Archivo de noviembre, 2022

Praderas marinas: su función en los ecosistemas y su futuro ante el calentamiento global

Por Julia Máñez Crespo (CSIC)*

Alguers, herbeis, praderas o sebaldales… son muchos los nombres que reciben las poblaciones de las diferentes especies de fanerógamas marinas; pero, ¿qué son y cómo se originaron? Las fanerógamas marinas son organismos fascinantes: todos sus géneros, excepto uno, pueden vivir completamente sumergidos en el agua de mar e incluso florecer y ser polinizadas, ya sea con el movimiento de las corrientes o con la ayuda de pequeños invertebrados, como por ejemplo los isópodos o “abejas” del mar. Son plantas superiores de estructura compleja constituidas por un sistema de raíces, rizoma y hojas y que, además, producen flores verdaderas.

Flor femenina, Cymodocea nodosa / L. G. Egea

Su origen se sitúa en un planeta Tierra aún habitado por dinosaurios, cuando estas plantas fueron capaces de colonizar el mar hace aproximadamente 100 millones de años y de adaptarse a unas condiciones mucho más adversas a las del medio terrestre. Por eso, hoy en día se contabilizan solo unas 60 especies diferentes alrededor del mundo, a excepción del continente Antártico, donde no hay. Uno de los atributos más característicos de estas plantas es la gran diversidad de flores y frutos entre todas las especies existentes.

La adaptación al medio marino ha tenido una influencia directa en la morfología y estructura de estas plantas, lo que ha condicionado su distribución geográfica y especiación. Al tratarse de organismos fotosintéticos, su mayor limitación es la luz, lo que restringe su área de distribución costera entre los 0 y los 50 metros de profundidad, y de ahí la importancia de sus hojas, las cuales se encargan de realizar la fotosíntesis. A diferencia de sus parientes terrestres, estas plantas marinas utilizan también sus hojas para captar la mayoría de los nutrientes y utilizan sus raíces principalmente como anclaje al sedimento. En algunas praderas como las de la especie Cymodocea nodosa se ha observado la capacidad de desarrollar un mayor o menor sistema radicular (raíces de una misma planta) en función de la profundidad y la exposición al oleaje al que están sometidas sus poblaciones.

Posidonia oceanica

Las ingenieras ecosistémicas del mar

Las fanerógamas marinas son también conocidas como ‘ingenieras ecosistémicas’, lo que quiere decir que su presencia en un ecosistema modula los flujos de energía y nutrientes y determina la presencia de otras especies en su ecosistema. Por un lado, contribuyen a la geomorfología litoral, es decir, a dar forma al sistema costero, ya que amortiguan el efecto de las olas y de las corrientes, lo que disminuye la energía con la que impactaran sobre la costa. Y favorecen la sedimentación de partículas, que influye en la transparencia de las aguas. Por otro lado son también llamadas ‘pulmones marinos’, ya que especies como Posidonia oceánica forman praderas capaces de producir hasta 20 litros de oxígeno por hectárea y día. Pero no solo eso, sino que además son capaces de captar el dióxido de carbono atmosférico que entra en el mar y utilizarlo para su propio crecimiento, lo que conlleva que las praderas sean grandes sumideros de este gas de efecto invernadero.

Además de su influencia en la regulación de los flujos de materia y energía, su presencia en los ecosistemas es de vital importancia en la preservación de la biodiversidad. Son el principal alimento para algunas tortugas marinas y para dugongos (único representante de su género y el único miembro superviviente de la familia Dugongidae); también para multitud de pequeños invertebrados y para algunas especies de peces. Al conformar una zona altamente productiva, atraen a organismos que a su vez serán presa para otros y ofrecen refugio entre sus hojas para aquellos en primeras fases de desarrollo, como las larvas de peces, gasterópodos o bivalvos.

Banco de salpas en pradera de Cymodocea nodosa / Mallorca Blue

A pesar de su singularidad e importancia y de aportar un sinfín de beneficios ecosistémicos, actualmente las praderas de estas plantas marinas se enfrentan a un gran número de adversidades que están ocasionando el aumento su estado de vulnerabilidad. Todas las problemáticas son consecuencia directa o indirecta de las actividades humanas. De manera directa, la mala gestión de las aguas residuales o la erosión ocasionada por las anclas de las embarcaciones daña las praderas, reduce su producción de oxígeno, y el hábitat disponible para la biodiversidad, y reintroduce el dióxido de carbono que estaba almacenando al sistema. De manera indirecta, la llegada de especies invasoras o la sobrepesca facilita la expansión de poblaciones de otros organismos en detrimento de las de fanerógamas marinas.

No obstante, el calentamiento global es una de las mayores amenazas a las que se enfrentan. Los resultados mostrados en el último informe del IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático) sobre los océanos prevén una alta probabilidad de olas de calor extremo: de mayor duración e intensidad, siendo las zonas costeras lugares donde estos episodios sucederán con mayor severidad. Y es en esas áreas costeras donde residen estas plantas marinas.

Pradera de Cymodocea nodosa / Mallorca Blue

Episodios de olas de calor sostenidas en el tiempo como las de este verano, que en el mes de noviembre parecía no irse en zonas del Mediterráneo y del Atlántico, han provocado fenómenos de blanqueamiento de las hojas en praderas de la cuenca mediterránea, lo que podría afectar a las respuestas fisiológicas de las plantas. Algunas de estas respuestas las estamos investigando.

Dada la importancia y el actual estado de vulnerabilidad de estos organismos es necesario continuar estudiando su comportamiento ante el nuevo paradigma climático así como reducir las amenazas a las que se enfrentan, a fin de mejorar las políticas de conservación de sus praderas e incrementar la restauración en las zonas más afectadas. Las praderas de fanerógamas marinas son lugares únicos en el mundo, anteriores a nuestra presencia en el planeta y con derecho a seguir en él como hasta ahora.

* Julia Máñez Crespo es investigadora postdoctoral en el Instituto Mediterráneo de Estudios Avanzados (IMEDEA, UIB-CSIC), donde investiga el rol ecológico de las praderas de fanerógamas marinas así como los efectos ecológicos de la llegada de especies invasoras.

 

 

 

 

Así comes, así duermes. Te contamos las conexiones entre sueño y alimentación

Por Jara Pérez-Jiménez (CSIC) y Marie-Pierre St-Onge*

La mayoría de la gente sabe que la dieta es un aspecto clave para la salud, ya que está relacionada con el riesgo de desarrollar enfermedades como la diabetes tipo 2 o ciertos tipos de cáncer. Por lo tanto, incluso cuando el patrón dietético español se está desviando de la dieta mediterránea tradicional, las personas son al menos parcialmente conscientes de lo que es «una dieta saludable». Pero, ¿qué pasa con el sueño saludable? A pesar de ser un proceso fisiológico esencial, el sueño suele ser minusvalorado o incluso visto como una pérdida de tiempo. De hecho, la proporción de adultos y niños que no cumplen con las recomendaciones de duración adecuada del sueño está aumentando. Sin embargo, existe una fuerte evidencia científica respecto a cómo la duración del sueño, su regularidad y su calidad afectan a la salud. Así, el sueño corto, irregular o de baja calidad se ha asociado con un mayor riesgo de padecer enfermedades como patologías cardiovasculares o demencia.

A lo mejor has oído hablar de la melatonina como la “hormona del sueño” o la “hormona de la oscuridad”, dado que es un compuesto que sintetizamos cuando baja la intensidad de la luz, con objeto de inducir el sueño. Pero probablemente no sepas que, para producir esta hormona, nuestro cuerpo primero necesita triptófano, un aminoácido presente en algunos alimentos con alto contenido en proteínas: ese triptófano es transformado en nuestro interior en serotonina, la cual genera finalmente melatonina. Podríamos pensar que una forma fácil de estimular la formación de melatonina es consumir mucho triptófano. Pero lo cierto es que no es así de sencillo: para transformar el triptófano en melatonina, hacen falta otros constituyentes alimentarios, incluyendo el magnesio, vitaminas del grupo B, ciertas proporciones entre los diferentes aminoácidos que constituyen las proteínas, componentes de la leche y tener una microbiota sana. Lo cierto es que la relación entre la dieta y el sueño es compleja y, dependiendo de cómo gestionemos ambos, podremos tener dos situaciones muy diferentes, como veremos después.

Por otro lado, el ritmo circadiano es un proceso interno que existe en nuestro cuerpo para regular los ciclos de sueño y vigilia. Mientras que nuestro reloj central, situado en el cerebro, se activa por la luz, tenemos otros relojes secundarios distribuidos en nuestro cuerpo (en el hígado, los riñones, el páncreas, el corazón y los depósitos de grasa) que se activan, entre otros factores, al consumir alimentos. Cuando todos los relojes están sincronizados, es decir, cuando tenemos nuestros periodos de alimentación a las horas reconocidas por nuestro cuerpo como día y noche, respectivamente, se produce la alineación circadiana que contribuye, por ejemplo, a un funcionamiento adecuado de nuestro sistema inmunológico. Pero cuando esta sincronización se rompe y, por ejemplo, cenamos a una hora que nuestro cuerpo identifica como el momento de dormir, aparece una situación llamada desalineación circadiana.

Sueño y alimentación: cuando se genera un círculo vicioso

Las personas que trabajan por turnos han sido el objeto de numerosos estudios, donde se ha observado que presentan un riesgo aumentado de sufrir distintas enfermedades, y una de las razones que explica esto es precisamente la desalineación circadiana a la que están sometidas. Pero esta situación no solo se produce en este colectivo. ¿Sueles modificar las horas a las que te acuestas o te levantas los fines de semana en comparación con los días laborables? Esto es lo que se denomina jet lag social, y es otro tipo de desalineación circadiana, con mayores consecuencias en la salud de lo que podríamos pensar. Así, hoy sabemos que la desalineación circadiana aumenta el riesgo cardiovascular o empeora la capacidad de nuestro cuerpo para regular los niveles de glucosa. Un estudio reciente encontró que cuando las personas retrasan sus horarios de comidas respecto a la hora a la que se levantan experimentan más hambre a lo largo del día completo y presentan más tendencia a acumular grasa, aunque consuman las mismas calorías que otras personas que comen antes.

Finalmente, cuando no dormimos bien, establecemos un círculo vicioso entre el sueño y la alimentación.  No dormir los suficiente estimula los circuitos cerebrales de recompensa en nuestro cerebro, que responden a alimentos que nos resultan muy atractivos. Esto conlleva a un aumento en la ingesta de alimentos poco saludables y en el consumo energético total. Y, a su vez, este tipo de alimentación no nos proporciona los nutrientes que necesitamos para dormir bien, generando un bucle negativo.

Cómo promover una relación virtuosa entre dormir y comer

La buena noticia es que las investigaciones más recientes están mostrando que es posible romper ese bucle y generar un nuevo círculo, esta vez saludable. Antes hemos mencionado que la producción de melatonina en nuestro cuerpo no depende solo de que consumamos suficiente triptófano, sino también otros nutrientes, por lo que algunos investigadores están explorando de qué manera se podría mejorar la calidad del sueño basándose, en lugar de en alimentos aislados, en la composición global de la dieta. ¿Y sabes qué tipos de dietas se han asociado con una mejor calidad del sueño? Aquellas ricas en alimentos de origen vegetal y, en particular, la dieta mediterránea. Por tanto, parece que un efecto saludable adicional de la dieta mediterránea sería el de mejorar la calidad del sueño. A su vez, dormir bien no genera ese deseo incrementado por los alimentos ultraprocesados. De esta manera, es posible romper el círculo vicioso entre un mal sueño y una mala alimentación.

Las investigaciones sobre esta relación son relativamente recientes. Además, presentan distintas limitaciones. Muchas veces se han basado en estudios observacionales donde las personas completan cuestionarios sobre la dieta y el sueño, ya que es un campo donde es difícil llevar a cabo estudios en el que los participantes sigan las dietas que les sean pautadas y a la vez se controle su sueño. Sin embargo, cada vez más grupos de investigación están incluyendo estas aproximaciones en sus trabajos y podemos esperar que los próximos años se produzcan descubrimientos relevantes. Por el momento, lo que ya sabemos es que tu dieta tiene mucho que ver con tu sueño, y viceversa, así que intenta mantener ambos aspectos lo más saludables que puedas.

* Jara Pérez es investigadora del CSIC en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), en Madrid y Marie-Pierre St-Onge es investigadora del Departamento de Medicina de la División de Medicina General del Columbia University Irving Medical Center, en Nueva York. Este artículo forma parte de las actividades desarrolladas por Jara Pérez-Jiménez como investigadora visitante en la Universidad de Columbia, con financiación del Programa del Ministerio de Universidades para estancias de movilidad de profesores e investigadores seniors en centros extranjeros de enseñanza superior e investigación y la Comisión Fulbright.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

El misterio de los ríos que se comportan como ríos

Por Daniel Bruno* (CSIC)

Un río no es estático, no sigue siempre el mismo curso. Si pudiéramos ver el trazado de un río pintado en un mapa a lo largo de los siglos veríamos que no es una mera línea azul, sino un intrincado conjunto de líneas que se contrae, expande, y cambia su curso a lo largo del tiempo. Las lluvias provocan crecidas naturales en los ríos; especialmente en los ubicados en la cuenca mediterránea, que periódicamente reciben episodios de lluvias torrenciales. Pero esto no es un misterio. Nunca lo ha sido. Pese a su poder destructivo si no se gestionan adecuadamente, las crecidas son necesarias tanto para el propio río como para el mar que va a alimentarse de él.

Los ríos no son meros canales de agua, su dinámica natural implica la ocupación periódica de sus cauces mayores e incluso la llanura de inundación durante las crecidas. Generalmente vemos esta realidad de manera sesgada por nuestra corta perspectiva temporal de lo que es un río. Solo en los últimos siglos hemos conseguido moldear esa dinámica fluvial a nuestros intereses y necesidades. Y lo hemos hecho básicamente gracias a dos estrategias: la construcción de embalses y la canalización de los ríos.

Crecida extraordinaria del río Ebro a su paso por Zaragoza, en abril de 2018. / Daniel Bruno

La falsa domesticación de los ríos españoles y sus consecuencias

Los ríos de España se encuentran entre los más regulados del mundo, con un mayor número de presas por kilómetro de río y una gran capacidad de agua embalsada (top 5 mundial) para la precipitación que se recibe. Somos el país de Europa con mayor número de grandes presas (1.200), duplicando a Turquía, segundo del ranking, según la Agencia Europea de Medioambiente (2018). La labor de presas y embalses para almacenar agua, laminar avenidas y producir energía es inestimable. Sin embargo, interrumpen el flujo de especies, agua y sedimento con graves implicaciones ecológicas y socioeconómicas. En el río Ebro, por ejemplo, están provocando que cada vez llegue menos sedimento al delta, lo que agrava su hundimiento, y afecta así a la pesca en el Mediterráneo, la formación de playas o la producción de arroz. Un impacto menos evidente de las presas es la interrupción del ciclo del fósforo. Con los grandes embalses impedimos que especies anádromas (aquellas que viven en el mar, pero durante su vida remontan los ríos para reproducirse y morir) migren aguas arriba transportando desde el mar al interior un elemento clave para la agricultura: el fósforo. Otro impacto social que pasa a veces desapercibido es la inundación de pueblos y de las tierras más fértiles para cultivos como consecuencia de la construcción de presas.

Una estrategia que se ha desarrollado en paralelo a la construcción de presas y embalses es la canalización y construcción de defensas laterales. Esto ha supuesto un estrangulamiento de los ríos y la degradación de las riberas fluviales con numerosos daños económicos en las zonas bajas. El levantamiento de defensas cada vez más altas, junto a los dragados y la eliminación de vegetación (mal llamada limpieza de cauces) son estrategias que solo aumentan el potencial efecto devastador aguas abajo al aumentar el poder erosivo del agua que discurre por el cauce. Con ello, se crea una falsa sensación de seguridad que nos lleva a construir cada vez más cerca del río.

En un contexto de cambio climático en el que las lluvias serán más irregulares y destructivas, siempre habrá un punto débil a lo largo del recorrido del río donde los daños sean máximos. Además, hay que tener en cuenta que la defensa hace de efecto barrera en las dos direcciones: si la avenida consigue superar la altura de la defensa o sube el nivel freático a la superficie (cuando hay crecidas el río también puede inundar “por debajo”, por filtración, como consecuencia de la subida del nivel freático), el agua tardará más en evacuarse de la zona anegada, con los correspondientes perjuicios económicos para estas tierras. Por tanto, las defensas fijas se deberían reservar exclusivamente para áreas urbanas en las que no hay posibilidad de alejar las edificaciones y darle espacio al río. Afortunadamente, la ciencia, la política y la gestión ambiental han identificado medidas más eficaces en las últimas décadas y nos encontramos inmersos en un cambio de paradigma potenciado por la Directiva Europea de Inundaciones (2007/60/CE) y su transposición al ordenamiento español (RD 903/2010). Este cambio está centrado en la gestión del territorio a escala de cuenca hidrológica para mitigar inundaciones.

Hay que empezar a interiorizar que las inundaciones tienen su origen en una mala gestión del territorio, en una mala planificación a nivel de cuenca hidrológica, especialmente en todo el territorio que queda aguas arriba del lugar donde estas se producen. En este sentido, se expone a la población a un riesgo que es, en la mayoría de los casos, evitable con una correcta gestión. Y existen herramientas tanto para mejorar esta gestión, como para que la población tenga información precisa y fiable de las zonas susceptibles de inundarse durante las crecidas y episodios de lluvias fuertes. El conocimiento nos permite tomar decisiones informadas. Por ejemplo, si fuera a comprarme una casa, consultaría con detalle si una vivienda se encuentra en una zona de alto riesgo de inundación, es decir con una probabilidad de inundación alta, cada 10 años de media.

Crecida del río Gállego a su paso por Zaragoza, en abril de 2018 / Daniel Bruno

De luchar contra el río a colaborar con él

El daño que genera una riada no depende solo de su magnitud sino de la exposición de la población a la misma. El nuevo paradigma en la gestión de ríos establece que la cuestión no es si un río mediterráneo se desborda o no, es decir, que se expanda más allá de su cauce habitual, sino dónde y cuándo lo hace para maximizar los beneficios y minimizar los daños. Esto implica primar la protección de núcleos urbanos a cambio de facilitar que el río ocupe esporádicamente su lugar en zonas no pobladas, como son zonas naturales y campos. Cuando dejamos espacio al río (alejando las defensas o haciéndolas permeables) o permitimos que se desborde de forma controlada (es decir, planificando a nivel de cuenca los lugares más óptimos) estamos disminuyendo la velocidad del agua y su destrucción aguas abajo. Además, al mismo tiempo, permitimos que multitud de funciones y servicios de los ecosistemas tengan lugar en nuestro propio beneficio.

Es comprensible que la medida pueda suscitar polémica en el sector agrícola que puede perder puntualmente sus cosechas, pero no hay que perder de vista que las avenidas son un proceso histórico y a la larga beneficioso para el río, para las riberas e incluso para los propios campos de cultivo, si sabemos gestionarlas adecuadamente. Por ejemplo, la resistencia a la inundación puede variar de unas pocas horas a semanas, dependiendo de la especie que se plante. No es casualidad que las vegas fluviales sean los terrenos más fértiles para la agricultura, dado que las crecidas e inundaciones aportan limos y nutrientes esenciales a las tierras bajas, y más en un futuro próximo donde los fertilizantes químicos o de síntesis podrían escasear. Además, unas riberas bien conservadas producen innumerables beneficios, como la mejora de la calidad del agua, la fijación de suelo o la disminución de la erosión, y actúan a su vez como corredor ecológico para numerosas especies de animales y plantas.

Por último, en los próximos años, la frecuencia e intensidad de los fenómenos extremos como las avenidas y las sequías aumentará, por lo que deberíamos pasar de una visión de dominancia sobre la naturaleza a una de convivencia, adaptación e integración de la dinámica fluvial en la planificación territorial. Solo si la ciencia, la naturaleza, la sociedad, la política y la gestión van de la mano aplicando el conocimiento científico en la toma de decisiones y en las medidas a implementar sobre el terreno tendremos la oportunidad de minimizar los daños y maximizar los beneficios de fenómenos naturales cada vez más extremos. Lo contrario traerá más sufrimiento del necesario para hacer frente al enorme reto que supone el cambio climático en curso.

 

*Daniel Bruno es investigador del CSIC en el Instituto Pirenaico de Ecología (IPE).

¿Es posible la recuperación del Mar Menor?

Por Juan Manuel Ruiz Fernández* y Mar Gulis (CSIC)

El ecosistema lagunar del Mar Menor experimentó hace seis años un repentino colapso que supuso el final de una larga etapa (más de cinco décadas) de presiones antropogénicas continuas y crecientes.

Uno de los primeros retos de la ciencia para recuperar el Mar Menor es identificar y cuantificar las causas del actual deterioro, lo que requiere necesariamente un adecuado conocimiento científico del Mar Menor y su funcionamiento. El Mar Menor es objeto de estudios científicos desde la primera mitad del siglo XX, como los realizados para valorar sus recursos pesqueros (Navarro, 1927), sus depósitos minerales y su posible interés para la industria minera (Simmoneau, 1973) o la dinámica del intercambio de agua con el Mediterráneo (Arabio Torre y Arévalo, 1971). Desde entonces, instituciones públicas como el Instituto Español de Oceanografía (IEO-CSIC), la Universidad de Murcia o el Instituto Geológico y Minero de España (IGME-CSIC) han desarrollado su actividad investigadora tanto en la albufera como en su cuenca vertiente, dando lugar a una creciente producción científica.

Las praderas de la angiosperma marina Cymodocea nodosa son un componente clave para el funcionamiento del ecosistema lagunar, aunque su pérdida en una amplia superficie del fondo es por ahora irreversible. / Javier Murcia Requena

Las praderas de la angiosperma marina Cymodocea nodosa son un componente clave para el funcionamiento del ecosistema lagunar, aunque su pérdida en una amplia superficie del fondo es por ahora irreversible./ Javier Murcia Requena

Sin embargo, si superponemos los resultados de todos estos estudios en un mapa del complejo entramado de compartimentos e interacciones que conforman el ecosistema lagunar (y los ecosistemas vecinos con los que se encuentra conectado: la cuenca vertiente y el Mediterráneo adyacente), comprobaremos que apenas hemos conseguido rasgar las capas más superficiales del conocimiento. Todavía tenemos importantes carencias en nuestro conocimiento más básico sobre cuestiones que son clave para comprender el estado actual del Mar Menor y sus causas.

Un claro ejemplo de eutrofización

El colapso experimentado por el Mar Menor se ajusta a un caso icónico (“de libro”) de proceso de eutrofización, y se une a una larga lista de casos similares documentados en otras zonas costeras, como Cheesapeak bay (USA) o las lagunas de Venecia (Italia). No obstante, entre otros muchos aspectos, existe un importante vacío de conocimiento sobre los ciclos biogeoquímicos en general, y del nitrógeno y del fósforo en particular, el principal desencadenante del proceso de eutrofización. Por tanto, la recuperación del Mar Menor debe pasar necesariamente por un programa serio y ambicioso de mejora del conocimiento científico, conectado e integrado a sistemas de análisis y predicción que apoyen la toma de decisiones.

Las proliferaciones masivas de macroalgas bentónicas como Caulerpa prolifera y Chaetomorpha linum son síntoma evidente del proceso de eutrofización y de los severos desequilibrios que experimenta el ecosistema lagunar. / Juan M. Ruiz

Las proliferaciones masivas de macroalgas bentónicas como Caulerpa prolifera y Chaetomorpha linum son síntoma evidente del proceso de eutrofización y de los severos desequilibrios que experimenta el ecosistema lagunar./ Juan M. Ruiz

Necesitamos un sistema de monitorización

Otro pilar importante de este plan de recuperación es disponer de un sistema de monitorización científica robusto y permanente, que permita obtener datos en continuo y de la forma más inmediata posible. La ausencia de un sistema de estas características ha dado lugar a todo tipo de especulaciones que no han hecho más que alimentar la demagogia política y, por tanto, confundir a la sociedad y a la opinión pública. Por ejemplo, se ha atribuido el deterioro del Mar Menor a eventos climáticos extremos como riadas (DANAs), olas de calor o episodios de calimas (polvo sahariano), lo que ha desviado la atención respecto al auténtico origen del problema: el exceso de nutrientes antropogénicos.

Este sistema de monitorización debe contemplar no solo la parte hidrográfica y oceanográfica, sino también los componentes biológicos del ecosistema, los procesos ecológicos implicados en su dinámica y el conjunto de su biodiversidad, que al fin y al cabo son los auténticos indicadores del estado del ecosistema y de su posible recuperación.

Biodiversidad en peligro

Muy a menudo se transmite la idea de recuperación a medida que el agua gana en transparencia, lo que no tiene base científica alguna. No se puede hablar de recuperación si el ecosistema lagunar ha perdido el 85% de sus praderas marinas, que a fecha de hoy no han mostrado síntomas de recuperación; o si la Nacra (Pinna nobilis), especie prácticamente extinta en el Mediterráneo español, ha pasado de tener una población del orden de 1,4 millones de individuos a unos pocos cientos. Ambos elementos, Nacra y praderas marinas, ejercieron probablemente un papel clave en el control de los nutrientes de la laguna, pero estos mecanismos de resiliencia hoy día han quedado notablemente debilitados. Especies tan singulares y vulnerables, estrechamente ligadas a las praderas marinas, como el caballito de mar y las agujas (varias especies de Sygnátidos) han experimentado un declive tras el colapso ecosistémico de la albufera.

Especies de peces tan características y singulares como los de la familia de los Sygnátidos (en la imagen) y los caballitos de mar han visto mermadas sus poblaciones en los fondos del Mar Menor hasta mínimos históricos./ Javier Murcia Requena

Especies de peces tan características y singulares como los de la familia de los Sygnátidos (en la imagen) y los caballitos de mar han visto mermadas sus poblaciones en los fondos del Mar Menor hasta mínimos históricos./ Javier Murcia Requena

Éstos son solo unos pocos ejemplos de las especies más emblemáticas, pero ¿qué ha pasado con el resto de la biodiversidad? ¿cómo han afectado estos cambios al funcionamiento del ecosistema? Como se conoce en ecología marina, los cambios observados en unos niveles del ecosistema pueden ser transmitidos al resto de niveles en lo que se conoce como “efecto cascada”, tanto desde los niveles basales (bottom-up) como desde los apicales (top-down). El resultado final es un nuevo estado del ecosistema que tiene consecuencias incluso a nivel socioeconómico, tal y como se empieza a sentir en sectores como la pesca y el turismo. Sin embargo, ni los estudios disponibles ni los datos de los programas de monitorización existentes nos permiten evaluar dichas consecuencias y su evolución.

A tiempo de actuar

Estamos a tiempo de recuperar el Mar Menor y su entorno, y todas las iniciativas orientadas a subsanar las deficiencias mencionadas en los puntos anteriores contribuirán a tal fin. Hasta la fecha, la apuesta más clara y contundente ha venido por parte del gobierno de España, a través del Ministerio para la Transición Ecológica, que ha invertido 485 millones de euros en un amplio programa de actuaciones con diferentes objetivos entre los que se encuentra el de reforzar el conocimiento científico y establecer un sistema de monitorización.

El IEO-CSIC es el responsable de gestionar e implementar este punto en el ámbito de la laguna (los responsables en el ámbito de la cuenca son la Dirección General de Agua y la Confederación Hidrográfica del Segura). Para ello hemos desarrollado un programa específico dotado de unos 5 millones de euros denominado BELICH, que es como los romanos se referían al Mar Menor.

El programa implica la puesta en marcha de un sistema avanzado de monitorización compuesto por diferentes tipos de plataformas completamente sensorizadas (boyas oceanográficas, plataformas sumergidas, mareógrafos, etc.), un servicio de monitorización remota a partir de datos satelitales (mapas de clorofila y otras variables ópticas de interés) y un programa de monitorización in situ, es decir, a partir de mediciones realizadas en muestras de agua. Estas mediciones permitirán calibrar los datos obtenidos de los diferentes sensores y obtener información de otras variables; en particular, aquellas relacionadas con la composición y abundancia de comunidades bacterianas, fitoplancton y zooplancton.

Más investigación básica

Lo anterior representa la parte más básica del sistema, pero necesita ser complementado para poder comprender e interpretar la información obtenida en un contexto adecuado. Para ello se ha propuesto un grupo de trabajo dedicado exclusivamente a obtener conocimiento científico de aspectos clave del funcionamiento del ecosistema, como el origen y las rutas de los nutrientes que alcanzan la laguna o los procesos de asimilación, transformación, almacenamiento y escape del nitrógeno y del fósforo, precursores del proceso de eutrofización.

El cangrejo Carcinus aestuarii era muy abundante en el Mar Menor. Su declive puede estar relacionado con la transformación del ecosistema, pero también por la llegada de un cangrejo invasor, Callinectes sapidus o cangrejo azul./ Juan M. Ruiz

El cangrejo Carcinus aestuarii era muy abundante en el Mar Menor. Su declive puede estar relacionado con la transformación del ecosistema, pero también por la llegada de un cangrejo invasor, Callinectes sapidus o cangrejo azul./ Juan M. Ruiz

Los resultados de estos trabajos de investigación servirán además para alimentar y calibrar modelos numéricos capaces de simular los procesos hidrodinámicos y biogeoquímicos que rigen la dinámica actual del ecosistema lagunar, incluidos los episodios de desarrollo explosivo del fitoplancton, los eventos de anoxia o la mortalidad masiva de organismos marinos. Estos modelos, una vez ajustados a la variabilidad espacial y temporal propia del Mar Menor, podrán servir para predecir los efectos de nuevos eventos climáticos (riadas) y del calentamiento global o la respuesta del ecosistema a acciones específicas de gestión (por ejemplo, la reducción de entradas de nutrientes y de sedimentos terrígenos o la alteración de los flujos de agua entre la laguna, su cuenca y el Mediterráneo).

En esta misma línea se realizarán evaluaciones experimentales sobre la viabilidad y eficacia de métodos y propuestas de restauración de las funciones y servicios ecosistémicos. Todos los datos y el conocimiento generados, así como los modelos obtenidos, deberán confluir en una plataforma digital capaz de integrar y procesar toda esta información que sirva de herramienta de gestión y apoyo a la toma de decisiones.

El desarrollo de este sistema es un gran reto científico. Sin embargo, nada de este esfuerzo tendrá sentido si no existen mecanismos de coordinación e integración dentro y entre los diferentes programas y equipos, y será un fracaso total si, una vez conseguido, no somos capaces de derivar todo lo invertido en infraestructuras permanentes que garanticen series temporales de datos en continuo y a largo plazo, que es lo que en realidad provee al personal científico y de gestión de las herramientas adecuadas para responder a las demandas de la sociedad y asistir a la recuperación del Mar Menor.

 

*Juan Manuel Ruiz Fernández es investigador del CSIC en el Instituto Español de Oceanografía

Astrocitos: estrellas que hablan en nuestro cerebro

Por Irene Serra Hueto (CSIC)*

Seguro que has oído alguna vez que nuestro cerebro es el ordenador más potente del mundo. Ahora bien, ¿en qué piensas cuando te preguntan de qué está formado? Lo más probable es que lo primero que te venga a la cabeza sean las neuronas. No está mal, pero para que esta máquina tan singular funcione con todo su potencial necesita del trabajo de otras células igual de importantes. Entre ellas se encuentran los astrocitos, que reciben su nombre de las estrellas.

Empecemos por el principio. El cerebro funciona gracias a que las neuronas transmiten información a través de corrientes eléctricas. Los puntos de conexión entre una neurona y otra se conocen como sinapsis. En ellas se liberan sustancias llamadas neurotransmisores que permiten que el impulso eléctrico continúe de una neurona a otra. En este punto de conexión, en este diálogo entre las neuronas, el astrocito juega un papel fundamental, modulando y regulando la comunicación entre ellas.

Nuestro cerebro habla bajo sus propias reglas. Esquema de una sinapsis cerebral donde se intercambia la información entre las células, como en una conversación de WhatsApp. / Irene Serra. Células creadas con Biorender.com.

¿Qué ventajas puede tener una conversación a tres? Este sistema, más complejo que una conversación a dos, permite más variedad de mensajes y añade un elemento mediador que asegura que la información se transmite correctamente, el astrocito. La cuestión es que no tenemos un solo astrocito por cada sinapsis. En ratones, una sola de estas células es capaz de modular, mediar y participar en más de 100.000 sinapsis simultáneamente. Es como si un único astrocito estuviese presente y hablando en 100.000 grupos de WhatsApp al mismo tiempo. En humanos, un solo astrocito interviene en 2 millones de sinapsis. Es decir, que nuestros astrocitos tienen 20 veces más capacidad de procesar información… Y, además, tenemos millones de ellos. ¿Y si la explicación (o, al menos, parte de ella) a nuestra inteligencia residiera en el gran refinamiento que los astrocitos aportan a nuestro cerebro?

Para poder contestar esta pregunta necesitamos saber más. Precisamente, mi investigación en el Instituto Cajal (IC) del CSIC se centra en estudiar los circuitos astrocito-neurona; en concreto, los que se establecen en el núcleo Accumbens, la zona del cerebro que se activa cuando algo nos gusta. Esta zona recibe información de otras regiones del cerebro relacionadas con la memoria (hipocampo), las emociones (amígdala) y la toma de decisiones (corteza prefrontal), y es muy importante porque se ve afectada, entre otros casos, en trastornos de adicción.

Ejemplo de cómo es la información que pasa por el núcleo Accumbens vista desde una conversación de WhatsApp./ Irene Serra

Sabemos que los astrocitos son parte fundamental de la regulación de este núcleo y, desde hace poco, también que el cerebro tiene distintos tipos de astrocitos, del mismo modo que tiene distintos tipos de neuronas. Sin embargo, todavía no hemos comprendido en profundidad para qué son los astrocitos diferentes entre ellos ni cómo son de diferentes. En el núcleo Accumbens, ¿tenemos astrocitos especializados regulando la información de recuerdos de aquello que nos gusta? ¿Hay otros asociados a las emociones? ¿Intervienen en los circuitos de toma de decisión?

Un sensor de calcio para superar las limitaciones de los microscopios

En el último trabajo publicado por el Laboratorio de Plasticidad Sináptica e Interacciones astrocito-neurona del IC-CSIC, dirigido por Marta Navarrete, profundizamos en estas preguntas y presentamos una nueva herramienta que nos ha permitido estudiar, por primera vez, la actividad de los astrocitos a gran escala y con precisión temporal. Se trata de CaMPARIGFAP, un sensor de calcio con el que hemos podido observar el núcleo Accumbens al completo y detectar qué astrocitos responden a un estímulo concreto.

El tamaño de las lentes de los microscopios es limitado y hace que no sea posible observar al mismo tiempo todos los astrocitos de una región cerebral. La particularidad de CaMPARIGFAP es que detecta, mediante la fluorescencia, el calcio que emiten los astrocitos cuando se activan. Es como hacer una foto: al enviar un ‘flash’ de luz violeta, los astrocitos inactivos se muestran en verde y los activos en rojo. De este modo, podemos analizar cómo responden regiones amplias del cerebro a un estímulo determinado.

Tejido del núcleo Accumbens en el que cambia el color de CaMPARIGFAP según la actividad de los astrocitos. / Irene Serra

Utilizando esta herramienta hemos descubierto que los astrocitos del núcleo Accumbens forman redes funcionales que responden de diferente forma según la procedencia de los estímulos -memoria, emociones o decisiones­-. Los resultados indican que los astrocitos son capaces de distinguir de dónde viene la información y, también, que integran las diferentes señales en un procesamiento paralelo al de las neuronas. Todo apunta a que los astrocitos están mucho más especializados en los circuitos cerebrales de lo que pensábamos.

Comprender en detalle cómo interaccionan con las neuronas y cómo regulan la información que llega de las diferentes zonas del cerebro nos acercaría mucho a encontrar soluciones eficaces para tratar la adicción. Y eso solo en el núcleo de Accumbens: llegar a entender cómo interaccionan los astrocitos en otras regiones cerebrales nos permitiría comprender mucho mejor el potencial de nuestro cerebro, que a día de hoy esconde tantos misterios como el universo.

*Irene Serra Hueto es investigadora predoctoral en el Laboratorio de plasticidad sináptica e interacciones astrocito-neurona del Instituto Cajal del CSIC, dirigido por Marta Navarrete.