Entradas etiquetadas como ‘Global Positioning System’

Guerra fría y matemáticas: así llegó el GPS a nuestro coche

Por Mar Gulis

El 1 de septiembre de 1983 dos cazas soviéticos derribaron un Boeing 747-200 de la aerolínea de Corea del Sur, Korean Airlines. Debido a un error de posicionamiento, la aeronave invadió el espacio aéreo ruso y la inteligencia de la URSS pensó que se trataba de un avión espía de EEUU (al menos esa fue la versión oficial). 269 pasajeros, entre ellos el congresista estadounidense Larry McDonald, iban a bordo.

El ex presidente de EEUU Ronald Reagan. Wikipedia

El ex presidente de EEUU Ronald Reagan. / Wikipedia

En plena guerra fría, este incidente aumentó la tensión entre Washington y Moscú y marcó un punto de inflexión en la estrategia de EEUU respecto a su Global Positioning System (GPS  o sistema de posicionamiento global), puesto en marcha en los años 60. Tras el suceso, Ronald Reagan anunció que una vez que finalizase su desarrollo en la esfera militar, el GPS estaría disponible para actividades civiles con el fin de impedir nuevas catástrofes por fallos de geolocalización.

Y así fue. EEUU liberó su sistema de navegación al resto del mundo y el GPS empezó a utilizarse a lo largo y ancho del planeta. Pero a día de hoy el monopolio de este sistema sigue en manos estadounidenses. Si este país decidiese cortar la señal o sus satélites fallasen, los sistemas de defensa y las economías de otros países se verían seriamente comprometidos.

Cuestiones geopolíticas al margen, ¿cómo funciona el GPS? Esta tecnología permite determinar la posición de objetos, personas o vehículos con una precisión hasta de centímetros en cualquier parte del mundo. El GPS consta de una red de 24 satélites en órbita a 20.000 km con trayectorias sincronizadas y que cubren toda la superficie terrestre. Esos satélites que flotan en el espacio son utilizados como puntos de referencia para ubicaciones aquí en la Tierra.

Supongamos que queremos saber nuestra posición exacta. Para calcularla tendremos que conocer a qué distancia estamos respecto a tres (o más) de esos satélites para así ‘triangular’ nuestra posición en cualquier lugar de la Tierra. A su vez la distancia a cada satélite se determinará midiendo el tiempo que tarda una señal de radio, emitida por él mismo, en alcanzar nuestro receptor de GPS.

Las matemáticas son una vez más la clave de un avance tecnológico que ha transformado nuestra forma de viajar y movernos. La cara menos amable de este invento  tiene que ver, como ya adelantábamos, con la geopolítica. Para neutralizar el control de EEUU sobre esta tecnología, otros Estados han empezado a desarrollar sus propios GPS. Ahí se encuadra el Glonass lanzado por Rusia, el BeiDou que está diseñando China o el programa Galileo de la Unión Europea, que debería empezar a funcionar a finales de este año o ya en 2015.

El nombre elegido por la UE no parece casual. Fue Galileo quien dijo que sin las matemáticas “navegaríamos por un oscuro laberinto”.

 

Así funciona el GPS

Imaginemos que medimos nuestra distancia a un primer satélite y resulta ser de 20.000 km. Esto indica que no podemos estar en cualquier punto del universo, sino que nuestra posición queda limitada a la superficie de una esfera que tiene como centro dicho satélite y cuyo radio es de 20.000 km.

A continuación calcularemos nuestra distancia a un segundo satélite. Pongamos que nos hallamos a 19.000 km del mismo y por lo tanto sobre otra esfera con un radio de esa longitud. Ahora ya estamos en algún lugar de la circunferencia que resulta de la intersección de las dos esferas.

El GPS se basa en el principio matemático de la triangulación.

El GPS se basa en el principio matemático de la triangulación. / e-monsite

Si medimos nuestra distancia a un tercer satélite y descubrimos que estamos a 15.000 km del mismo, nuestra posición se restringirá aún más, concretamente a los dos puntos en los cuales esta nueva esfera corta la circunferencia que resulta de la intersección de las dos primeras esferas.

Así que al medir nuestra distancia a tres satélites, limitamos nuestro posicionamiento a solo dos puntos posibles. Para saber cuál de ellos indica nuestra posición verdadera, podríamos hacer una nueva medición a un cuarto satélite. Sin embargo, esto no siempre es necesario porque a menudo uno de los dos puntos obtenidos es descartado fácilmente por tener una ubicación demasiado lejana de la superficie terrestre.

 

Si quieres más ciencia para llevar sobre las matemáticas y su papel en el conocimiento del cosmos, consulta La geometría del universo (CSIC-Catarata), un libro del matemático Manuel de León.