Archivo de la categoría ‘Biología’

Un café más sostenible: convierte los posos en unas saludables galletas

Por Mar Gulis (CSIC)

“¡Ah, el café!, ¡sabe tan dulce!,

es más cautivador que mil besos,

más suave que el moscatel.

Café, café… es lo único que necesito.

Si alguno quiere hacerme feliz,

que me ofrezca un café”.

Esta estrofa corresponde a La cantata del café, una composición musical de Johann Sebastian Bach en forma de pequeña ópera cómica. Pero el célebre compositor no es el único personaje histórico aficionado al café. Se dice que Ludwig van Beethoven contaba exactamente 60 granos para preparar su taza. Honoré de Balzac tomaba unas 50 tazas al día y demostró su pasión en un ensayo humorístico llamado Los placeres y los dolores de café. Incluso Napoleón Bonaparte dijo que prefería sufrir a dejar de tomar café. Roosevelt, Margaret Atwood o David Lynch son otras celebridades amantes de esta bebida: una de las más populares y controvertidas de la dieta humana y la favorita de un número cada vez mayor de personas en todo el mundo.

Según explican María Dolores del Castillo y Amaia Iriondo, investigadoras del Instituto de Investigación en Ciencias de la Alimentación (UAM-CSIC) y autoras del libro ¿Qué sabemos de? El café (CSIC-Catarata), esta bebida se obtiene a partir de las semillas del fruto o cereza del cafeto (arbusto perennifolio del que toma su nombre) mediante un cuidadoso proceso de recolección en su punto óptimo de maduración, seguido del tostado y la extracción. De todo ello depende el aroma, sabor y composición final del preciado producto, que se prepara de diversas maneras y en diferentes niveles de tostado a lo largo del globo.

En ese viaje de la cereza hasta nuestra taza de café se queda por el camino más del 90% del fruto. Así ocurre con la cáscara, compuesta por la piel y la pulpa, el mucílago, una capa gelatinosa que recubre la semilla, el pergamino, una piel muy fina que rodea el grano, y la cascarilla, que se produce durante el tostado del grano. Durante el proceso productivo se generan en el mundo alrededor de 784.000 toneladas de biomasa residual al año, que suponen un problema medioambiental si se vierten a los ríos o se dejan descomponer sobre el suelo de manera no controlada. ¿Qué hacer entonces con tanta materia orgánica? Las autoras apuntan que el objetivo es convertir todos estos desechos en subproductos y explotarlos antes de que se conviertan en residuos.

Posos para el jardín

De entre todos los subproductos generados en la cadena del café, los posos son los que nos encontramos de manera más cotidiana, con el simple hecho de preparar un café en casa. Pero, ¿qué ocurre con las toneladas de posos que se generan al preparar el café que desayunan en España más de 22 millones de personas cada mañana? Es probable que acaben en la basura, en la pila o que una parte se coloque, por ejemplo, en una taza dentro del frigorífico para atrapar olores indeseados, pues el café se comporta como una esponja que atrapa estos compuestos.

También forma parte de la sabiduría popular el uso de los posos en el compostaje. Existen varias formas para su uso en las plantas o en el jardín. Como explican las investigadoras, lo primero es asegurarse de que estén bien secos: se esparcen sobre una bandeja con papel de periódico y se dejan secar al sol para evitar que se pudran o que crezcan hongos, lo que echaría a perder el abono. A continuación, el compostaje de posos es tan fácil como tirarlos en el propio compost. Los filtros, por cierto, también se pueden compostar, especialmente si están libres de productos blanqueantes.

El beneficio de usar los posos como fertilizante es que agregan material orgánico, lo que mejora el drenaje, la retención de agua y la aireación del suelo. También ayudan a que los microorganismos beneficiosos para el crecimiento de las plantas prosperen y atraigan a las lombrices de tierra. Por otro lado, parece que muchas personas que reutilizan los posos en su jardín indican que repele a las babosas y los caracoles.

Posos en tus galletas: una receta para hacer en casa

Aunque las investigadoras inciden en la cantidad de diferentes usos posibles para los subproductos del café (desde energía, combustible, cosméticos o agricultura, por mencionar algunos), cabe recordar que en su composición contienen un alto contenido en fibra y son fuente de proteínas, además de contar con potasio como principal componente mineral, seguido del magnesio y el fósforo. Así, utilizar los posos del café como ingrediente alimentario para el consumo humano sería una de las maneras más eficientes de reutilizarlos.

Una de las formas más sencillas de emplear los posos de café como ingrediente alimentario es cocinar galletas con ellos. Según estudios realizados por el grupo de investigación de las autoras sobre biociencia de los alimentos, las galletas hechas con posos de café entre sus ingredientes cuentan con una alta calidad nutricional, buen sabor y potencial para reducir el riesgo de enfermedades crónicas como la obesidad y la diabetes. Por si fuera poco, ayudan a conciliar el sueño.

Para abrir boca e ir ensayando, aquí os dejamos una receta de galletas incluida en el libro:

GALLETAS CON POSOS DE CAFÉ

INGREDIENTES

  • 60 g de harina de trigo (o sustituto)
  • 20 g de agua
  • 8 g de aceite de girasol
  • 0,6 g de levadura
  • 0,4 g de sal
  • 0,35 g de lecitina de soja
  • 2 g de estevia
  • 3,5 g de fructooligosacáridos (FOS también conocido como “beneo” o “inulina”)
  • 4,5 g de posos de café

Los posos se pueden utilizar frescos obtenidos a partir de una bebida recién preparada por cualquier método (goteo, prensa francesa, cafetera italiana, etc.). Si no se utilizan en las siguientes horas después de la preparación de la bebida, se pueden secar en el horno a 185 °C hasta eliminar toda el agua y conservar en un lugar seco y fresco hasta su uso. Alternativamente, los posos húmedos se pueden conservar en congelación (-20 °C) hasta tener cantidad suficiente para elaborar un buen número de galletas saludables ricas en fibra y con bajo contenido de azúcar.

PREPARACIÓN

Precalentar el horno a 185 °C y forrar una bandeja con papel de hornear. Mezclar todos los ingredientes en un bol hasta obtener una masa. Extenderla con un rodillo, cortar las galletas con un molde o un vaso y colocarlas en la bandeja preparada previamente. Hornear durante 15 minutos aproximadamente (185 °C) y dejar enfriar antes de consumir.

Si te animas a probar esta receta, ¡cuéntanos! Y no olvides que, a pesar de las propiedades beneficiosas que pueda tener un consumo moderado de café (a una temperatura adecuada y dentro de una dieta diversa y equilibrada), es muy importante no añadir azúcar. Solo de este modo podremos obtener los mejores beneficios para la salud, así como disfrutar de todas las propiedades sensoriales que nos ofrecen los productos de café.

Plancton: un mundo en una cucharadita de agua de mar

Por Albert Calbet (CSIC)*

En una pequeña cantidad de agua de mar como la que podemos recoger en la playa con una simple cuchara de café, podemos encontrar unos 50 millones de virus, 5 millones de bacterias, cientos de miles de pequeños flagelados unicelulares, ya sean fotosintéticos, consumidores, o una combinación de ambos, miles de algas microscópicas, unos cinco ciliados o dinoflagelados heterótrofos, y, con mucha suerte, algún pequeño crustáceo, como por ejemplo un copépodo. El plancton, conformado por este vasto acervo de seres diminutos, es fundamental para el funcionamiento de los ecosistemas marinos. Es el responsable de que haya vida en la Tierra, nos ha proporcionado, a escalas geológicas, una buena parte del oxígeno de nuestro planeta y sin él seguro que no comeríamos pescadito frito.

Calanus minor, especie de copépodo del mar Mediterráneo, sobre fondo negro.

Calanus minor. Especie de copépodo del mar Mediterráneo. Si bien en el Mediterráneo el género Calanus no es dominante, en mares más fríos y productivos, como el Mar del Norte o el Océano Ártico representan la mayoría de la biomasa de zooplancton y son claves para el mantenimiento de las pesquerías de la zona. / Imagen capturada al microscopio por Albert Calbet

Plancton: el motor de la vida marina

Todos estos seres que podemos encontrar en cualquier agua de mar están interconectados en una imbricada red trófica (el conjunto de cadenas alimentarias interconectadas) en la que no solo un organismo se come a otro, sino que, al hacerlo, ayuda a que se liberen los nutrientes acumulados en la materia viva y vuelvan a estar disponibles para que empiece de nuevo el ciclo de la vida. La red trófica marina también ayuda a reducir el CO2 atmosférico gracias a un proceso denominado bomba biológica marina. Mediante este proceso las algas absorben CO2 que ha penetrado en el mar desde la atmósfera y lo incorporan en forma de carbono orgánico en su materia viva. Al ser consumidas por el zooplancton, el carbono contenido en las algas pasa a formar parte de este, o acaba en paquetes fecales que son expulsados y sedimentan hacia las profundidades del océano. Allí, este carbono será reciclado o acabará secuestrado en los sedimentos por cientos o miles de años.

Copépodo marino del género Labidocera sobre fondo negro

Copépodo marino del género Labidocera. Este género habita aguas superficiales y posee tonalidades azules que le confieren sus pigmentos fotoprotectores. / Imagen capturada al microscopio por Albert Calbet

La mayor migración de la Tierra

Este proceso de transporte vertical de carbono está estrechamente relacionado con las migraciones de zooplancton. Estos desplazamientos diarios son considerados las mayores migraciones que existen en el planeta. Al migrar hacia capas superficiales para alimentarse durante la noche, el zooplancton evita que sus depredadores, los peces, lo puedan ver y devorar. Todo encaja en un orden y un equilibrio marcados por millones y millones de años de evolución conjunta de depredadores y presas.

Ilustración de la red trófica oceánica

Ilustración de Albert Calbet

El plancton no solo muestra ritmos diarios, también los hay anuales y plurianuales. Los ritmos anuales están marcados por las estaciones. En invierno, el fitoplancton, a pesar de tener plenitud de nutrientes, está limitado por la escasa luz y la baja temperatura. Hacia finales del invierno y principios de la primavera la luz es más intensa y la temperatura comienza a subir, lo que favorece la floración explosiva o bloom del fitoplancton, el cual irá acompañado por un crecimiento de las poblaciones de protozoos primero y de zooplancton de mayor tamaño después.

Ciliado tintínido del género Favella. Los ciliados son protozoos y forman parte del microzooplancton, el mayor grupo de herbívoros del mar. / Imagen capturada al microscopio por Albert Calbet

Cuando el verano está en su máximo esplendor, la ya bien formada termoclina, la capa de separación entre dos masas de agua a temperatura diferente, separa claramente dos zonas: una capa superficial, caliente y pobre en nutrientes, y una más profunda, fría y repleta de nutrientes. El consumo de las algas va agotando lentamente los nutrientes en la capa de mezcla superficial y con la falta de sustento estas van perdiendo empuje. Las algas veraniegas son o bien de pequeño tamaño o bien grandes, pero con capacidad de locomoción (como los dinoflagelados), y esto les permite explorar las micromanchas de nutrientes que puedan quedar. Son estas algas de gran tamaño las que, en condiciones propicias (por ejemplo, dentro de zonas confinadas como bahías, puertos y espigones), pueden multiplicarse hasta formar proliferaciones nocivas. En esta época es cuando aparecen también las medusas y otros tipos de plancton gelatinoso.

Las primeras tormentas del otoño llegan acompañadas de un aumento en la intensidad del viento, lo cual acaba deteriorando la termoclina, que al final se rompe y permite que las aguas ricas en nutrientes lleguen de nuevo a la superficie. En ocasiones, si las condiciones climáticas del año lo permiten, puede haber otro pequeño crecimiento de algas, pero muchas veces las pobres intensidades lumínicas y bajas temperaturas hacen que el fitoplancton no consiga aprovechar la abundancia de nutrientes. Vuelve el invierno y el ciclo comienza de nuevo.

Imagen de alga diatomea al microscopio

Diatomea del género Coscinodiscus. Las diatomeas son algas unicelulares planctónicas o bentónicas que tienen su cuerpo recubierto por dos valvas de sílice, a modo de cajita. / Imagen capturada al microscopio por Albert Calbet

Ritmos alterados por el cambio climático

Este ciclo se repite año tras año en las zonas templadas, sin embargo, la duración de las estaciones y la magnitud de los parámetros físicos (temperatura, densidad, luz) que se alcanzan en ellas es variable. Debido al cambio climático, el plancton se enfrenta a grandes retos y a fenómenos extremos que están provocando cambios en las comunidades. Estas alteraciones en el plancton se transmiten a través de la red trófica al resto de seres vivos y llegan hasta las pesquerías, de las que tanto dependen algunas zonas del planeta. Desincronización entre el período de aparición de depredadores y presas, desplazamiento y sustitución de especies por otras invasoras, aumento de las proliferaciones algales nocivas (antes conocidas como mareas rojas), incremento en la abundancia de medusas, etc., son algunos de los ejemplos de los retos a los que nos enfrentamos. La red trófica planctónica es compleja y nuestra actividad puede dañarla. Por eso es necesario que se apliquen medidas de contención del cambio climático y de la actividad antropogénica en general, y debemos seguir estudiando cómo evolucionarán las comunidades marinas, pues la incertidumbre ante el futuro no había sido nunca tan grande desde nuestra historia reciente.

Sapphirina sp. o zafiro de mar sobre fondo negro

Sapphirina sp. o zafiro de mar. Esta especie de copépodo de forma deprimida posee cristales de guanina que le confieren iridiscencias que reflejan la luz con diferentes tonalidades. / Imagen capturada al microscopio por Albert Calbet

* Albert Calbet es investigador del CSIC en el Instituto de Ciencias del Mar (ICM-CSIC) y autor del libro El plancton y las redes tróficas marinas (2022), una de las últimas novedades de la colección ¿Qué sabemos de? (Editorial CSIC-Catarata). El libro ofrece una visión clara y amena sobre el plancton y su importancia, desarrolla estos y otros temas en detalle y presenta curiosidades sobre el plancton que difícilmente se encuentran en los libros de texto.

 

¿Por qué tú y yo percibimos olores diferentes?

Por Laura López-Mascaraque* y Mar Gulis (CSIC)

¿Por qué cuando olemos algo, hay a quienes les encanta y a quienes, sin embargo, les produce rechazo? Es importante considerar la variabilidad individual que puede existir en la percepción olfativa debido a diferencias o mutaciones en los genes que codifican los olores. Ninguna persona huele igual.

Los seres humanos tenemos alrededor de 1.000 genes que codifican los receptores olfativos, aunque solo 400 son funcionales. Se conocen como proteínas receptoras olfativas que, de alguna manera, trabajan juntas para detectar una gran variedad de olores. El patrón de activación de estos 400 receptores codifica tanto la intensidad de un olor como la calidad (por ejemplo, si huele a rosa o limón) de los millones, incluso billones, de olores diferentes que representan todo lo que olemos. La amplia variabilidad en los receptores olfativos influye en la percepción del olor humano aproximadamente en un 30%. Esta variación sustancial se refleja a su vez en la variabilidad de cómo cada persona percibe los olores. Un pequeño cambio en un solo receptor olfativo es suficiente para afectar la percepción del olor. Esto influye en cómo una persona lo percibe, y provoca respuestas hedónicas muy dispares: «me encanta» o «lo odio».

Variaciones en el gen OR6A2 hacen que el sabor del cilantro sea algo parecido al jabón para algunas personas

Y si hay un alimento que genera tanto amor como rechazo, ese es el cilantro. En este caso, variaciones en el gen OR6A2 hacen que su sabor sea algo parecido al jabón para algunas personas mientras que otras lo definen como verde y cítrico. Alteraciones en el gen OR2M7 son responsables de detectar el fuerte olor de la orina al comer espárragos. O hay quienes no detectan el olor a violeta, relacionado con la variación en el gen β-ionona. Dos sustituciones de aminoácidos en el gen OR7D4 provocan que la androsterona, presente en la carne de cerdos machos, sea indetectable para algunas personas, otros lo relacionan con olor a orina y sudor, mientras que hay quienes la describen como un olor dulce o floral. A lo largo de nuestra vida se puedan activar o desactivar ciertos genes que codifican para unos receptores olfativos específicos, lo que podría provocar cambios en nuestro sentido del olfato. Esto podría explicar el por qué un olor determinado lo percibimos de forma diferente a lo largo de los años.

El sabor: olfato y gusto

Hasta ahora hemos hablado del olfato, pero el sabor es la combinación de olfato y gusto: el olor en la nariz y el gusto en la lengua. Sin embargo, el gusto está limitado a lo dulce, amargo, salado, ácido y al umami (sabroso en japonés, uno de los sabores básicos junto con los anteriores). Mientras que es el olor el que contribuye casi en un 80% al sabor. Cada receptor gustativo, situado en las papilas gustativas en la lengua, se especializa en la detección de uno de los cinco tipos, aunque todas las papilas contienen los cinco receptores. En el gusto también influye la genética. El término “supergustador” o “supercatador” se aplica a aquellas personas muy sensibles al gusto amargo, debido a polimorfismos en el gen TAS2R38. También existen determinadas sustancias que son transformadoras del sabor. Por ejemplo, la miraculina, una proteína que se encuentra en una baya roja (Synsepalum dulcificum), obstaculiza las papilas gustativas. Así impide que la lengua perciba los sabores ácidos y amargos, aunque intensifica la capsaicina (compuesto químico que aporta una sensación picante).

Una proteína de la baya roja Synsepalum dulcificum obstaculiza las papilas gustativas

Y no podemos olvidar que en la experiencia de saborear también entra en juego el tacto. Percibimos texturas suaves, más duras, crujientes… Al masticar, el nervio trigémino detecta la temperatura, la sensación picante o un sabor mentolado, y transmite la información sensorial al cerebro. Pero esto mejor lo dejamos para otro post.

*Laura López-Mascaraque es investigadora en el Instituto Cajal del CSIC.

Conoce en un breve vídeo las mejores fotografías científicas de 2022

El movimiento coordinado de estorninos, la combustión del acero, la cristalización del paracetamol o las neuronas activadas durante la formación de un recuerdo son algunos de los temas protagonistas de las ocho fotografías elegidas en la 19ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) con la colaboración de Fundación Jesús Serra, de Grupo Catalana Occidente.

Un gránulo de almidón de tapioca, un ácaro herbívoro, las células del estigma de una flor de Freesia o las formaciones de pirolusitas son otros temas retratados entre las casi 600 fotografías presentadas.

De izquierda a derecha y de arriba abajo: ‘El murmullo, atacado’, ‘Galaxia polisacárida’, ‘Bosque encantado’, ‘Recordando a Cajal’, ‘Fuegos artificiales petrificados’, ‘Nada se resiste al poder del fuego’, ‘Interacciones ocultas’ y ‘Plumas analgésicas’.

En esta décimo novena edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se ha sumado una modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias o el estudio del cerebro. Esto se debe a que FOTCIENCIA19 se ha unido al Acontecimiento de Excepcional Interés Público Año de Investigación Santiago Ramón y Cajal 2022 (Año Cajal), impulsado a nivel nacional.

Además, como en las últimas ediciones, cada participante ha podido adscribir su imagen a uno de los 17 Objetivos de Desarrollo Sostenible (ODS) declarados por Naciones Unidas.

Un comité formado por 14 profesionales relacionados con la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, han valorado y elegido las ocho fotografías más impactantes y que mejor describen algún hecho científico. Puedes descubrirlas en este vídeo:

Con una selección más amplia de fotografías y sus respectivos textos se elaborará una exposición itinerante que será inaugurada en primavera de 2023. Dos copias de la muestra se prestarán gratuitamente y recorrerán museos y centros culturales, educativos y de investigación de todo el territorio nacional a lo largo del año. Esta selección también quedará recogida en un catálogo de fotografías científicas.

Consulta toda la información sobre esta iniciativa en www.fotciencia.es.

Imágenes seleccionadas, por orden de aparición en el vídeo:

Modalidad Micro:

  1. Bosque encantado / Isabel María Sánchez Almazo, Lola Molina, Concepción Hernández Castillo
  2. Plumas analgésicas / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan

Modalidad General:

  1. El murmullo atacado / Roberto Bueno Hernández
  2. Nadie se resiste al poder del fuego / Sara María Rubio

Modalidad Año Cajal:

  1. Recordando a Cajal / Miguel Fuentes Ramos

Modalidad Alimentación y nutrición:

  1. Galaxia polisacárida / Antonio Diego Molina García

Modalidad Agricultura sostenible:

  1. Interacciones ocultas / José María Gómez Reyes, Isabel María Sánchez Almazo, Lola Molina, Daniel García-Muñoz Bautista-Cerro

Modalidad La ciencia en el aula:

  1. Fuegos artificiales petrificados / Carlos Pérez Naval

 

¿Es posible la recuperación del Mar Menor?

Por Juan Manuel Ruiz Fernández* y Mar Gulis (CSIC)

El ecosistema lagunar del Mar Menor experimentó hace seis años un repentino colapso que supuso el final de una larga etapa (más de cinco décadas) de presiones antropogénicas continuas y crecientes.

Uno de los primeros retos de la ciencia para recuperar el Mar Menor es identificar y cuantificar las causas del actual deterioro, lo que requiere necesariamente un adecuado conocimiento científico del Mar Menor y su funcionamiento. El Mar Menor es objeto de estudios científicos desde la primera mitad del siglo XX, como los realizados para valorar sus recursos pesqueros (Navarro, 1927), sus depósitos minerales y su posible interés para la industria minera (Simmoneau, 1973) o la dinámica del intercambio de agua con el Mediterráneo (Arabio Torre y Arévalo, 1971). Desde entonces, instituciones públicas como el Instituto Español de Oceanografía (IEO-CSIC), la Universidad de Murcia o el Instituto Geológico y Minero de España (IGME-CSIC) han desarrollado su actividad investigadora tanto en la albufera como en su cuenca vertiente, dando lugar a una creciente producción científica.

Las praderas de la angiosperma marina Cymodocea nodosa son un componente clave para el funcionamiento del ecosistema lagunar, aunque su pérdida en una amplia superficie del fondo es por ahora irreversible. / Javier Murcia Requena

Las praderas de la angiosperma marina Cymodocea nodosa son un componente clave para el funcionamiento del ecosistema lagunar, aunque su pérdida en una amplia superficie del fondo es por ahora irreversible./ Javier Murcia Requena

Sin embargo, si superponemos los resultados de todos estos estudios en un mapa del complejo entramado de compartimentos e interacciones que conforman el ecosistema lagunar (y los ecosistemas vecinos con los que se encuentra conectado: la cuenca vertiente y el Mediterráneo adyacente), comprobaremos que apenas hemos conseguido rasgar las capas más superficiales del conocimiento. Todavía tenemos importantes carencias en nuestro conocimiento más básico sobre cuestiones que son clave para comprender el estado actual del Mar Menor y sus causas.

Un claro ejemplo de eutrofización

El colapso experimentado por el Mar Menor se ajusta a un caso icónico (“de libro”) de proceso de eutrofización, y se une a una larga lista de casos similares documentados en otras zonas costeras, como Cheesapeak bay (USA) o las lagunas de Venecia (Italia). No obstante, entre otros muchos aspectos, existe un importante vacío de conocimiento sobre los ciclos biogeoquímicos en general, y del nitrógeno y del fósforo en particular, el principal desencadenante del proceso de eutrofización. Por tanto, la recuperación del Mar Menor debe pasar necesariamente por un programa serio y ambicioso de mejora del conocimiento científico, conectado e integrado a sistemas de análisis y predicción que apoyen la toma de decisiones.

Las proliferaciones masivas de macroalgas bentónicas como Caulerpa prolifera y Chaetomorpha linum son síntoma evidente del proceso de eutrofización y de los severos desequilibrios que experimenta el ecosistema lagunar. / Juan M. Ruiz

Las proliferaciones masivas de macroalgas bentónicas como Caulerpa prolifera y Chaetomorpha linum son síntoma evidente del proceso de eutrofización y de los severos desequilibrios que experimenta el ecosistema lagunar./ Juan M. Ruiz

Necesitamos un sistema de monitorización

Otro pilar importante de este plan de recuperación es disponer de un sistema de monitorización científica robusto y permanente, que permita obtener datos en continuo y de la forma más inmediata posible. La ausencia de un sistema de estas características ha dado lugar a todo tipo de especulaciones que no han hecho más que alimentar la demagogia política y, por tanto, confundir a la sociedad y a la opinión pública. Por ejemplo, se ha atribuido el deterioro del Mar Menor a eventos climáticos extremos como riadas (DANAs), olas de calor o episodios de calimas (polvo sahariano), lo que ha desviado la atención respecto al auténtico origen del problema: el exceso de nutrientes antropogénicos.

Este sistema de monitorización debe contemplar no solo la parte hidrográfica y oceanográfica, sino también los componentes biológicos del ecosistema, los procesos ecológicos implicados en su dinámica y el conjunto de su biodiversidad, que al fin y al cabo son los auténticos indicadores del estado del ecosistema y de su posible recuperación.

Biodiversidad en peligro

Muy a menudo se transmite la idea de recuperación a medida que el agua gana en transparencia, lo que no tiene base científica alguna. No se puede hablar de recuperación si el ecosistema lagunar ha perdido el 85% de sus praderas marinas, que a fecha de hoy no han mostrado síntomas de recuperación; o si la Nacra (Pinna nobilis), especie prácticamente extinta en el Mediterráneo español, ha pasado de tener una población del orden de 1,4 millones de individuos a unos pocos cientos. Ambos elementos, Nacra y praderas marinas, ejercieron probablemente un papel clave en el control de los nutrientes de la laguna, pero estos mecanismos de resiliencia hoy día han quedado notablemente debilitados. Especies tan singulares y vulnerables, estrechamente ligadas a las praderas marinas, como el caballito de mar y las agujas (varias especies de Sygnátidos) han experimentado un declive tras el colapso ecosistémico de la albufera.

Especies de peces tan características y singulares como los de la familia de los Sygnátidos (en la imagen) y los caballitos de mar han visto mermadas sus poblaciones en los fondos del Mar Menor hasta mínimos históricos./ Javier Murcia Requena

Especies de peces tan características y singulares como los de la familia de los Sygnátidos (en la imagen) y los caballitos de mar han visto mermadas sus poblaciones en los fondos del Mar Menor hasta mínimos históricos./ Javier Murcia Requena

Éstos son solo unos pocos ejemplos de las especies más emblemáticas, pero ¿qué ha pasado con el resto de la biodiversidad? ¿cómo han afectado estos cambios al funcionamiento del ecosistema? Como se conoce en ecología marina, los cambios observados en unos niveles del ecosistema pueden ser transmitidos al resto de niveles en lo que se conoce como “efecto cascada”, tanto desde los niveles basales (bottom-up) como desde los apicales (top-down). El resultado final es un nuevo estado del ecosistema que tiene consecuencias incluso a nivel socioeconómico, tal y como se empieza a sentir en sectores como la pesca y el turismo. Sin embargo, ni los estudios disponibles ni los datos de los programas de monitorización existentes nos permiten evaluar dichas consecuencias y su evolución.

A tiempo de actuar

Estamos a tiempo de recuperar el Mar Menor y su entorno, y todas las iniciativas orientadas a subsanar las deficiencias mencionadas en los puntos anteriores contribuirán a tal fin. Hasta la fecha, la apuesta más clara y contundente ha venido por parte del gobierno de España, a través del Ministerio para la Transición Ecológica, que ha invertido 485 millones de euros en un amplio programa de actuaciones con diferentes objetivos entre los que se encuentra el de reforzar el conocimiento científico y establecer un sistema de monitorización.

El IEO-CSIC es el responsable de gestionar e implementar este punto en el ámbito de la laguna (los responsables en el ámbito de la cuenca son la Dirección General de Agua y la Confederación Hidrográfica del Segura). Para ello hemos desarrollado un programa específico dotado de unos 5 millones de euros denominado BELICH, que es como los romanos se referían al Mar Menor.

El programa implica la puesta en marcha de un sistema avanzado de monitorización compuesto por diferentes tipos de plataformas completamente sensorizadas (boyas oceanográficas, plataformas sumergidas, mareógrafos, etc.), un servicio de monitorización remota a partir de datos satelitales (mapas de clorofila y otras variables ópticas de interés) y un programa de monitorización in situ, es decir, a partir de mediciones realizadas en muestras de agua. Estas mediciones permitirán calibrar los datos obtenidos de los diferentes sensores y obtener información de otras variables; en particular, aquellas relacionadas con la composición y abundancia de comunidades bacterianas, fitoplancton y zooplancton.

Más investigación básica

Lo anterior representa la parte más básica del sistema, pero necesita ser complementado para poder comprender e interpretar la información obtenida en un contexto adecuado. Para ello se ha propuesto un grupo de trabajo dedicado exclusivamente a obtener conocimiento científico de aspectos clave del funcionamiento del ecosistema, como el origen y las rutas de los nutrientes que alcanzan la laguna o los procesos de asimilación, transformación, almacenamiento y escape del nitrógeno y del fósforo, precursores del proceso de eutrofización.

El cangrejo Carcinus aestuarii era muy abundante en el Mar Menor. Su declive puede estar relacionado con la transformación del ecosistema, pero también por la llegada de un cangrejo invasor, Callinectes sapidus o cangrejo azul./ Juan M. Ruiz

El cangrejo Carcinus aestuarii era muy abundante en el Mar Menor. Su declive puede estar relacionado con la transformación del ecosistema, pero también por la llegada de un cangrejo invasor, Callinectes sapidus o cangrejo azul./ Juan M. Ruiz

Los resultados de estos trabajos de investigación servirán además para alimentar y calibrar modelos numéricos capaces de simular los procesos hidrodinámicos y biogeoquímicos que rigen la dinámica actual del ecosistema lagunar, incluidos los episodios de desarrollo explosivo del fitoplancton, los eventos de anoxia o la mortalidad masiva de organismos marinos. Estos modelos, una vez ajustados a la variabilidad espacial y temporal propia del Mar Menor, podrán servir para predecir los efectos de nuevos eventos climáticos (riadas) y del calentamiento global o la respuesta del ecosistema a acciones específicas de gestión (por ejemplo, la reducción de entradas de nutrientes y de sedimentos terrígenos o la alteración de los flujos de agua entre la laguna, su cuenca y el Mediterráneo).

En esta misma línea se realizarán evaluaciones experimentales sobre la viabilidad y eficacia de métodos y propuestas de restauración de las funciones y servicios ecosistémicos. Todos los datos y el conocimiento generados, así como los modelos obtenidos, deberán confluir en una plataforma digital capaz de integrar y procesar toda esta información que sirva de herramienta de gestión y apoyo a la toma de decisiones.

El desarrollo de este sistema es un gran reto científico. Sin embargo, nada de este esfuerzo tendrá sentido si no existen mecanismos de coordinación e integración dentro y entre los diferentes programas y equipos, y será un fracaso total si, una vez conseguido, no somos capaces de derivar todo lo invertido en infraestructuras permanentes que garanticen series temporales de datos en continuo y a largo plazo, que es lo que en realidad provee al personal científico y de gestión de las herramientas adecuadas para responder a las demandas de la sociedad y asistir a la recuperación del Mar Menor.

 

*Juan Manuel Ruiz Fernández es investigador del CSIC en el Instituto Español de Oceanografía

Astrocitos: estrellas que hablan en nuestro cerebro

Por Irene Serra Hueto (CSIC)*

Seguro que has oído alguna vez que nuestro cerebro es el ordenador más potente del mundo. Ahora bien, ¿en qué piensas cuando te preguntan de qué está formado? Lo más probable es que lo primero que te venga a la cabeza sean las neuronas. No está mal, pero para que esta máquina tan singular funcione con todo su potencial necesita del trabajo de otras células igual de importantes. Entre ellas se encuentran los astrocitos, que reciben su nombre de las estrellas.

Empecemos por el principio. El cerebro funciona gracias a que las neuronas transmiten información a través de corrientes eléctricas. Los puntos de conexión entre una neurona y otra se conocen como sinapsis. En ellas se liberan sustancias llamadas neurotransmisores que permiten que el impulso eléctrico continúe de una neurona a otra. En este punto de conexión, en este diálogo entre las neuronas, el astrocito juega un papel fundamental, modulando y regulando la comunicación entre ellas.

Nuestro cerebro habla bajo sus propias reglas. Esquema de una sinapsis cerebral donde se intercambia la información entre las células, como en una conversación de WhatsApp. / Irene Serra. Células creadas con Biorender.com.

¿Qué ventajas puede tener una conversación a tres? Este sistema, más complejo que una conversación a dos, permite más variedad de mensajes y añade un elemento mediador que asegura que la información se transmite correctamente, el astrocito. La cuestión es que no tenemos un solo astrocito por cada sinapsis. En ratones, una sola de estas células es capaz de modular, mediar y participar en más de 100.000 sinapsis simultáneamente. Es como si un único astrocito estuviese presente y hablando en 100.000 grupos de WhatsApp al mismo tiempo. En humanos, un solo astrocito interviene en 2 millones de sinapsis. Es decir, que nuestros astrocitos tienen 20 veces más capacidad de procesar información… Y, además, tenemos millones de ellos. ¿Y si la explicación (o, al menos, parte de ella) a nuestra inteligencia residiera en el gran refinamiento que los astrocitos aportan a nuestro cerebro?

Para poder contestar esta pregunta necesitamos saber más. Precisamente, mi investigación en el Instituto Cajal (IC) del CSIC se centra en estudiar los circuitos astrocito-neurona; en concreto, los que se establecen en el núcleo Accumbens, la zona del cerebro que se activa cuando algo nos gusta. Esta zona recibe información de otras regiones del cerebro relacionadas con la memoria (hipocampo), las emociones (amígdala) y la toma de decisiones (corteza prefrontal), y es muy importante porque se ve afectada, entre otros casos, en trastornos de adicción.

Ejemplo de cómo es la información que pasa por el núcleo Accumbens vista desde una conversación de WhatsApp./ Irene Serra

Sabemos que los astrocitos son parte fundamental de la regulación de este núcleo y, desde hace poco, también que el cerebro tiene distintos tipos de astrocitos, del mismo modo que tiene distintos tipos de neuronas. Sin embargo, todavía no hemos comprendido en profundidad para qué son los astrocitos diferentes entre ellos ni cómo son de diferentes. En el núcleo Accumbens, ¿tenemos astrocitos especializados regulando la información de recuerdos de aquello que nos gusta? ¿Hay otros asociados a las emociones? ¿Intervienen en los circuitos de toma de decisión?

Un sensor de calcio para superar las limitaciones de los microscopios

En el último trabajo publicado por el Laboratorio de Plasticidad Sináptica e Interacciones astrocito-neurona del IC-CSIC, dirigido por Marta Navarrete, profundizamos en estas preguntas y presentamos una nueva herramienta que nos ha permitido estudiar, por primera vez, la actividad de los astrocitos a gran escala y con precisión temporal. Se trata de CaMPARIGFAP, un sensor de calcio con el que hemos podido observar el núcleo Accumbens al completo y detectar qué astrocitos responden a un estímulo concreto.

El tamaño de las lentes de los microscopios es limitado y hace que no sea posible observar al mismo tiempo todos los astrocitos de una región cerebral. La particularidad de CaMPARIGFAP es que detecta, mediante la fluorescencia, el calcio que emiten los astrocitos cuando se activan. Es como hacer una foto: al enviar un ‘flash’ de luz violeta, los astrocitos inactivos se muestran en verde y los activos en rojo. De este modo, podemos analizar cómo responden regiones amplias del cerebro a un estímulo determinado.

Tejido del núcleo Accumbens en el que cambia el color de CaMPARIGFAP según la actividad de los astrocitos. / Irene Serra

Utilizando esta herramienta hemos descubierto que los astrocitos del núcleo Accumbens forman redes funcionales que responden de diferente forma según la procedencia de los estímulos -memoria, emociones o decisiones­-. Los resultados indican que los astrocitos son capaces de distinguir de dónde viene la información y, también, que integran las diferentes señales en un procesamiento paralelo al de las neuronas. Todo apunta a que los astrocitos están mucho más especializados en los circuitos cerebrales de lo que pensábamos.

Comprender en detalle cómo interaccionan con las neuronas y cómo regulan la información que llega de las diferentes zonas del cerebro nos acercaría mucho a encontrar soluciones eficaces para tratar la adicción. Y eso solo en el núcleo de Accumbens: llegar a entender cómo interaccionan los astrocitos en otras regiones cerebrales nos permitiría comprender mucho mejor el potencial de nuestro cerebro, que a día de hoy esconde tantos misterios como el universo.

*Irene Serra Hueto es investigadora predoctoral en el Laboratorio de plasticidad sináptica e interacciones astrocito-neurona del Instituto Cajal del CSIC, dirigido por Marta Navarrete.

Extractos vegetales o aditivos E: ¿cuál es la mejor opción para conservar los productos cárnicos?

Por Mónica Flores (CSIC) * y Mar Gulis (CSIC)

En los últimos 40 años, el consumo de alimentos de origen animal ha aumentado considerablemente, sobre todo en los países asiáticos. Hoy, la demanda de este tipo de alimentos se encuentra al mismo nivel en América y Europa que en China. En paralelo a este proceso, la demanda de productos cárnicos se ha visto afectada por la preocupación por el bienestar animal y por el consumo de alimentos orgánicos. En este sentido, una de las tendencias de mercado más importante está siendo la eliminación de aditivos y, por tanto, de los números E de las etiquetas.

Entre los aditivos más afectados por esta dinámica se encuentran los denominados “agentes de curado”, es decir, el nitrito potásico y sódico (E 249 y E 250) y el nitrato sódico y potásico (E 251 y E 252). Estos agentes se emplean en la elaboración de muchos productos cárnicos -como el jamón serrano y cocido, el chorizo, el salchichón, etc.- para mantener su seguridad y sus características organolépticas (color, aroma y sabor).

De hecho, en el ámbito internacional el término “curado” hace referencia al uso de sales de nitrito y nitrato junto con cloruro de sodio y otros ingredientes como conservantes de la carne. El nitrito es el principio activo que produce el efecto conservante mientras el nitrato actúa como fuente de nitrito en los procesos largos de secado y maduración de los productos.

Pros y contras de los aditivos E

El empleo de este tipo de aditivos en los productos cárnicos ha sido respaldado por la Agencia Europea de Seguridad Alimentaria (EFSA), que en el año 2003 concluyó que son fundamentales para proteger los alimentos frente al bacilo Clostridum botulinum, causante del botulismo. En la misma línea se ha pronunciado la Agencia Francesa de Seguridad y Salud Alimentaria, Ambiental y Ocupacional (ANSES) en su “Evaluación de riesgos relacionados con el consumo de nitratos y nitritos”. El informe, publicado en 2022, indica que los nitritos y nitratos contribuyen eficazmente a limitar el desarrollo de agentes patógenos como Listeria, Salmonella o Clostridium botulinum.

Estos aditivos, por tanto, son excelentes antimicrobianos y antioxidantes que permiten que tengamos unos productos cárnicos seguros y con propiedades sensoriales características. A pesar de ello, nitritos y nitratos se encuentran en el punto de mira debido a que pueden dar lugar a la formación de las denominadas nitrosaminas, agentes cancerígenos formados por la reacción del nitrito residual en los productos cárnicos con aminas secundarias. Por eso, la ESFA recomienda restringir su uso en los productos cárnicos al mínimo posible.

En cualquier caso, conviene no olvidar que la principal fuente de exposición humana a los nitratos es el consumo de verduras y hortalizas, no el de carne: el 80% de la ingesta total de nitratos procede de dichos alimentos. Estos nitratos son resultado del empleo de fertilizantes en los cultivos, aunque el contenido en nitratos de los vegetales varía mucho según la parte anatómica del vegetal que se consuma y de las prácticas agrícolas.

Por su parte, la fuente más importante de nitrito en la dieta es el consumo de alimentos y agua que contienen nitrato, el cual se convierte en nitrito en la saliva por acción de las bacterias orales. Un informe de la EFSA de 2017 señala que la contribución de los nitritos por su uso como aditivos alimentarios (principalmente en productos cárnicos) representa aproximadamente un 17% de la exposición total a los nitritos.

El auge de los productos ‘etiqueta limpia’

Aun así, en los últimos años se ha acentuado la búsqueda de alternativas a los nitrificantes para crear productos ‘etiqueta limpia’ (clean label). A principios del siglo XXI, en Estados Unidos se propuso el empleo de extractos vegetales con altos contenidos de nitratos para la fabricación de productos cárnicos. Los extractos vegetales, fermentados o no, que se han comercializado en el país anglosajón con estos fines proceden del apio y, en menor medida, de la remolacha, la lechuga, la espinaca, la acelga o la zanahoria, todos ellos ricos en nitrato, así como de la acerola y las cerezas, que aportan ascorbato.

Sin embargo, esta estrategia de sustitución plantea limitaciones, como las debidas al posible aporte de aromas vegetales y pigmentos procedentes del extracto. Además, en estos extractos la concentración de nitrato y nitrito es variable y requiere la adición de bacterias que permitan la formación del nitrito. Al ser el nitrito el verdadero agente antimicrobiano en los productos, el desconocer la dosis real de nitrito empleada conlleva riesgos de seguridad alimentaria y requiere el empleo de otras sustancias antimicrobianas.

Además, esta estrategia no impide que en el caso de que exista nitrito residual se formen nitrosaminas, por lo que el riesgo de formación de las sustancias cancerígenas sigue existiendo. Incluso otros contaminantes presentes en los extractos vegetales, como micotoxinas, metales pesados y contaminantes orgánicos, pueden ser transferidos al producto cárnico.

Por último, una de las principales limitaciones en el uso de extractos vegetales es su posible potencial alergénico. De hecho, el apio está incluido en el listado de alérgenos identificables en la Unión Europea.

Autorizados en EEUU y Canadá, pero no en Europa

En Estados Unidos y Canadá esta práctica está autorizada, pero ha creado cierta polémica por el empleo de mensajes como “no curado” en el etiquetado de los productos cárnicos procesados con extractos vegetales, ya que pueden confundir a los consumidores, que no entienden las prácticas realizadas. Por ello, se exige que el etiquetado sea preciso y no engañoso.

En Europa, la EFSA realiza la evaluación de la seguridad de los aditivos. Sus criterios de seguridad establecen que los aditivos no deben contener residuos que puedan presentar algún riesgo de tipo toxicológico. En este sentido, los extractos vegetales no presentan los mismos criterios de pureza que los aditivos agentes de curado e impiden una correcta evaluación de su seguridad. Este aspecto es muy importante, pero desconocido para los consumidores, que perciben más naturalidad en un extracto vegetal que en un aditivo, lo que conlleva falsas apreciaciones.

* Mónica Flores es investigadora del CSIC en el Instituto de Agroquímica y Tecnología de Alimentos.

¡Participa con tus fotos en la nueva edición de FOTCIENCIA!

Por Mar Gulis (CSIC)

Si te gusta el arte, la fotografía y eres capaz de ver la ciencia que nos rodea en la vida cotidiana, es el momento de participar en FOTCIENCIA19. Tanto si te dedicas a la ciencia como si no, esperamos tus imágenes: lo importante es que reflejen algún aspecto relacionado con la ciencia o la tecnología. Eso sí, no lo dejes pasar mucho tiempo, porque el plazo de participación estará abierto hasta el próximo 3 de noviembre de 2022 a las 13:00 h, hora española peninsular.

Todos los años, FOTCIENCIA realiza una selección de fotografías de fotografías de temática científica. En esta edición, al igual que en las anteriores, las mejores imágenes recibirán una remuneración de hasta 1.500 € y alrededor de unas cincuenta serán elegidas para formar parte de un catálogo y una exposición itinerante que recorrerá España durante 2023-24. Ahora mismo, de hecho, puedes visitar la exposición de la edición anterior, FOTCIENCIA18, y consultar el catálogo para hacerte una idea de cómo quedarían tus fotos si resultasen seleccionadas. Un poco más abajo de estas líneas verás un breve vídeo inspirador.

Hay seis modalidades para participar: las dos básicas, que son Fotografía general y Microscopía; y cuatro modalidades específicas: Alimentación y nutrición, Agricultura sostenible, La ciencia en el aula (que está dirigida a estudiantes de secundaria y ciclos formativos) y, como no podía ser menos en esta edición, una modalidad especial centrada en el Año Cajal.

Con esta conmemoración vamos a poder redescubrir al genial Santiago Ramón y Cajal (1852-1934), que obtuvo el Premio Nobel en Medicina en 1906 por sus trabajos sobre el sistema nervioso. Además de ser un excelente científico, muy valorado dentro y fuera de España por sus aportaciones a la neurología, Cajal fue un gran amante del arte y la belleza. Prueba de ello son sus exquisitos dibujos en los que está inspirada la gráfica de esta edición de FOTCIENCIA… ¿Lo habías notado?

Pero no solo el cerebro y las neuronas tienen cabida en FOTCIENCIA19. El vidrio, los fenómenos físicos, los seres vivos o los objetos de la vida cotidiana: casi todo puede ser mirado desde una óptica científica. Ingeniería, matemáticas, química, biología, ciencias de materiales, ciencias sociales… ¡Las opciones son prácticamente infinitas y hay para todos los gustos! Si necesitas un extra de inspiración (aunque te recomendamos proponer nuevos enfoques), aquí puedes ver las imágenes seleccionadas en ediciones anteriores.

Para participar, debes ser mayor de edad y enviar tus fotografías, hasta un máximo de tres, en formato digital a través de un formulario disponible en la página web www.fotciencia.es. Tendrán que ir acompañadas de un breve texto, original y de tu autoría, que permita interpretarlas. El jurado valorará tanto la imagen –su calidad técnica, originalidad y valor estético– como la claridad de la explicación aportada en el texto.

Las ocho mejores imágenes de la edición anterior, FOTCIENCIA18

Las ocho mejores imágenes de la edición anterior, FOTCIENCIA18

FOTCIENCIA es una iniciativa organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra, del Grupo Catalana Occidente.

No olvides que el plazo de presentación finaliza a las 13:00 h del 3 de noviembre de 2022 (hora española peninsular). Puedes consultar toda la información y las normas de participación en www.fotciencia.es.

 

‘Rewilding’: volver al Pleistoceno para recuperar ecosistemas

Por Fernando ValladaresXiomara Cantera y Adrián Escudero*

Hace unos 10.000 años, al final de la época del Pleistoceno, desaparecieron los grandes mamíferos. Hoy solo quedan huesos fosilizados y el eco de las pisadas de mamuts, gigantescos gliptodontes, leones, camellos, lobos enormes o tigres con dientes de sable que se estudian en yacimientos paleontológicos repartidos por todo el planeta. Volver a recuperar esos ecosistemas anteriores a la proliferación transformadora del Homo sapiens es el objetivo de lo que se conoce como rewilding, concepto que se podría traducir al castellano como resilvestración o renaturalización.

Recreación de la fauna de la Edad de Hielo en Altamira. / Mauricio Antón (MNCN, CSIC)

Recreación de la fauna de la Edad de Hielo en Altamira. / Mauricio Antón (MNCN, CSIC)

Se trata de una concepción de la conservación a gran escala, destinada a devolver los ecosistemas actuales a un supuesto estado previo a la intervención humana. Esto se lograría proporcionando conectividad entre las diversas zonas que conforman una región y protegiendo o reintroduciendo grandes depredadores y especies clave para aumentar la biodiversidad.

Una parte de la comunidad científica sostiene que deberíamos traer de vuelta algunos de esos “fantasmas” como parte de un controvertido movimiento para “resilvestrar” partes de Europa y América del Norte, ya sea reintroduciendo especies existentes, reviviendo otras extintas o intentando reconstruir ecosistemas enteros. Esta tendencia, no exenta de polémica, sostiene que una restauración así recuperaría procesos y beneficios ecológicos vitales pero perdidos.

De Siberia a los Cárpatos

En la década de 1980, el ecologista holandés Frans Vera encabezó la idea de introducir razas primitivas de ganado y caballos en la Oostvaardersplassen, una reserva natural de 6.000 hectáreas al este de Ámsterdam. Hoy los animales sobreviven gracias al manejo humano, ya que no existen depredadores que regulen las poblaciones de herbívoros y el incremento de especímenes hace que no dispongan de suficiente alimento.

Del mismo modo, el científico ruso Sergey Simov emprendió una búsqueda personal para reintroducir el buey almizclero, el bisonte, los caballos de Yakutia y otros grandes herbívoros, así como los tigres, en una zona de 14.000 hectáreas en el oeste de Siberia, que bautizó como Parque del Pleistoceno y que se conoce también como la pradera del mamut. Aunque tal vez la mejor prueba del beneficio ecológico de la renaturalización proceda de las islas del océano Índico, donde la reintroducción de tortugas gigantes ha aumentado la germinación de plantas en peligro de extinción, como el raro árbol de ébano de Mauricio.

Sin embargo, parte de la comunidad científica plantea la preocupación de que los animales reintroducidos puedan actuar como especies invasoras dañinas. Reintroducir especies que eran autóctonas es algo bueno, pero devolver especies equivalentes o proxies para llenar un supuesto nicho ecológico vacío es terreno abonado para generar problemas. Los efectos se pueden propagar en cascada por todo el ecosistema y la red alimentaria afectando a todo, desde las plantas e insectos hasta los pequeños roedores, y podrían llevar a otras especies en peligro de extinción a números más bajos.

La idea de recuperar ecosistemas del Pleistoceno suena tremendamente atractiva y puede recibir un gran impulso si las nuevas herramientas genéticas hacen posible la reingeniería (o “desextinción”) de los mamuts lanudos y otras especies perdidas que seducen a la sociedad. Sin embargo, más allá de las dificultades técnicas y éticas que plantea la propuesta de renaturalizar, lo que podemos afirmar es que no existe conocimiento científico concluyente sobre sus implicaciones reales y a largo plazo para la biodiversidad y la funcionalidad de los ecosistemas receptores.

Paisaje mixto con la vega de un río, zonas arboladas y áreas de cultivo en la zona del Nordeste de Segovia. / Carlos Antón

Paisaje mixto con la vega de un río, zonas arboladas y áreas de cultivo en la zona del Nordeste de Segovia. / Carlos Antón

Una apuesta por los paisajes culturales

Los ecosistemas de hoy son fruto de la interacción humana desde hace miles de años. Nuestra presencia ha generado los actuales paisajes culturales, donde las especies que los habitan han evolucionado y a los que se han adaptado, es decir, no existen bosques que mantengan las estructuras anteriores a la aparición del ser humano.

En cuanto a conservación se refiere, cada vez tenemos más claro que la crisis de biodiversidad resulta principalmente de la sobrexplotación y la transformación de esos paisajes culturales, y no tanto de la entrada reciente del ser humano en ecosistemas originales o prístinos. Por lo tanto, no se puede abordar la restauración de ecosistemas obviando que debemos convivir con el resto de especies. En primer lugar, porque ecosistemas prístinos hace mucho tiempo que apenas hay y, en segundo lugar, porque los paisajes culturales son ya tan antiguos que numerosas formas de vida han surgido y se mantienen en el seno de esos sistemas en los que el ser humano juega ya un papel ancestral.

Describir el uso humano de la naturaleza como una perturbación reciente y negativa de un mundo natural libre de seres humanos es simplemente incorrecto, ya que ignora el largo pasado de intervención humana que cuenta con más de 12.000 años de historia. Una intervención que ha generado altos niveles de biodiversidad y que ha favorecido procesos propios de estabilización de esa biodiversidad.

La restauración de los ecosistemas con los que convivimos hoy debe ser una prioridad para frenar la pérdida de biodiversidad y paliar los efectos del cambio climático. En esta labor, los referentes para conservar y recuperar la naturaleza deben ser los paisajes históricos de los que el ser humano forma parte, abandonando la explotación desmedida y la relación tóxica que tenemos con la naturaleza. Estamos de acuerdo en que la visión centrada en el ser humano que plantea nuestro marco cultural es parte de los problemas a los que nos enfrentamos, pero también que una visión excluyente en la que el ser humano como entidad biológica no está en los ecosistemas es también una reducción que nos lleva casi al absurdo.

 

* Fernando Valladares es investigador del Museo Nacional de Ciencias Naturales (MNCN, CSIC), Xiomara Cantera es la responsable de prensa del MNCN y Adrián Escudero es investigador de la Universidad Rey Juan Carlos. Los tres son autores de La salud planetaria, perteneciente a la colección ¿Qué sabemos de? (CSIC-Catarata).

El Mar Menor y su trayectoria hacia el colapso

Por Juan Manuel Ruiz Fernández* y Mar Gulis (CSIC)

En primavera de 2016 las concentraciones de clorofila en el Mar Menor multiplicaron por más de 100 los valores medios de las últimas dos décadas, habitualmente inferiores a un microgramo por litro. Este excepcional y explosivo crecimiento de fitoplancton (seres vivos capaces de realizar la fotosíntesis que viven flotando en el agua) lo protagonizaba una cianobacteria del género Symbiodinium sp, un conocido disruptor del funcionamiento de los ecosistemas acuáticos.

La ausencia de luz generada por la acumulación de esta cianobacteria causó en los meses siguientes la pérdida del 85% de las praderas de plantas acuáticas (los denominados macrófitos bentónicos) que tapizaban de forma casi continua los 135 km2 del fondo de la laguna.

Las aguas extremadamente turbias del Mar Menor han causado la desaparición del 85% de las praderas de la planta marina ‘Cymodocea nodosa’, fundamental para el funcionamiento del ecosistema lagunar. / Javier Murcia Requena

Esto supuso la movilización de miles de toneladas de carbono y nutrientes por la descomposición de la biomasa vegetal y del stock almacenado en el sedimento durante décadas; un proceso que, a su vez, retroalimentó el crecimiento del fitoplancton y prolongó la duración de este episodio de aguas turbias sin precedentes. Todo apuntaba que se estaban atravesando los umbrales ecológicos, a partir de los cuales los ecosistemas sometidos a una presión creciente colapsan y se precipitan bruscamente hacia un estado alterado que puede incluso ser tan estable como el estado anterior. Pero, ¿cómo ha llegado este singular ecosistema a una situación tan extrema?

Una laguna hipersalina

En primer lugar, es necesario conocer un poco el marco ambiental. El Mar Menor es una albufera hipersalina conectada a una cuenca vertiente de 1.300 km2. Sin embargo, de acuerdo con el carácter semi-árido del sureste peninsular, no hay ríos que desembocan en él. Las únicas entradas de agua dulce son las aportadas por escorrentía superficial durante unos pocos eventos de lluvias torrenciales cada año, y unas entradas más difusas de aguas subterráneas.

Las escasas entradas de agua dulce y una limitada tasa de intercambio con el Mediterráneo (en promedio, la tasa de renovación del agua del Mar Menor es de 1 año) explican la elevada salinidad de esta laguna costera. Antes de la década de 1970 la salinidad era incluso superior, pero disminuyó debido a la ampliación del canal del Estacio, una de las cinco golas (o conexiones) naturales entre el Mar Menor y el Mediterráneo. Desde entonces, los valores medios se han mantenido entre 42 y 48 gramos de sal por litro.

Dragados y vertidos de aguas residuales

El flujo a través de este canal gobierna ahora el régimen hidrodinámico de la albufera. Su dragado es considerado uno de los hitos principales de la transformación del Mar Menor por la acción humana.

Básicamente, se argumenta que favoreció la entrada y dispersión de especies mediterráneas y el declive de algunas especies lagunares de flora y fauna. Por ejemplo, uno de los organismos que vio favorecida su dispersión en los fondos de la laguna fue el alga oreja de liebre (Caulerpa prolifera), una especie oportunista capaz de aprovechar los nutrientes de forma muy eficiente y ocupar grandes extensiones en breves periodos de tiempo. Se considera que la oreja de libre tiene la capacidad de desplazar competitivamente a las especies nativas, como Cymodocea nodosa, que también forma praderas en el fondo de la laguna.

La oreja de liebre es un alga verde que cubre todo el fondo de la laguna, y es capaz de realizar grandes desarrollos en muy poco tiempo. En las praderas marinas del Mar Menor abundaba el bivalvo gigante del Mediterráneo o Nacra, especie ahora en peligro de extinción en todo el Mediterráneo. / Javier Murcia Requena

No obstante, alguno de los efectos negativos achacados al cambio de régimen hidrológico sobre las comunidades biológicas podría haber sido exagerado o carente de suficiente evidencia científica. A modo de ejemplo, se ha obtenido nueva evidencia que apunta a que las praderas de C. nodosa no solo no experimentaron un declive tras la propagación de Caulerpa, sino que ambas especies han coexistido con una elevada abundancia durante al menos las cuatro décadas anteriores al colapso ecosistémico.

Este incremento en la abundancia de organismos fotosintéticos implica la existencia de una elevada disponibilidad de nutrientes, condición que se cumplía con creces en el momento de la propagación del alga debido a los vertidos de aguas residuales sin depurar al Mar Menor. Por tanto, no solo el cambio en el régimen hidrológico es clave para entender este proceso de transformación del ecosistema de la laguna, sino también los excesos de nutrientes procedentes del desarrollo urbano y turístico.

Agricultura intensiva

En la década de los 1990 se completan los sistemas de tratamiento de aguas residuales en la zona, que dejan de ser vertidas al Mar Menor (a costa de ser desviadas al Mediterráneo). Pero con esto no desaparecen los problemas relacionados con el exceso de nutrientes en la albufera, sino que persisten, e incluso se intensifican, por el desarrollo de la agricultura de regadío que se inicia den la década de 1950.

Este modelo de agricultura va progresivamente reemplazando a la tradicional agricultura de secano a expensas de la sobreexplotación de las aguas subterráneas. Para soportar y aumentar este desarrollo, en 1979 se crea el transvase entre las cuencas del Tajo y del Segura, el siguiente hito clave en la transformación y el deterioro del Mar Menor.

Los recursos hídricos trasvasados eran insuficientes para sostener el crecimiento de dicha producción y tuvieron que ser complementados con las aguas subterráneas que, al ser salobres debido a la sobreexplotación previa, debían ser tratadas en plantas desaladoras cuyos vertidos, con hasta 600 miligramos de nitrato por litro, acababan en la laguna. Esta intensa actividad agrícola causó además un aumento en la recarga del acuífero y en sus niveles de contaminación por nitratos (150 mg/l), que se tradujo en un aumento de los flujos de aguas subterráneas altamente cargadas en nitrógeno al Mar Menor.

40 años de resiliencia

¿Cómo es posible que esta entrada masiva de nutrientes durante décadas no se haya visto reflejada en un deterioro aparente del ecosistema? Al menos hasta 2016, la laguna mantuvo unas aguas relativamente transparentes y unos fondos dominados por notables comunidades de plantas marinas. ¿Qué hizo que el crecimiento explosivo del fitoplancton se mantuviera ‘a raya’ y las aguas no se enturbiaran?

Uno de los mecanismos que pueden explicar la resiliencia del ecosistema es la función de filtro de partículas y nutrientes que realiza la vegetación del fondo marino. Otro son los desequilibrios en las proporciones de nitrógeno o fósforo.

Cuando los nutrientes no son limitados, la proporción de estos elementos en el fitoplancton suele ser de 16 unidades de nitrógeno por una de fósforo. Las aguas contaminadas por la actividad agrícola están cargadas de nitrógeno, pero apenas tienen fósforo. Y, aunque el fósforo es abundante en las aguas residuales urbanas, este tipo de vertido ya no se realiza en la laguna, al menos intencionadamente. Por tanto, en la actualidad, la principal vía de entrada del fósforo al Mar Menor son las toneladas de tierra arrastradas por la escorrentía superficial desde las parcelas agrícolas durante episodios de lluvias torrenciales. En la DANA de 2019 se estimó que, junto a los 60 hectómetros cúbicos de agua que llegaron a la laguna, entraron también entre 150 y 190 toneladas de fosfato disuelto.

Por ello, mientras que los aportes de nitrógeno son más continuados en el tiempo, los de fósforo son puntuales y esporádicos, limitados a unos pocos eventos anuales. A esto hay que añadir que, una vez entran en la laguna, estos fosfatos son inmediatamente absorbidos por la vegetación y/o fijados en los sedimentos. Estas diferencias en la dinámica de ambos elementos podría explicar que, aunque ambos entran de forma masiva en la laguna, las ocasiones en que sus proporciones son adecuadas para el desarrollo del fitoplancton son limitadas.

Un ecosistema alterado e inestable

El colapso del ecosistema lagunar en 2016 supuso la pérdida y/o el profundo deterioro de buena parte de los mecanismos de resiliencia y de sus servicios ecosistémicos. Así lo sugieren otros importantes hitos, como la pérdida del 85% de la extensión total de las praderas de plantas en el fondo de la laguna y del 95% de la población de Pinna nobilis, una especie de molusco bivalvo endémica del Mediterráneo. Estas pérdidas, que no muestran apenas síntomas de recuperación hasta la fecha, son claros exponentes del grado de alteración del ecosistema.

Antes del colapso ecosistémico las poblaciones de caballito de mar parecían estar recuperándose, pero el deterioro actual del ecosistema las hace estar próximas a la extinción local. / Javier Murcia Requena

Aunque carecemos de datos para valorar esta alteración de forma más global, se ha observado un régimen mucho más inestable respecto a décadas anteriores, más vulnerable a los cambios del medio, con mayores fluctuaciones de sus condiciones ambientales. La frecuencia de eventos de crecimiento explosivo del fitoplancton como el de 2016 ha aumentado claramente, y ahora los periodos de aguas turbias se alternan con los de aguas más turbias y coloreadas.

A diferencia de épocas pasadas, en estos periodos se pueden producir episodios de déficit de oxígeno hasta niveles que comprometen la vida marina y que han resultado en mortalidades masivas de organismos marinos, como se ha observado en episodios muy recientes.

En agosto de 2021 el agotamiento del oxígeno en el agua alcanzó niveles tóxicos para la vida marina, lo que provocó la mortalidad masiva de peces, moluscos y crustáceos. / Javier Murcia Requena

Se trata de eventos muy extremos y propios de sistemas costeros en etapas muy avanzadas del proceso de eutrofización (presencia excesiva de nutrientes). No obstante, desconocemos todavía los factores y mecanismos por los cuales se desencadenan todos estos eventos, algunos de los cuales se producen incluso sin que vayan precedidos de un incremento de las concentraciones de nutrientes en el agua.

*Juan Manuel Ruiz Fernández es investigador del CSIC en el Instituto Español de Oceanografía