Archivo de julio, 2022

Volcanes bajo el mar

Por Adelina Geyer* (CSIC)

Los volcanes son unos de los fenómenos naturales más espectaculares de nuestro planeta. En los últimos 60 años se han registrado anualmente entre 50 y 80 erupciones, en las que el magma sale del interior de la Tierra a través de fracturas en el suelo dando lugar a exuberantes columnas eruptivas de varios kilómetros de altura o a espectaculares ríos de lava. Cuando pensamos en un volcán, solemos imaginarnos una gran montaña, como el gran monte Fuji (Japón), o el domo de lava Puy de Dôme (Francia). Pero olvidamos que el fondo de los océanos acoge también abundante actividad volcánica. De hecho, la gran mayoría del volcanismo en la Tierra, se estima que más del 80%, ocurre bajo el agua, tanto en zonas profundas (a kilómetros de profundidad) como someras (a algunos centenares de metros).

Vista del monte Fuji y la pagoda Chūrei-tō desde el florecido parque Arakurayama Sengen, en Fujiyoshida, prefectura de Yamanashi, en Japón central. Imagen: Reginald Pentinio / Flickr

La actividad volcánica de nuestro planeta, ya sea aérea (en la superficie terrestre) o submarina, se concentra primordialmente en los límites de las placas tectónicas. A lo largo de las zonas de dorsal o rift (límites divergentes) y las de subducción (límites convergentes) existen cambios de temperatura, presión o de composición química que permiten que las rocas del manto se fundan parcialmente y se genere magma. Este magma asciende hacia la superficie y, en ocasiones, se detiene a diferentes profundidades para acumularse en reservorios (cámaras magmáticas) que alimentan a los sistemas volcánicos. Además, un pequeño porcentaje de la actividad volcánica se origina dentro de las placas tectónicas (volcanismo intraplaca) sobre los denominados puntos calientes, zonas donde la temperatura del manto es anómalamente elevada.

Vista del volcán Puy de Dôme desde el Puy de Côme. El Puy de Dôme es, uno de los volcanes más jóvenes de la región Chaîne des Puys, en el Macizo Central, en el sur de Francia. Imagen: Clément Beckert

Coladas de lava bajo las aguas

Durante una erupción, el tipo de actividad y los materiales volcánicos generados dependen principalmente de la composición y el contenido de gas en el magma que asciende a la superficie. Además, para el caso del volcanismo submarino, otro factor principal es la profundidad de la zona de emisión de magma.

En la mayoría de las erupciones submarinas en aguas profundas, el magma suele ser de composición basáltica. El magma basáltico, de alta temperatura (1000 a 1200 °C), baja viscosidad (puede fluir con facilidad) y bajo contenido en gas, sale al fondo del océano en forma de fuentes y coladas de lava. Cuando estas entran en contacto con el agua fría (2 a 4 °C), la superficie exterior del magma se enfría rápidamente hasta convertirse en vidrio. Las lavas submarinas más comunes son las almohadilladas (pillow lavas), por sus formas más o menos esféricas o redondeadas, en forma de almohada. También son frecuentes los flujos de lava lobulados (lobate lavas), de superficie lisa o con una textura de caparazón de tortuga de vidrio fracturado por contracción, y los flujos laminares (sheet flows), que pueden presentar superficies lisas, alineaciones, pliegues, etc. La presencia de uno u otro tipo de coladas de lava no depende de la composición química, sino de las diferencias en la tasa de suministro de magma, la topografía subyacente y las condiciones del flujo.

Lavas almohadilladas en el fondo oceánico de Hawaii. Imagen: National Undersea Research Program (NURP) / Office of Oceanic and Atmospheric Research (OAR), USA

Un millón de montes submarinos

La acumulación de materiales volcánicos en el fondo del mar, especialmente de coladas de lava, da lugar a los denominados montes submarinos (seamounts). Se trata de los volcanes más abundantes de la superficie de la Tierra ─se han identificado más de un millón─, pero los menos estudiados. Los montes submarinos pasan por varias etapas de crecimiento, y es común observar en sus cumbres cráteres de tamaño muy variable: de pocas decenas de metros a unos kilómetros.

Durante la etapa de desarrollo de los montes submarinos en aguas profundas la alta presión hidrostática (presión del agua) favorece un tipo de actividad volcánica poco o nada explosiva. La presión es tan elevada que el agua no hierve de forma explosiva cuando entra en contacto con el magma. A medida que el edificio volcánico crece, el centro emisor de magma se vuelve más somero, por lo que la presión hidrostática disminuye. En este momento, comienza a haber una interacción explosiva entre el agua y el magma, similar a cuando caen gotas de agua en una sartén con aceite muy caliente. La actividad volcánica se vuelve más violenta, con fases eruptivas llamadas de tipo surtseyano (por el volcán Surtsey), que generan conos de toba ­─roca ligera formada por cenizas volcánicas­─ submarinos y superficiales. Si la actividad volcánica continúa, puede llegar a crearse una gran isla volcánica, como Tenerife o La Palma (Islas Canarias).

Erupción del volcán Surtsey (Islandia, 1963), que dio lugar al nombre del tipo de actividad surtseyana. Imagen: National Oceanic and Atmospheric Administration’s (NOAA), Office of Oceanic and Atmospheric Research (OAR), USA

Fuentes hidrotermales

Otro fenómeno relacionado con el volcanismo submarino es la actividad hidrotermal, tanto en los montes submarinos como a lo largo de las dorsales oceánicas. El agua de mar se infiltra por las fracturas de la corteza, se calienta con las rocas volcánicas y el magma que hay en profundidad, reacciona con las rocas de la corteza oceánica y vuelve a subir al lecho marino. En su camino, los fluidos hidrotermales realizan un intercambio químico con las rocas que atraviesan, dejando atrás unos elementos y recogiendo otros que traen de vuelta hacia la superficie y al océano. De esta manera, los fluidos hidrotermales transportan gases producidos por la interacción agua-roca o provenientes del magma, así como altas concentraciones de metales en solución.

Las soluciones hidrotermales surgen a través de fumarolas en el fondo del océano a temperaturas que alcanzan varias centenas de grados. Al emerger, las soluciones precipitan diversos minerales (pirita, calcopirita, etc.) que forman depósitos y sedimentos ricos en hierro y manganeso. Además, las altas concentraciones de sulfuro de hidrógeno en estas fumarolas sustentan un conjunto biológico único, que incluye bacterias oxidantes de sulfuro, que forman la base de una cadena alimentaria.

Una ‘fumarola negra’ emite chorros de fluidos cargados de partículas, predominantemente minerales de sulfuro, de grano muy fino. Las ‘fumarolas negras’ se forman a partir de depósitos de sulfuro de hierro, que es negro. Las ‘fumarolas blancas’ se forman por depósitos de bario, calcio y silicio, de color blanco. Imagen: National Ocean Service National Oceanic and Atmospheric Administration, U.S. Department of Commerce

Mucho queda por aprender del volcanismo submarino de nuestro planeta, pero los avances tecnológicos recientes como los ROV (vehículos operados remotamente) permiten tomar imágenes, vídeos e incluso recoger muestras para avanzar en el conocimiento de la dinámica y los productos de las erupciones submarinas.

¿Qué será lo siguiente que descubramos sobre el misterioso fondo del océano?

*Adelina Geyer es investigadora del CSIC en el Instituto de Geociencias de Barcelona (GEO3BCN – CSIC) y miembro del Grupo de Volcanología de Barcelona. Geyer divulga la ciencia de los volcanes para público general e infantil.

Tres pasos para protegerse frente a la desinformación

Por Sara Degli-Esposti y David Arroyo (CSIC)*

Desinformación, manipulación informativa, propaganda, noticias falsas o verificación de noticias son algunos de los términos que resultaban de interés en el ámbito de la comunicación de la ciencia antes de enero de 2020. Con la irrupción de la pandemia de COVID-19, ese interés se extiende a todos los ámbitos de los medios de comunicación, en especial al de las redes sociales.

Ilustración: Kurzgesagt – In a Nutshell, para el proyecto TRESCA

¿Cómo afrontar la desinformación? Jaron Lanier, pionero de la realidad virtual, lo tiene claro: habría que abandonar por completo las redes sociales. Así lo expuso en Ten arguments for deleting your social media accounts right now (diez razones para borrar tus redes sociales ahora mismo), ya que estas solo sirven para hacer que las personas estén más enfadadas, tengan más miedo, sean menos empáticas, estén más aisladas y reaccionen de modo más irracional. Pero, ¿qué pasa si no queremos perderlas y si queremos usarlas, por ejemplo, para que la comunicación científica llegue a más personas? Para reducir los riesgos de exposición a la manipulación informativa, desde el proyecto TRESCA** proponemos una metodología acompañada de un conjunto de herramientas que denominamos ‘Ms.W’ (Misinformation Widget) que nos ayuda a detectar información errónea o, incluso, campañas de desinformación.

Aquí resumimos brevemente esta metodología centrándonos en tres temáticas: la fiabilidad de las fuentes, la veracidad del mensaje y los sesgos del usuario, haciendo hincapié en las emociones que genera cada noticia. Se puede encontrar más información sobre esta metodología en el módulo 5 del curso online gratuito Communicating trustworthy information in the digital world (cómo comunicar información fiable en el mundo digital) y en la Guía LADA Cómo protegerse de la desinformación dentro de la serie ‘Cómo hacer…’ de La aventura de aprender, que se publicará a final de 2022.

Primer paso: verifica la fiabilidad de la fuente de información

  • No confíes en una noticia simplemente porque quien la comparte pertenezca a tu círculo de confianza. Si no confías en la fuente, realiza algunas búsquedas para ver otra información que haya publicado anteriormente.
  • Comprueba que la noticia realmente fue escrita por una persona o una organización que realmente existen, y no por un bot o una cuenta falsa. Fíjate que no existan organizaciones o personas con nombres similares o que compartan la imagen de perfil, y que la cuenta haya sido creado recientemente. Además, puedes hacer uso de herramientas para la detección de bots.
  • Verifica que lo que te ha llegado no ha sido manipulado o generado utilizando imágenes sacadas de contexto. Confirma que la fuente no se corresponde con un sitio de noticias desactualizado o creado ad hoc para dar difusión a una noticia. Si la fuente es un vídeo o tiene imágenes, se pueden usar herramientas de búsqueda inversa.
  • Ten en cuenta la objetividad y la intención del autor y/o de la fuente de la información y su ideología o agenda política. Puedes utilizar el detector de sesgo Media bias para hacerte una idea del sesgo ideológico de la fuente. Además, puedes hacer uso de nuestra metodología para realizar identificación de autores mediante el análisis de estilo de escritura.

Imagen: Marco Verch / Flickr

Segundo paso: determina la veracidad del mensaje

  • Revisa el contenido de la noticia para determinar si toda la información apoya la historia comprobando los enlaces. Comprueba que las citas sean reales y se ajusten al significado original.
  • Verifica si hay otras fuentes que se hayan hecho eco de los que se declara, denuncia o notifica en el mensaje. Comprueba si el contenido se ha hecho con intención de entretener en vez de informar, y si su mensaje es irónico o sarcástico.
  • En el fenómeno conocido como clickbait o ‘señuelo para que hagas click’, se suelen usar titulares que enganchan y no corresponden con su contenido. Antes de compartir, comprueba que esto no sea así. Puedes usar nuestra herramienta de detección de clickbait.
  • Comprueba que el contenido no ha sido identificado anteriormente como bulo, y que no haya habido noticias similares ya denunciadas como caso de desinformación por servicios acreditados de verificación de información.
  • Haz copias de todo el contenido por si en el proceso de comprobación ‘desaparece’ o los archivos se estropean. En el caso de que ‘desaparezca’ contenido, puedes hacer uso de The Internet Archive.

Ilustración: Irene Cuesta (CSIC)

Tercer paso: observa o controla las emociones y analiza la noticia desde distintos puntos de vista

  • Si sientes que tus emociones ‘se disparan’, ponte en alerta. Tus creencias o prejuicios pueden afectar tu capacidad de juzgar justamente la veracidad de la noticia. Muchas campañas de desinformación tratan de provocar tu respuesta emocional para aumentar su difusión.
  • Si el contenido busca provocar una reacción emocional en uno u otro sentido, es probable que sea desinformación. La desinformación intenta aumentar la polarización y la desconfianza entre personas o grupos animándolos al enfrentamiento.
  • Sospecha de cualquier contenido que intente atentar contra la integridad de sistemas electorales, o que promueva discursos de odio o mensajes que apoyen la misoginia, el racismo, el antisemitismo, la islamofobia, la homofobia o la LGTBIfobia, o que promuevan conspiraciones sobre redes globales de poder.
  • Tanto si el contenido está patrocinado como si no, ten en cuenta que pueden utilizar tu actividad previa en una plataforma para identificarte como posible objetivo de una campaña de desinformación, y usar esa información para identificar tus puntos débiles. Por ello, la protección de la privacidad es un elemento crítico para combatir de forma efectiva la desinformación.

 

* Sara Degli-Esposti es investigadora del CSIC en el Instituto de Filosofía (IFS-CSIC) y ha sido la directora científica del proyecto TRESCA; su trabajo de investigación se centra en la ética de la inteligencia artificial. David Arroyo es científico del CSIC en el Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo (ITEFI-CSIC) y experto en ingeniería criptográfica, privacidad y seguridad de la información; ha sido investigador principal (IP) de TRESCA y actualmente es IP del proyecto XAI-DisInfodemics – eXplainable AI for disinformation and conspiracy detection during infodemics (IA eXplicable para la detección de desinformación y conspiración durante la infodemia).

** El proyecto TRESCA, cuyas siglas responden a Trustworthy, Reliable And Engaging Scientific Communication Approaches (enfoques de comunicación científica dignos de confianza, fiables y atractivos), ha recibido financiación del Programa de Investigación e Innovación Horizonte 2020 de la Unión Europea. Los resultados del proyecto, terminado en abril de este año, están disponibles en la web oficial: https://trescaproject.eu.

El viento, el elemento olvidado del cambio climático

Por César Azorín-Molina*

El viento es aire en movimiento. Esta definición implica que la expresión “hace aire” –tan común entre el público general y los medios de comunicación– es incorrecta: lo apropiado es decir “hace viento”. Este movimiento de aire se origina por las diferencias de presión atmosférica entre las superficies de la Tierra y los distintos niveles de la atmósfera; y ha sido utilizado por la humanidad desde el pasado hasta nuestros días como fuente de energía para la navegación a vela, el molido del grano o la extracción de agua de pozos subterráneos. La relevancia social, económica y ambiental del viento es múltiple, y tiene una doble vertiente, ya que el viento supone tanto un recurso como un riesgo climático.

El molino de viento convierte la energía eólica en energía rotacional con el fin principal de moler granos. Es un tipo particular de molino que opera por medio de paletas llamadas aspas.​

En un contexto como el actual, en el que nos enfrentamos a las consecuencias del cambio climático, el viento constituye la segunda fuente más importante en la generación de electricidad y la principal fuente de energía limpia. Su comportamiento altera la capacidad de producción de la industria eólica, pero es también clave en procesos muy dispares: la agricultura y la hidrología, pues incide sobre la evaporación y la disponibilidad de recursos hídricos; la calidad del aire, ya que dispersa la contaminación atmosférica; o las catástrofes naturales, por las pérdidas económicas y humanas que producen los temporales. Otros fenómenos afectados por el viento son la ordenación y el planeamiento urbano, las operaciones aeroportuarias, el tráfico por carretera, la propagación de incendios forestales, el turismo, los deportes de viento e incluso la dispersión de semillas, las rutas migratorias de las aves o la erosión del suelo.

Un aerogenerador es un dispositivo que convierte la energía cinética del viento en energía eléctrica.

¿El viento se detiene o se acelera?

La veleta para conocer la dirección del viento fue inventada en el año 48 a. C por el astrónomo Andronicus y el anemómetro que mide la velocidad a la que viaja el aire en movimiento, en 1846 por el astrónomo y físico irlandés John Thomas Romney Robinson. Sin embargo, el estudio de los cambios del viento en escalas temporales largas (periodos de más de 30 años) no despertó el interés de la comunidad científica hasta hace apenas un par de décadas.

La veleta es una pieza de metal, ordinariamente en forma de saeta, que se coloca en lo alto de un edificio, de modo que pueda girar alrededor de un eje vertical impulsada por el viento, y que sirve para señalar la dirección de este.

Fue en Australia, donde el profesor emérito de la Australian National University Michael Roderick, en su afán de cuantificar el efecto del viento en la evaporación, observó un debilitamiento de los vientos superficiales durante las últimas décadas. En 2007, para denominar este fenómeno, acuñó el término anglosajón de ‘stilling’. Pocos años más tarde, en 2012, el también australiano Tim McVicar, de la Commonwealth Scientific and Industrial Research Organisation, concluyó que este descenso de la velocidad de los vientos estaba ocurriendo sobre superficies continentales de latitudes medias, preferentemente del hemisferio norte, desde la década de 1980. En cambio, otras investigaciones detectaron un reforzamiento de los vientos sobre las superficies de los océanos y, en la última década, un cese del fenómeno ‘stilling’ y un nuevo ciclo de ascenso de la velocidad de los vientos o ‘reversal’.

Falta de evidencias

La causa principal que explica ambos fenómenos se ha atribuido a los cambios en la circulación atmosférica-oceánica. Estos cambios se producen tanto por la propia variabilidad natural del clima como por efecto de la acción humana sobre el clima: el calentamiento global consecuencia de las emisiones de gases de efecto invernadero y también los cambios en los usos del suelo, entre los que destaca la rugosidad del terreno provocada por la masa forestal y la urbanización. En cualquier caso, tampoco hay que descartar la posibilidad de errores instrumentales en la medición del viento por el desgaste de los anemómetros, entre otros.

En la actualidad, la ciencia del clima se afana por descifrar el comportamiento del viento y elaborar proyecciones para los próximos 100 años. En un escenario de aumento de emisiones de gases de efecto invernadero y de calentamiento global, es previsible que una nueva fase de ‘stilling’ domine el siglo XXI.

El último informe del Panel Intergubernamental del Cambio Climático (IPCC) concluyó que el viento es una de las partes olvidadas del sistema climático dadas las escasas evidencias sobre sus cambios pasados y futuros. Un nuevo ‘stilling’ obligaría a desarrollar nuevas estrategias a medio-largo plazo en el sector de la energía eólica, un motor clave en la descarbonización de la economía establecida en el Acuerdo de París y el Pacto Verde Europeo. El estudio del viento debe ser prioritario para impulsar las energías renovables en la transición hacia una economía global con bajas emisiones de gases de efecto invernadero.

* César Azorín-Molina es investigador del CSIC en el Centro de Investigaciones sobre Desertificación (CSIC-UV-GVA) y pertenece a la Red Leonardo de la Fundación BBVA

 

La accidentada vuelta al Mediterráneo de una gota de agua

Por Manuel Vargas Yáñez (CSIC)*

En comparación con los grandes océanos, el tamaño del Mar Mediterráneo puede resultar pequeño. Sin embargo, es grande por su historia y su cultura… Y también por la complejidad de los fenómenos oceanográficos que en él se producen. Tanto es así, que ha llegado a ser considerado como un océano en miniatura por la comunidad oceanógrafa. Para conocer su funcionamiento, seguiremos las peripecias de una protagonista muy humilde: una gota de agua de apenas un mililitro. Realizaremos un largo viaje de ida y vuelta entre el Océano Atlántico y el Mar Mediterráneo. Y, como en toda gran expedición, nos serviremos de un mapa para seguir sus aventuras.

Mapa del recorrido de ida y vuelta entre el Océano Atlántico y el Mar Mediterráneo de la gota de agua. / Irene Cuesta (CSIC).

Comienza la aventura: Golfo de Cádiz

Nos encontramos en un lluvioso día de enero. Una gota cae sobre el mar a unos cincuenta kilómetros de la costa de Cádiz (punto 1). Debido al oleaje, se mezcla con el agua que la rodea. Cuando vuelve a lucir el sol, se sitúa cerca de la superficie, a diez metros de profundidad. Está completamente transformada, ahora es agua de mar, y se mueve hacia el sudeste, siguiendo el movimiento de las líneas de color azul claro del mapa.

El paso del Estrecho

De repente, se ve arrastrada por una violenta corriente que la succiona hacia el Estrecho de Gibraltar (punto 2). El mar se estrecha hasta que África y Europa casi pueden tocarse; y la profundidad disminuye considerablemente. La gota sube y baja, a veces hasta los 200 metros de profundidad. Allí se acerca a gotas más profundas que hacen el camino inverso y salen del Mediterráneo cargadas de nutrientes (compuestos de nitrógeno, fósforo y silicio). Sin embargo, todavía no sabe por qué esas aguas profundas están tan ricamente abonadas. Este será uno de los aprendizajes de su viaje.

Después de este ajetreo, la gota se encuentra por fin en el Mediterráneo; concretamente, en el Mar de Alborán, al sudoeste de Málaga. Ahora, viaja sobre una fuerte corriente de un metro por segundo y es una gota de agua salada rica en vida. En su interior crecen unos organismos verdes unicelulares: el fitoplancton. Estos organismos realizan la fotosíntesis gracias a la luz del sol, un proceso en el que absorben CO2 y producen oxígeno. Son la base de la cadena alimenticia del mar. Los más grandes, el micro-fitoplancton, tienen entre 20 y 200 micras; es decir, son mil veces más pequeños que un mililitro. La gota contiene más de cien de estas células y más de mil aún más pequeñas: el nano y pico plancton. También tiene cianobacterias, parientes muy próximas de las primeras bacterias que empezaron a hacer la fotosíntesis en nuestro planeta hace miles de millones de años. Si aumentásemos el tamaño de la gota, veríamos el micro-fitoplancton y también el zooplancton, que se alimenta del fitoplancton y que, a su vez, será el alimento de muchos peces, como las sardinas o los boquerones.

En el Estrecho de Gibraltar, la gota se acerca a otras más profundas que hacen el camino inverso y salen del Mediterráneo cargadas de nutrientes. / Pexels

Anticiclones frente a la costa argelina

Dentro del Mar de Alborán hay dos giros anticiclónicos en los que el agua se mueve en el sentido de las agujas del reloj. Después de treinta días dando vueltas, la gota se sitúa frente a las costas de Argelia (punto 3), donde el mar se ensancha. La corriente se calma (ahora avanza a 20 centímetros por segundo), sigue progresando hacia el este y deja a su derecha la costa del país africano. Es un camino tortuoso. Algunas de sus compañeras de viaje quedan atrapadas y ralentizan su marcha, pero nuestra gota sigue la corriente principal y, pasados sesenta días, divisa el Mediterráneo Oriental.

En una época cercana a la primavera, empieza a observar grandes cambios: en la superficie hace calor y hay una fuerte evaporación. El resultado es que su salinidad y temperatura aumentan. Sus inquilinos fitoplanctónicos necesitan nutrientes para hacer la fotosíntesis, pero se han agotado. La mayoría de las células más grandes han muerto y solo las más pequeñas parecen adaptarse a estas condiciones de escasez.

En Rodas, un año después

La corriente serpentea describiendo giros anticiclónicos y ciclónicos, en los que el agua se mueve en sentido contrario a las agujas del reloj. Nuestra gota pasará en estas aguas el verano y el otoño. Su salinidad llegará a alcanzar los 39,2 gramos por litro y su temperatura hasta 26 grados centígrados.

Llegará al sur de la Isla de Rodas (punto 4) durante el siguiente invierno, tras un viaje de más de un año. Entonces, su temperatura bajará hasta los 15ºC y será un agua muy salada y densa que no podrá mantenerse a flote. Finalmente, se hundirá hasta los 200 o 300 metros de profundidad. Solo entonces comenzará a ser llamada agua mediterránea por la comunidad científica. A pesar de llevar ya más de un año en el Mare Nostrum, hasta este momento será considerada agua atlántica, por su origen.

La gota de agua alcanzará una profundidad media de 1.400 metros. / Pexels

Descenso a las profundidades

La gota viajera ha pasado a un entorno frío, oscuro e inmenso; y su profundidad media es de 1.400 metros, aunque puede alcanzar los 5.000. Los organismos fitoplanctónicos han muerto por la falta de luz y los restos orgánicos son descompuestos por las bacterias. En este proceso se generan CO2 y nutrientes, y se consume parte del O2. La gota entiende ahora por qué el agua profunda con la que se cruzó en el Estrecho de Gibraltar era rica en nutrientes.

Empieza a moverse lentamente hacia el oeste, en la dirección de las líneas azul oscuro del mapa. Aunque hay varios caminos posibles, toma el más directo hacia Sicilia y Cerdeña; islas que fueron su puerta de entrada al Mediterráneo Oriental, y que ahora marcan la salida. Por aquí las aguas profundas salen a razón de algo menos de un millón de metros cúbicos por segundo. El volumen del agua de las capas profundas del Mediterráneo Oriental es de más de 1.800 billones de metros cúbicos, así que la gota tardará alrededor de sesenta años en atravesar los canales de Sicilia y Cerdeña.

Una vez en el Mediterráneo Occidental, la gota bordeará la costa occidental de Italia hasta llegar a otro hito de su periplo: el sur de las costas francesas del Golfo de León (punto 5). En esta región, los fríos y secos vientos invernales del norte enfrían el agua superficial, que aumenta su densidad y se hunde hasta los 200 o 300 metros de profundidad, donde se encuentra con nuestra gota. Los temporales en esta zona continúan todo el invierno, y al final el agua se hace tan fría y densa que se hunde hasta el fondo del mar, a 2.500 metros de profundidad.

Fin de viaje: regreso al Atlántico

Aún le queda un largo camino por recorrer, ya que hasta salir por el Estrecho de Gibraltar pueden pasar otros cincuenta años. Al menos, su combinación con agua de la superficie le ha supuesto una inyección de oxígeno. La salida del Mediterráneo es parecida a la llegada. La gota viajera se mueve lentamente hasta que, al sentir la proximidad del Estrecho, empieza a sufrir una fuerte aceleración y alcanza velocidades de 1 metro por segundo. Ahora es una corriente profunda que ve como nuevas gotas de agua pasan por encima de ella para entrar en el Mediterráneo y comenzar un viaje parecido al que ella inició hace más de 100 años.

Aquella gota que cayó en forma de lluvia parece ahora una anciana que regresa al Océano Atlántico, donde durante un tiempo será llamada agua mediterránea. Sin embargo, en la escala de tiempo de los mares de la Tierra, aún es joven. Es cierto que está muy transformada, pero todavía tiene que experimentar muchas peripecias y visitar rincones muy lejanos antes de, tal vez dentro de mil años, volver a la superficie del mar o incluso a la atmósfera. Pero esta es otra historia, y deberá ser contada en otro momento.

*Manuel Vargas Yáñez es investigador en el Instituto Español de Oceanografía (IEO) del CSIC.