Archivo de marzo, 2023

¿Para qué sirve la cera? Mucho más que para hacer velas

Por Cristina de Andrés Gil* (CSIC)

Cuando escuchamos la palabra cera, es común pensar en la que usan las abejas para construir sus panales… o en la cera del oído que producimos los seres humanos. Sin embargo, aunque no seamos conscientes de ello, las ceras están presentes en nuestra vida cotidiana más de lo que creemos.

Para empezar, hay un sinfín de ceras en la naturaleza, como las que recubren la piel, las plumas o el pelaje de muchos animales, o las que están en la superficie de las semillas, los tallos, las flores, las hojas o las raíces de las plantas. Normalmente, la función de estas ceras es proteger y aislar al organismo frente a insectos patógenos, cambios de temperatura o la pérdida excesiva de agua.

Cera de un panel de abejas

Pero, además, las ceras se emplean en múltiples procesos industriales, como la fabricación de velas o la industria cosmética, donde son muy cotizadas porque proporcionan una capa protectora y nutritiva para la piel, que ayuda a retener la humedad y dar una sensación sedosa al tacto. Asimismo, tienen propiedades espesantes que mejoran la textura de los productos y ayudan a una mejor adherencia a la piel.

Otra aplicación importante y quizás menos conocida es su uso en la industria alimentaria como recubrimiento de frutas o verduras: las ceras protegen a estos alimentos de la humedad, alargan su vida útil y mejoran su aspecto. Las ceras también son utilizadas en la producción de muchos materiales, como metales, plásticos, resinas, adhesivos, madera, textiles, cuero y papel, debido a su capacidad para lubricar, recubrir y proteger superficies.

Propiedades únicas

¿Qué es lo que hace a las ceras tan ubicuas y versátiles? Fundamentalmente sus propiedades químicas. Las ceras son un tipo de lípidos neutros, formados por una mezcla de compuestos que contienen ácidos grasos, entre los que se incluyen alcoholes grasos, aldehídos, cetonas, alcanos o ésteres de ceras. Su composición varía según el origen, pero son el resultado de una reacción entre un ácido graso y un alcohol graso.

Lo importante es que, al ser moléculas lipídicas largas, poseen propiedades únicas, como una alta insolubilidad en agua o un punto de fusión lo suficientemente alto como para que puedan mantenerse en estado sólido a temperatura ambiente.

Las ceras se emplean en procesos industriales como la fabricación de velas o la industria cosmética

Pero, ¿de dónde se obtienen las ceras para su aplicación en la industria? Hasta mediados de los años 80, los ésteres de ceras se obtenían de los cachalotes; en concreto, de unas cavidades situadas en la cabeza de estos mamíferos marinos denominadas espermaceti y que desempeñan un papel importante en su sistema de ecolocalización. Además, el aceite acumulado por los cachalotes, que contiene un 70% de ceras, se usaba como lubricante para maquinaria de precisión, como relojes, ya que es muy estable en un amplio rango de temperaturas.

Sin embargo, debido a su impacto medioambiental, la caza de ballenas y cachalotes fue prohibida en 1986 en gran parte del mundo; y esto llevó a la búsqueda de alternativas.

Una es la producción de ceras sintéticas mediante procesos químicos a partir de recursos combustibles fósiles. El problema de este método es que también tiene un importante impacto medioambiental porque requiere un gran consumo de energía y el uso de recursos fósiles limitados.

Ceras vegetales: una alternativa sostenible

Una alternativa más sostenible es la obtención de ceras de origen vegetal. La planta desértica jojoba (Simmondsia chinensis), que acumula ésteres de ceras en lugar de triglicéridos como lípidos de reserva en sus semillas, se cultiva con este propósito. Sin embargo, solo crece en a zonas áridas, como Israel, India o Sudáfrica, lo que encarece el precio de sus ésteres y limita su uso fundamentalmente al sector cosmético.

También se puede obtener cera de girasol como un subproducto del proceso de extracción su aceite

Por eso se utilizan también otras fuentes vegetales, como la cera de carnauba, obtenida de las hojas de la palma Copernicia cerífera, y la cera de candelilla (Euphorbia cerífera). También se puede obtener cera de girasol como un subproducto del proceso de extracción de su aceite. Durante este proceso, las ceras de las semillas se extraen junto con el aceite y posteriormente se separan en una etapa del refinado.

En cualquier caso, el uso de las ceras en tantas industrias hace que sea esencial seguir explorando y desarrollando alternativas más ecológicas para su obtención y producción, y reducir así el impacto ambiental.

 

*Cristina de Andrés Gil es investigadora en el Instituto de la Grasa del CSIC.

¿Te inspiran la ciencia y la poesía? Participa en el concurso #MicropoemasCSIC2

Por Mar Gulis

¿Sabías que las “mariposas del alma” es el poético nombre que Santiago Ramón y Cajal dio a un tipo específico de neuronas? Quizá resulte curioso que un científico de su relevancia, premio Nobel de Medicina en 1906, haya utilizado una metáfora así para hablar de un descubrimiento relacionado con la neurociencia. Pero no es algo que debiera sorprendernos, pues la ciencia y la poesía tienen más en común de lo que parece: ambas exploran lo desconocido en busca de nuevos conocimientos y, para ello, recurren a la imaginación y al cuestionamiento de lo establecido.

Si combinar ciencia y poesía te resulta inspirador, ahora puedes participar en #MicropoemasCSIC2, un concurso en redes sociales impulsado por @CSICdivulga, el perfil ‘social’ de la Vicepresidencia Adjunta de Cultura Científica y Ciencia Ciudadana del CSIC. El certamen está abierto a personas de cualquier parte del mundo y, en esta segunda edición, la participación puede realizarse tanto en Twitter, como en Instagram Facebook.

¿Cómo participar?

Para participar en #MicropoemasCSIC2, lo fundamental es tener ideas e imaginación. Si necesitas ejemplos para inspirarte, en este enlace puedes ver los resultados de la edición anterior: #MicropoemasCSIC.

Eso sí, no olvides que tu micropoema tiene que estar relacionado con algún aspecto de la ciencia (la investigación científica, el oficio de investigador/a, los avances, los dilemas, las aplicaciones, la importancia del conocimiento científico, etc.). Ten en cuenta también que deberá estar escrito en castellano, ser original y no haber sido publicado con anterioridad.

Dar rienda suelta a la creatividad está muy bien, pero en la micropoesía hay límites. En este caso, tus propuestas deberán tener un máximo de 250 caracteres con espacios y caber en una sola publicación de las redes mencionadas. Además, no podrás presentar al concurso más de tres.

Una vez que tengas claro con cuál micropoema o micropoemas vas a participar, elige la red que prefieras y, si todavía no lo haces, comienza a seguir a @CSICdivulga. Después lanza cada texto en un tuit, un post de Instagram o una publicación de Facebook incluyendo una mención a @csicdivulga y el hashtag #MicropoemasCSIC2.

El concurso permanecerá abierto desde el 21 de marzo (Día Mundial de la Poesía) al 23 de abril de 2023 (Día Internacional del Libro), ambos inclusive, pero no hace falta que lo dejes para el final.

Lotes de libros como premio

Concluido el plazo de participación, un comité formado por personal de cultura científica CSIC seleccionará 10 micropoemas valorando la creatividad, la originalidad, la calidad literaria y la adecuación al tema planteado (la ciencia y la tecnología). Si el tuyo resulta seleccionado, te enviaremos a casa un lote de libros de Editorial CSIC que incluirá títulos relacionados con la poesía, el arte, la ciencia o la divulgación. Para ello, antes te pediremos que nos facilites una dirección postal dentro de España.

Si todavía tienes dudas, puedes consultar las bases completas aquí. ¡Anímate y participa!

La ecología del miedo: cómo el regreso del lobo revitalizó Yellowstone

Por Fernando ValladaresXiomara CanteraAdrián Escudero* y Mar Gulis (CSIC)

En los años 90 del siglo pasado, la reintroducción de un pequeño número de lobos en el Parque Nacional de Yellowstone (Estados Unidos) provocó una transformación radical de los ecosistemas y el paisaje. En pocos años, el bosque recuperó terreno y los árboles volvieron a crecer en la orilla de los ríos.

¿Por qué la vuelta de lobo, que llevaba más de cien años extinto en este espacio natural, tuvo un efecto tan espectacular? La explicación reside en la denominada ‘ecología del miedo’.

Lobo en la nieve

Lobo en Yellowstone. / NPS-Jim Peaco

Como era de esperar, los lobos ayudaron a regular el tamaño de la población de las especies que cazaban: principalmente, dos tipos de ciervos. Sin embargo, lo determinante, y también sorprendente, fue que el lobo modificó los hábitos de alimentación de estos animales con su mera presencia, más que con sus ataques y capturas.

Presionados por el miedo al depredador, los herbívoros dejaron de moverse libremente por el territorio y de comer donde había más plantas o estas resultaban más apetecibles, y comenzaron a dejar de visitar los sitios más expuestos y abiertos. El riesgo de ser cazados allí era demasiado alto. Como consecuencia de este cambio de conducta, se abrieron oportunidades para que las especies de plantas y árboles más forestales pudieran desarrollarse mejor sin la presión de estas dos especies de ungulados.

Suelta de lobo

Suelta de un cachorro de lobo en Yellowstone en 1997. / NPS-Jim Peaco

Especialmente llamativo fue el caso de algunos árboles ligados a los cauces de los ríos, como los sauces, que prosperaron de forma impensable hasta entonces. Las semillas de estos árboles son capaces de desplazarse a grandes distancias transportadas por el viento, dado que son muy ligeras y están cubiertas de pelos que facilitan su viaje. Sin embargo, con el lobo extinto, buena parte de las riberas del parque nacional aparecían completamente peladas y deforestadas por la presión desmedida de los herbívoros.

Gracias a la presencia del depredador, los arboles encontraron una oportunidad para aumentar sus poblaciones. En muy poco tiempo, el patrón de hábitats y paisajes se modificó completamente. Ahora, las zonas boscosas, antiguas o reforestadas de forma natural, coexisten con zonas dominadas por gramíneas y otras especies de pastos donde los herbívoros prefieren pastar por considerarlas seguras. Incluso se ha comprobado que la estructura y la dinámica del suelo ha cambiado en muchos sitios, dando lugar a suelos más fértiles que almacenan mejor el carbono, algo fundamental frente al cambio climático.

Lobo aullando

NPS-Jim Peaco

Los paisajes del nuevo Yellowstone poco tienen que ver con los de hace solo 40 años y esto demuestra que los cambios son posibles. También, la importancia de la ecología del miedo: miedo al predador, quien con su simple presencia cambia comportamientos y desencadena procesos ecológicos en cascada.

 

Fernando Valladares es investigador del Museo Nacional de Ciencias Naturales (MNCN, CSIC), Xiomara Cantera es la responsable de prensa del MNCN y Adrián Escudero es investigador de la Universidad Rey Juan Carlos. Los tres son autores de La salud planetaria, perteneciente a la colección ¿Qué sabemos de? (CSIC-Catarata).

Catorce científicas e inventoras que quizás no conozcas

Por Mar Gulis

Si piensas en científicas o inventoras, ¿serías capaz de dar varios nombres? Sea cual sea tu respuesta, en este post vamos a descubrir a mujeres que han hecho historia por sus descubrimientos y avances científicos. Sin ellas, puede que no estuviésemos aquí, que no existiesen algunos de los objetos que nos rodean, que no contáramos con la atención sanitaria que recibimos o que no tomáramos ciertos alimentos.

La primera persona que vio un coronavirus al microscopio fue una mujer

Empecemos hablando de mujeres que hicieron grandes aportaciones en el ámbito de la salud. June Dalziel Hart (1930-2007), conocida como June Almeida, fue una viróloga escocesa, pionera en nuevos métodos de identificación y captación de imágenes de virus. Fue la primera persona en ver un coronavirus al microscopio. Con motivo de la pandemia de COVID-19, su nombre volvió a resonar, ya que investigadores chinos utilizaron sus técnicas para identificar el virus. Sin su trabajo, no hubiera sido posible una identificación tan temprana.

Por su parte, la genetista estadounidense Mary-Claire King (1946) identificó los genes responsables del cáncer de mama (BRCA1 y BRCA2) y aplicó la secuenciación de ADN para identificar a víctimas de violaciones de los derechos humanos. Y en su mismo país, la analista de datos de la NASA Valerie Thomas (1943) diseñó el transmisor de ilusión: un dispositivo óptico utilizado para la reproducción de imágenes de forma remota que emplea espejos parabólicos. Hoy, esta técnica se utiliza también en cirugía y en el cine 3D.

Si nos remontamos un poco en la historia, durante la Primera Guerra Mundial encontramos a la física rusa Alexandra Glagoleva-Arkadieva (1884-1945), que diseñó una instalación de rayos X para buscar restos de metal y balas en soldados heridos. Más tarde, su invención sería reutilizada para ayudar en partos.

Y un poco más atrás en el tiempo, tenemos a la médica neerlandesa Aletta Henriëtte Jacobs (1854-1929), que en 1881 realizó el primer estudio sistemático de la anticoncepción. Jacobs defendió los derechos reproductivos y sexuales de la mujer, y llegó a instalar el primer centro de planificación familiar de los Países Bajos para mujeres en situación de vulnerabilidad.

Del estudio de la caña de azúcar al agar-agar

En alimentación, la botánica Janaki Ammal (1897-1984) se centró en el estudio de la berenjena, hortaliza que le dio nombre entre sus colegas -Janaki Brengal-, y de la caña de azúcar. Fue la primera científica en cruzar esta planta con el maíz para conseguir variedades de alto rendimiento que pudieran cultivarse en su país, la India. Por su parte, la bioquímica Kamala Sohonie (1912-1998) investigó los efectos de las vitaminas y los valores nutritivos de las legumbres, el arroz y otros alimentos consumidos por los sectores más pobres del país. Además, fue la primera mujer india en recibir un doctorado en una disciplina científica.

¿Y qué sería la cocina actual sin el agar-agar? La microbiológa estadounidense Fannie Hesse (1850-1934) descubrió esta sustancia como agente gelificante de los medios de cultivo de microorganismos.

Mary Elizabeth Hallock-Greenewalt (1871-1950) ideó el órgano de color

Las máquinas llegaron para quedarse

Si hablamos de máquinas y de sus inventoras, también hay nombres para conservar en la memoria. ¿Has oído hablar del órgano de color? Fue ideado por la estadounidense de origen sirio Mary Elizabeth Hallock-Greenewalt (1871-1950) y lo llamó Sarabet. Este instrumento emitía luces de colores con intensidades y matices sincronizados con la música de un fonógrafo asociado, de un modo similar a cómo hacen ahora muchos dispositivos electrónicos. Hallock-Greenwalt también era pianista e inventó un tipo de música visual, que llamó Nourathar, de las palabras árabes nour (luz) y athar (esencia).

El lavavajillas es un electrodoméstico presente en muchas cocinas que comenzó a popularizarse en los años 50 de siglo XX. Josephine Cochrane (1839-1913), de Estados Unidos, fue la inventora de la primera máquina lavavajillas que resultó exitosa comercialmente. Eso sí, Hay que decir que estos primeros lavavajillas requerían gran cantidad de agua caliente y que las casas adaptaran su fontanería.

Josephine Cochrane (1839-1913) fue la inventora de la primera máquina lavavajillas que resultó exitosa comercialmente

Quienes trabajamos con ordenadores a diario utilizamos algún procesador de texto. Esto es gracias a la ingeniera informática estadounidense Evelyn Berezin (1925-2018), que en 1968 desarrolló la idea de un programa para almacenar y editar textos.

Y siguiendo con el almacenamiento de información, la inventora española Ángela Ruiz Robles (1895-1975) dio lugar a la Enciclopedia Mecánica, que podría considerarse el primer libro electrónico de la historia. Se trataba de un dispositivo en el que mediante pulsadores subían mecánicamente, o por aire comprimido, las diferentes lecciones; además, se podían aumentar de tamaño e incluso iluminar.

Cómo pensamos, nos sentimos o nos comportamos

El estudio de la mente humana también ha recibido importantes contribuciones de mujeres. Por ejemplo, la psicóloga estadounidense Mary Ainsworth (1913-1999) desarrolló la teoría del apego para explicar el vínculo entre niños y niñas y la primera figura, que actúa como cuidadora. La investigadora señaló la importancia de una relación sana para la salud emocional en la infancia por su impacto en la vida adulta.

Por su parte, la neurocientífica y psicóloga rusa Natalia Bekhtereva (1924-2008) desarrolló nuevos enfoques neurofisiológicos, como la medición de la actividad impulsiva de las neuronas humanas. Además, puso en marcha un método complejo para estudiar los mecanismos cerebrales del pensamiento, la memoria, las emociones y la creatividad.

Esta es solo una selección de mujeres que se han dedicado a la ciencia y la tecnología, pero la lista obviamente no termina aquí. A lo largo de la historia, ha habido numerosas científicas e inventoras, aunque sus nombres hayan quedado relegados a un segundo plano. Rescatarlas del olvido no solo contribuye a que las mujeres ocupen el lugar que se merecen en la historia de la ciencia, sino también a que cada vez haya más investigadoras y tecnólogas.

Ciudad sin árboles: ¿merecemos un cielo sin estrellas?

Por Mariano Sánchez (CSIC)*

Partiendo de la premisa, demostrada por la ciencia y conocida por todo el mundo, de que la presencia de árboles en la ciudad es sanadora, ¿quién puede ir contra esos seres vivos hasta el punto de podarles las ramas periódicamente o incluso talarlos por un muéveme acá esa infraestructura o colgar las luces de Navidad?

Sin embargo, parece que todavía es necesario incidir en que los árboles, con su estructura de ramas y hojas, son un elemento saludable para las personas y otros seres vivos, como las aves que anidan en ellos.

Banco y árboles

Árboles para reducir las islas de calor

Los árboles en entornos urbanos suponen múltiples beneficios: atenúan el efecto isla de calor ofreciendo sombra y evaporando agua, lo que reduce la temperatura ambiente; aportan oxígeno y retienen la contaminación en sus hojas; secuestran carbono en sus ramas, troncos y raíces; sujetan el suelo con sus raíces, evitando avenidas de agua; incrementan la biodiversidad de aves y otras plantas asociadas; y embellecen los paseos con su cromatismo y sus flores.

Como muestra de lo primero, un estudio de modelización realizado con datos de 93 ciudades europeas estimó que un tercio de las muertes atribuibles a las islas de calor podrían evitarse si los árboles cubrieran el 30% del espacio urbano.

Por otro lado, la visión de árboles y vegetación desde las ventanas de hospitales acorta las estancias y mejora las curaciones, como lo confirman estudios realizados en Estados Unidos y cualquier persona que, durante la pandemia, se haya asomado a una ventana desde casa y haya tenido un árbol cerca.

La importancia de los árboles maduros y adaptados

Asimismo, no hay duda de que nos aportan más beneficios los árboles grandes y ya maduros, por su gran número de hojas, que los árboles jóvenes o de menor tamaño. De ahí que, en la medida de lo posible, se deban conservar en su integridad cuando se realizan obras o podas.

Cuando se habla de talar árboles y se añade la coletilla de “es que se van a plantar muchos más de los que había” -se trata de un remedo del conocido “lo que sale por lo que entra”-, hay muchos aspectos que no se tienen en cuenta.

Uno de los más destacables es el cultural y humano. Con la tala, se habrán perdido los beneficios y la historia de los 30 ó 50 años que vivieron los árboles en ese lugar, así como la relación que durante ese tiempo la ciudadanía estableció con ellos: los paseos con charla, la meditación, las palabras perdidas entre las hojas, las lecturas, las miradas y los recuerdos.

Además, en estos momentos en que, tanto en el Real Jardín Botánico del CSIC como en muchas calles y jardines de ciudades españolas, detectamos que algunas especies -como el castaño de indias (Aesculus hippocastanum), el tilo (Tilia platyphyllos), el arce (Acer pseudoplatanus)- están perdiendo vitalidad por el cambio de la pluviometría y de la humedad de la península ibérica, disponer de árboles maduros de 30 o más años, ya adaptados, es un privilegio al que no se puede renunciar.

Plátano de paseo enorme

Mariano Sánchez (RJB-CSIC).

Mejor 50 árboles maduros que 250 jóvenes

En otras ocasiones, sobre todo cuando se habla de tala, se suele hablar de multiplicar la cifra de plantaciones en el espacio ya ocupado por esos árboles a los que se ha sentenciado. Se trata de la cuadratura del círculo; si antes cabían 50, ¿cómo es posible que se puedan plantar en ese mismo lugar 100 ó 250?

Se usan cifras liosas tratando de que sea equivalente cambiar 50 árboles de 50 años por 250 árboles de 10 años. Sin embargo, en arboricultura y para nuestra salud, las cifras y las matemáticas no funcionan de esa manera: 50 árboles grandes y maduros siempre serán mejor que 250 pequeños y jóvenes.

Al plantar árboles en las ciudades, hay que tener en cuenta que los ejemplares deben estar bien separados para que, de adultos, no se molesten. En este sentido, hay que aplicar el mismo razonamiento que se emplea con los vehículos y sus aparcamientos: ¿es que los autobuses pueden usar los aparcamientos de los coches o de las motos? Se ha de ser coherente con los conocimientos de la biología de los árboles y, si la especie es grande, la separación debe ser grande; si su porte es medio, el espacio deberá ser el de un coche; y, si es pequeño, de una moto.

Obras, talas y árboles

Por todo ello, al igual que se buscan soluciones técnicas para determinadas infraestructuras, deben buscarse también soluciones para las obras que afecten al arbolado. De ahí que toda obra que impacte en el arbolado urbano debería tener un informe de impacto obligatorio y vinculante.

Y en todo caso los ejemplares maduros deben permanecer porque suponen un futuro ganado frente a unos árboles jóvenes que no sabemos si se aclimatarán. En caso de que no lo hagan, habremos creado, donde no la había, una zona expuesta al sol, que no retiene la contaminación ni aporta frescor en los meses cada vez más tórridos del verano.

La palabra clave del futuro es CONSERVAR.

* Mariano Sánchez García es conservador del Real Jardín Botánico (RJB-CSIC).