítico en la transmisión el contacto con superficies o personas contaminadas al embarcar, moverse o desembarcar de la aeronave”.

Así se vive la pandemia en Suecia, un país sin confinamientos ni mascarillas que logra mantener el coronavirus a raya

En mi último artículo antes de las vacaciones traje aquí el contraste entre dos países muy diferentes en su respuesta a la pandemia de COVID-19: España, donde las medidas adoptadas se cuentan entre las más restrictivas y exigentes del mundo, y Suecia, cuyo epidemiólogo jefe optó por una gestión alternativa a la de la gran mayoría de los países, sin imponer cierres, confinamientos o ni siquiera el uso de mascarillas. Y pese a ello, España registra las peores cifras de la UE en contagios, mientras que Suecia, aun con un desempeño peor que sus vecinos nórdicos, se encuentra ahora en una situación incluso más favorable que otros países de Europa occidental.

Con motivo de aquel artículo, recibí alguna crítica en Twitter; al parecer, algunos lectores esperaban una explicación de esta disparidad. Pero no la tengo, porque aún no la hay. Y si en algún momento llega, desde luego no será a través de ninguna elucubración en un artículo de prensa, sino de los estudios científicos rigurosos que ahonden en los misterios del coronavirus y su dinámica de propagación.

Hoy quiero traer aquí algunas observaciones personales. Que, obviamente, tampoco van a aportar ninguna solución al enigma, pero que enfatizan lo inexplicable del relativo éxito sueco y, en comparación, el fracaso de las medidas adoptadas en España, más allá de los posibles sesgos derivados de las diferencias de recuento y testeo en unos y otros países –la sanidad sueca no se ha visto desbordada ni parece existir allí un exceso de mortalidad bajo el radar.

El caso es que, no exclusivamente debido al coronavirus, pero tampoco de forma totalmente casual –no hay muchos países en el mundo donde a los españoles se nos permita viajar sin restricciones–, he pasado las casi tres últimas semanas en Suecia, y creo interesante traer aquí cómo se está viviendo allí la crisis actual y cómo puede relacionarse con la evolución de la pandemia en aquel país.

Quizá haya quien piense que, dadas las circunstancias, es poco prudente viajar a otros países; de hecho, se han cancelado innumerables viajes al extranjero a causa de la pandemia. Pero hay lugares y lugares, y repito lo que en una ocasión me dijo un epidemiólogo: si hay una pandemia, el lugar más seguro es allí donde no haya gente. Al contrario de lo manifestado por la máxima responsable política de la Comunidad de Madrid, no, el virus no está “en todas partes”, sino solo donde hay humanos. Los virus no circulan por la calle. Somos nosotros quienes los incubamos y los propagamos. Y por ello hay ahora pocos lugares más seguros que la Laponia sueca, posiblemente el mayor espacio natural aún salvaje de Europa occidental.

Según la Rough Guide to Sweden, la guía que he utilizado en mi viaje, si Estocolmo tuviera una densidad de población similar a la del norte del país, solo vivirían en la capital cincuenta personas. Paseando por las calles vacías de la ciudad minera de Kiruna, la urbe más septentrional del país y la quinta de mayor población del mundo al norte del Círculo Polar Ártico, una chica se acercó a preguntarnos de dónde éramos. Su siguiente pregunta fue qué hacíamos allí. Lo cierto es que Kiruna no es para quienes buscan las atracciones turísticas y las muchedumbres que atraen. Incluso para los propios suecos, Kiruna es un lugar remoto donde muchos jamás han puesto el pie. Pero por lo mismo, es irresistible para quienes disfrutamos de esas fronteras que parecen más allá de los límites de la realidad humana. Y desde luego, es un refugio perfecto en caso de pandemia, en comparación con las atestadas ciudades y poblaciones españolas durante este verano, según me cuentan algunos amigos.

Calles vacías en la ciudad sueca de Kiruna, 145 km al norte del Círculo Polar Ártico. Al fondo, las explotaciones mineras que dieron origen al asentamiento. Imagen de Javier Yanes.

Calles vacías en la ciudad sueca de Kiruna, 145 km al norte del Círculo Polar Ártico. Al fondo, las explotaciones mineras que dieron origen al asentamiento. Imagen de Javier Yanes.

Obviamente, es inmediato pensar que esa baja densidad de población del gélido norte sueco, donde a punto estuvo de nevarnos en pleno verano, puede explicar en parte las diferencias entre el nivel de acumulación de casos de cóvid en España y Suecia. Nuestro país es solo algo más extenso que la patria de Pippi Calzaslargas, pero nuestra población casi quintuplica la sueca. Nueva Zelanda, un país con una densidad poblacional muy baja, ha conseguido mantener el virus bastante a raya con medidas drásticas; sin embargo, el máximo responsable de la pandemia allí dijo que la baja población era un factor poco relevante, algo difícil de creer viendo que las medidas adoptadas en Nueva Zelanda y en España no han sido muy diferentes durante la primera oleada, salvo quizá por el rastreo de casos.

Número de casos notificados por 100.000 habitantes en los últimos 14 días a fecha 3 de septiembre en las distintas regiones de la UE y Reino Unido. Imagen de eCDC.

Número de casos notificados por 100.000 habitantes en los últimos 14 días a fecha 3 de septiembre en las distintas regiones de la UE y Reino Unido. Imagen de eCDC.

Pero incluso con las peculiaridades del norte sueco, este no es el caso de Estocolmo, una ciudad de un millón de habitantes, tan atestada como cualquier otra, con sus calles comerciales y donde multitudes de ciclistas llenan los carriles bici y se agolpan en los semáforos. Y tampoco la región de Estocolmo registra cifras de contagios mayores que otros lugares de Europa. Es más, si se tratara solo de densidad de población, otros países europeos notablemente más superpoblados que el nuestro deberían hallarse en situación similar a la de España, o peor.

Stortorget, el núcleo del centro histórico de Estocolmo, suele bullir de visitantes en verano. Imagen de Javier Yanes.

Stortorget, el núcleo del centro histórico de Estocolmo, suele bullir de visitantes en verano. Imagen de Javier Yanes.

Más chocante resulta el hecho de que en Suecia absolutamente nadie lleva mascarilla. Nadie; en un recorrido desde Estocolmo hasta el lejano norte, y exceptuando el aeropuerto, solo en la capital encontramos a dos personas que la llevaban. Al cruzarnos con ellas, descubrimos que eran españolas. En el aeropuerto de Estocolmo no había ninguna clase de control de entrada, ni los consabidos y demostradamente inútiles controles de temperatura, ni formulario alguno que rellenar, ni mucho menos la obligación de someterse a un test o a una cuarentena. Eso sí, todos los establecimientos cuentan con botes de gel desinfectante, carteles y marcas para delimitar las distancias de seguridad, y mamparas para separar a los empleados de los clientes.

Pero aunque unas vacaciones en Suecia casi lleguen a hacer olvidar la pandemia, una mirada más detenida revela los detalles. Ausencia total de turismo extranjero, incluso en el centro histórico de Estocolmo. Los alojamientos, bares y restaurantes, casi vacíos, una impresión que nos confirmaron los responsables. Comercios y cafés cerrados por decisión de sus dueños. Y aunque el nivel de actividad en cuanto al ocio no sea comparable al de España, también en esto se percibe un bajón. En los tiempos más duros, hasta una tercera parte de la población se confinó de manera voluntaria. Hoy muchas personas siguen llevando allí una vida de semirreclusión, y se observa un estricto respeto de la distancia de seguridad: en el supermercado, mientras elegíamos comida de un estante, quienes querían coger algún producto de la misma sección esperaban hasta que nosotros la dejábamos libre; nadie se abalanzaba invadiendo la burbuja de seguridad de uno. Y nosotros hacíamos lo propio.

Una calle desierta en Gamla Stan, el centro histórico de Estocolmo. Imagen de Javier Yanes.

Una calle desierta en Gamla Stan, el centro histórico de Estocolmo. Imagen de Javier Yanes.

Quiero insistir en que esto no tiene más relevancia que la de unas cuantas observaciones anecdóticas y una conclusión personal. Pero como resumen, podría decirse que, al parecer, en Suecia al menos una parte de la población ha optado voluntariamente por cambiar sus hábitos y llevar una vida de pandemia, incluso sin mascarillas, mientras que el mensaje que parece haber calado en España es el de mascarilla y vida normal; a estas alturas, ¿queda alguien aquí que haya modificado sus costumbres y prescindido de ciertas actividades, salvo en lo obligado por las autoridades? ¿Se evitan las salidas, reuniones y aglomeraciones, se respetan las distancias?

Vaya por delante que no se trata aquí de minimizar la importancia de las mascarillas. Pero tampoco debemos olvidar que no son la panacea. Sí, las mascarillas protegen, pero solo parcialmente. Una y otra vez, los científicos revisan los estudios disponibles, pero del repaso de los mismos trabajos solo puede llegarse a la misma conclusión: tras el reciente metaestudio en The Lancet que ya comenté aquí, una nueva revisión de la Universidad de Oxford (aún pendiente de revisión) vuelve a lo mismo: en el amplio rango de observaciones, tanto los estudios que apenas detectan la menor eficacia como los que encuentran una protección relativamente efectiva tienen sus peros y limitaciones. Y aunque, en su nota de prensa, los investigadores destacan que las mascarillas funcionan, debe entenderse que este es un mensaje cuyo público objetivo son quienes creen lo contrario, algo que ahora parece obsesionar a una parte de la comunidad científica. Por el contrario, hay otro mensaje que se está olvidando, y es uno que sin embargo lleva repitiéndose desde el comienzo de la pandemia: las mascarillas no son una garantía y pueden conducir a una falsa sensación de seguridad. Y tan importante como convencer a los escépticos de que las mascarillas no son inútiles es informar sobre su limitada eficacia a quienes han asumido el dogma de que, con una mascarilla en la cara, puede hacerse vida normal.

Pero la anormalidad debe ser tolerable a largo plazo, y en esto Suecia parece haber encontrado un mejor equilibrio que España. El epidemiólogo jefe de aquel país, Anders Tegnell, ha basado su estrategia en la acertada premisa de que una pandemia no es un esprint, sino una maratón, y por tanto el esfuerzo debe dosificarse para poder llegar al final. La contención de la pandemia se ha confiado a la responsabilidad voluntaria de la población, y no les va del todo mal. En Nueva Zelanda, en cambio, se habla de “fatiga cóvid”; tan drásticas fueron las medidas iniciales que la población ya apenas respeta ninguna precaución, lo que está llevando a un nuevo aumento de casos.

La aldea-iglesia de Gammelstad, Patrimonio de la Humanidad, sin visitantes. Imagen de Javier Yanes.

La aldea-iglesia de Gammelstad, Patrimonio de la Humanidad, sin visitantes. Imagen de Javier Yanes.

En cuanto a España, nadie sabe por qué somos el pozo negro de la pandemia en Europa, pero el caso de Suecia demuestra que ya no basta con seguir atribuyendo los contagios al uso deficiente de las mascarillas. Ni los más adeptos pueden ya defender que la estrategia española esté funcionando; y cuanto más se empeñen las autoridades en seguir superponiéndonos más restricciones e imposiciones, más insostenibles serán las medidas a largo plazo. Tal vez la respuesta esté en no continuar culpando de todo a los gobiernos y mirar un poco más hacia nuestros propios ombligos, a cómo estamos llevando nuestra vida cotidiana; al hecho de que solo hacemos lo que no nos gusta cuando se nos obliga, y solo dejamos de hacer lo que nos gusta cuando se nos prohíbe.

Pero también quizá sea hora de empezar a comprender que, por convenientes que puedan ser ahora otras medidas, la clave para la futura contención de la pandemia puede estar en otro lugar, el más evidente, pero que hasta ahora las autoridades han pasado por alto: el aire que respiramos. Mañana, más detalles.