Entradas etiquetadas como ‘partículas elementales’

Del globo aerostático al LHC: a la caza de las partículas elementales

Por Teresa Rodrigo (UC-CSIC)*

La física de partículas se centra en el estudio de lo muy pequeño. Pero resulta que cuanto más pequeños son los objetos que se quieren estudiar, más grandes y complejos son los instrumentos que debemos utilizar para verlos. Es el caso de los actuales aceleradores y detectores de partículas, como el Gran Colisionador de Hadrones (LHC), situado en el laboratorio europeo de Ginebra, el CERN. Pero antes de que existieran estos sofisticados artilugios, la comunidad científica recurrió a otro tipo de herramientas. De hecho, los globos aerostáticos fueron los primeros instrumentos científicos utilizados para la detección de partículas de altas energías.

Kropkoq zvdafgdsa

Globo aerostático de aire caliente. / Kropsoq.

La invención del globo aerostático no solo sirvió como una atracción y un medio de transporte, sino que posibilitó el inicio de toda una nueva rama del conocimiento científico.

En 1912, cien años después de las primeras experiencias en globo, Victor Hess se subió a uno de estos aparatos provisto de primitivos instrumentos de medida de radiación. Hess se elevó hasta una altitud de 5.300 metros y encontró que la tasa de radiación observada se multiplicaba con la altura. Concluyó que “la mejor explicación al resultado de estas observaciones es la suposición de que una radiación de mucha energía entra en nuestra atmósfera desde arriba”. Acababa de descubrir la existencia de los rayos cósmicos, hallazgo por el que recibiría el Premio Nobel en 1936.

Estas partículas de alta energía, principalmente protones, colisionan con los átomos de la atmósfera y producen toda una cascada de nuevas partículas capaces de atravesar la superficie terrestre.

El descubrimiento de los rayos cósmicos abrió una nueva ventana al estudio de la materia y permitió, entre otras cosas, el hallazgo en 1932 de la primera partícula de antimateria: el positrón, seguida de muchas más partículas desconocidas hasta entonces.

Hasta la llegada de los aceleradores de partículas en los años 50 del siglo XX, los rayos cósmicos constituyeron la mejor herramienta para el estudio de la materia y sus interacciones. Los aceleradores nos permiten acelerar y colisionar partículas y así reproducir en el laboratorio de forma controlada los fenómenos que ocurren en la naturaleza. Además, podemos recrear las condiciones en que se encontraba el universo en sus primeros instantes tras el Big Bang y estudiar su evolución hasta nuestros días.

En los últimos 60 años se ha conseguido elaborar una teoría cuántico-relativista, perfectamente confirmada por los experimentos, que explica toda la materia visible en el universo basándose en la existencia de doce partículas y sus correspondientes antipartículas elementales, conocidas como quarks y leptones. Por cierto, la materia visible solo constituye el 5% de la energía total del universo, el resto se compone de lo que llamamos materia y energía oscuras, que hoy es objeto clave de estudio.

CERN

Interior del Gran Colisionador de Hadrones del CERN, en Ginebra. / CERN.

También sabemos cómo estas partículas elementales se relacionan entre sí, es decir, cuáles son las fuerzas que actúan en la naturaleza. Además de la fuerza gravitatoria, existen la fuerza electromagnética, la fuerte y la débil. Con ellas podemos explicar todos los fenómenos observados y todas ellas, salvo la gravedad hasta el momento, pueden explicarse de una forma común, basada en el intercambio de otro tipo de partículas que conocemos como bosones. Un tipo muy especial de bosón es el bosón de Higgs, descubierto en el LHC en 2012. Es el responsable de que la partículas adquieran masa y, por tanto, de que el universo sea tal y como hoy lo vemos.

Las preguntas que nos planteamos las científicas y científicos y que parecen en un principio triviales, como por ejemplo “¿de qué está hecha la materia?”, nos permiten no solo avanzar en el conocimiento más abstracto, sino también desarrollar tecnología punta, que a su vez repercute de manera directa en la mejora de las condiciones de vida cotidianas. Por ejemplo, los aceleradores de partículas se han convertido en un instrumento básico para el diagnóstico y tratamiento médico o la web (www), que fue desarrollada inicialmente para compartir información entre la comunidad científica, y actualmente es un instrumento fundamental de la era de la información.

 

* Teresa Rodrigo es catedrática de Física de la Universidad de Cantabria, miembro del comité científico del CERN y actualmente directora del Instituto de Física de Cantabria (UC-CSIC). Además, es coautora del libro El bosón de Higgs de la colección del CSIC y Catarata ¿Qué sabemos de?

El texto es un extracto de la participación de Rodrigo en el programa Ciencia y Arte en el Museo del Prado, para el programa ‘La Aventura del Saber’ de TVE2, que realizan en colaboración la FECYT y el Museo del Prado. El vídeo se puede ver aquí.

El bosón de Higgs y la metáfora del mar


enrique70
JaimeJulve70Por Jaime Julve y Enrique J. de la Rosa (CSIC)*

No siempre es fácil entender, ni explicar, las características de las partículas elementales que se estudian en laboratorios como el Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo, que opera en la Organización Europea para la Investigación Nuclear (CERN), en Ginebra. No tenemos experiencia directa sobre ellas en nuestro día a día, aunque constituyan la estructura básica de la materia y del universo. Por ello se acude a símiles, con menor o mayor acierto.

LHC

El Gran Colisionador de Hadrones en el CERN /Morton Lin

En física cuántica, como en cualquier otro campo de la ciencia, la herramienta de trabajo es el método científico. Este método establece que, una vez observada la naturaleza, se planteen hipótesis de trabajo. Dichas hipótesis, según se validan por métodos matemáticos o experimentales, van conformando una teoría (en el caso que vamos a tratar,  la Teoría Cuántica de Campos y, en concreto, el Modelo Estándar de las Partículas Elementales). Y, de nuevo, se establecen nuevas hipótesis o previsiones cualitativas y cuantitativas que deben volver a ser validadas.

El bosón de Higgs era una previsión del Modelo Estándar de las Partículas Elementales hecha en 1964 y que llevó casi 50 años validar. El primer símil, o ejemplo basado en la experiencia que todos tenemos, tiene que ver con el experimento realizado para su validación. Si cogemos dos objetos cualesquiera y los hacemos chocar con suficiente velocidad, se romperán en sus piezas constituyentes, si las tienen, como es el caso de los hadrones (los protones, por ejemplo). Este tipo de choques, llevados al límite, son los experimentos del CERN: descomponer la materia hasta llegar a aquellas partículas que ya no se pueden romper en nada. Esas son las partículas elementales constituyentes de la materia. Paradójicamente, si hacemos colisionar partículas, incluso elementales (los electrones, por ejemplo), por conversión de su energía cinética en masa (la famosa ecuación de Einstein), se crean multitud de partículas elementales y no elementales. La tecnología del colisionador de hadrones del CERN ha sido esencial para validar el bosón de Higgs, creándolo en estas colisiones.

El segundo símil tiene que ver con lo que representa el bosón de Higgs. En la Teoría Cuántica de Campos, las diferentes partículas elementales son excitaciones del correspondiente campo cuántico que, en reposo (no excitado), estaría vacío de partículas y energía. Para dotar de masa (y energía) a las partículas hay que recurrir al campo de Higgs y a un artificio teórico que dota a su estado no excitado, vacío de partículas de Higgs, de una energía que permea todo el espacio y confiere masa al resto de partículas. Así, los bosones de Higgs, ahora detectados, serían las excitaciones del campo de Higgs.

Interacción de Higgs

Una imagen generada por ordenador de la interacción de Higgs. Lucas Taylor / CERN

El mecanismo por el que las demás partículas adquieren masa se visualiza a menudo con la imagen de una miel que llena el espacio, a la que se pegan mucho algunas de las partículas, haciéndolas ‘pesadas’, mientras otras se pegan poco (electrones) o muy poco (neutrinos), o nada en absoluto (fotón y gluones) las de masa nula. El ejemplo de la miel, como otros, no es del todo satisfactorio y proponemos aquí otro mejor. “Pegarse a la miel” alude al concepto de viscosidad, una resistencia al movimiento del móvil inmerso proporcional a la velocidad (si no empujamos siempre, el móvil se frena y para), mientras que la masa es sinónimo de resistencia a la aceleración (si no empujamos, sigue con velocidad constante).

Un ejemplo algo más fiel sería el siguiente. Imaginemos el campo de Higgs como un océano de agua y las partículas como barcos ligerísimos (idealmente de tara nula) y casco que corta el agua sin resistencia (nada de miel viscosa), que pueden cargar más o menos agua de lastre. Uno que no cargue nada permanecerá con masa nula, o sea que se puede aceler sin esfuerzo. Uno que embarque algunos kilos tendrá esa masa y costará algo acelerarlo. Un tanker que embarca cientos de miles de toneladas… ya podemos imaginar. Esta es la masa adquirida mediante el mecanismo. La cuestión de cuánto vale se traslada a la de cuánta agua embarca: en el modelo este parámetro lo da la “constante de acoplamiento” entre el campo de la partícula y el campo de Higgs, un parámetro por ahora empírico, dictado por la naturaleza. Es una modelización más que una explicación, pero que resuelve problemas teóricos.

 

* Jaime Julve es vicedirector del Instituto de Física Fundamental del CSIC, miembro del comité académico de las Olimpiadas de Física desde su comienzo en España y activo divulgador científico con numerosas conferencias. Enrique J. de la Rosa es investigador del CSIC en el Centro de Investigaciones Biológicas. Este texto ha sido inspirado por una charla impartida por Julve en el marco de ‘Ciencia con chocolate’.