Archivo de febrero, 2022

Una pareja que hizo historia en ciencia y en divulgación

Por Pedro Meseguer (CSIC)*

La inmigración no es un fenómeno nuevo. Durante todo el siglo XIX se mantuvo una corriente de Europa a América, donde los recién llegados compartían su origen de diáspora. Entre los muchos que cambiaron de país estaba la familia Eckhard, que llegó a Wisconsin desde Alsacia. Uno de los hijos, el pequeño Bernard de seis años, en el barco a América quizá se fijó en el duro trabajo de los marineros, o tal vez escuchó alguna historia cruda de derrotas y superaciones. Lo cierto es que en su nueva patria se abrió camino con energía: estudió, se graduó en la Universidad de Milwaukee y se estableció en Chicago donde, dedicado a la industria molinera, se convirtió en un empresario de éxito a la vez que en un líder ciudadano. Al final de su vida donó cientos de miles de dólares a la universidad de esa ciudad, que erigió el Eckhard Hall para albergar el Departamento de Matemáticas y una nutrida biblioteca.

Un día del otoño de 1954, una estudiante subía las escaleras de ese edificio y tropezó con un chico que bajaba. Era alto y guapo, con una mata de pelo castaño oscuro. Ella acababa de ser admitida como alumna adelantada a la temprana edad de dieciséis años. Lo que no sabía —y seguro que fue motivo de charla entre los dos— es que él también había entrado a una edad en que la mayoría de los adolescentes habitan la high school; a sus diecinueve años ya se había graduado y se encaminaba al máster con paso firme. Ese encuentro, sin duda feliz para ellos —se enamoraron rápidamente—, fue beneficioso para el resto de sus contemporáneos porque marcó el comienzo de una relación entre dos personas que llegaron a ser científicas eminentes y realizaron grandes contribuciones en la divulgación de la ciencia.

Lynn Margulis.

Ella se llamaba Lynn Petra Alexander, posteriormente conocida como Lynn Margulis, y tras pasar por las universidades de Chicago, Wisconsin-Madison y Berkeley, se convirtió en una brillante y controvertida investigadora en biología. Además de sus cualidades intelectuales, Lynn no tenía miedo: “He crecido en el sur de Chicago”, decía con orgullo, exhibiendo una credencial de vida que garantizaba su arrojo. La combinación de su talento con esa determinación le permitió construir una teoría que se enfrentaba a las opiniones científicas dominantes, y mantenerla durante años contra viento y marea. Su hipótesis de que ciertas partes de la célula eucariota habían sido antes bacterias independientes y que se habían unido mediante una simbiosis que beneficiaba a ambas fue ignorada durante años —y el artículo que la postulaba fue rechazado quince veces antes de su publicación—. Pero aplastantes pruebas genéticas la respaldaron y la teoría se aceptó. Durante toda su vida, ella mantuvo posiciones críticas con el neo-Darwinismo, en un debate sin fin. Hoy, sus ideas son ampliamente reconocidas.

Lynn Margulis y Carl Sagan el día de su boda.

Pero retrocedamos a Chicago. Allí, hace 65 años, una semana después de su graduación en liberal arts, Lynn se casó con ese novio de la universidad, un estudiante de doctorado en astrofísica llamado Carl Sagan. Ambos llegarían al más alto nivel académico en Estados Unidos, university professors —él en Cornell, ella en Amersh. Además, Lynn fue elegida para la Academia de Ciencias, un exclusivo reconocimiento que él no logró—. Ese 6 de junio de 1957 se unieron dos promesas académicas (entonces aún no se habían doctorado), que se divorciaron ocho años más tarde, con dos hijos en común. Hoy, cuando ya han desaparecido tras dejar dos espléndidas trayectorias científicas llenas de aportaciones —las de ella fueron revolucionarias—, tiene sentido preguntarse sobre su influencia mutua. Porque Lynn realizó muchas actividades divulgativas —un dominio donde Carl sobresalió, hasta el punto de tener un programa sobre astrofísica llamado COSMOS en la televisión estadounidense en 1980—. Con Dorian, su primer hijo, Lynn escribió varios libros sobre biología con títulos atrayentes o incluso provocativos, destinados a un público general. Curiosamente, el tema de investigación preferido de Carl era la vida extraterrestre, la exobiología, lo que llama la atención al ver la profunda investigación de Lynn sobre el origen de la vida en la Tierra. ¿Hizo suya Lynn la motivación de Carl, su objetivo de difundir la ciencia mediante el lenguaje de la calle? ¿Se dejó Carl influir por la inclinación de Lynn por el estudio de la vida?

No tenemos respuestas concluyentes, aunque ella confesó que el amor de Carl por la ciencia “era contagioso”. Sea como fuere, lo que sí podemos apreciar es el enorme impacto social de su actividad. Los libros de divulgación de Lynn, muchos traducidos, se vendieron por miles. Se estima que no menos de 400 millones de personas han visto la serie COSMOS en 60 países. Ellos perseguían el loable objetivo de poblar, con elementos científicos comprensibles, las mentes de sus conciudadanos. Su intención era que las ideas que profundizan en el conocimiento del mundo dejasen de pertenecer a unos pocos para ser libremente compartidas por la mayoría e incluidas en el patrimonio de todo el mundo. ¿Acaso no es esa una manera de repartir, sin discriminación, una nueva riqueza?

*Pedro Meseguer es investigador en el Instituto de Investigación en Inteligencia Artificial del CSIC y autor del libro Inteligencia Artificial (CSIC-Catarata). Con este artículo queremos celebrar los ocho años que cumple el blog Ciencia para llevar, donde se publican entradas del personal investigador y técnico del CSIC y bajo la firma colectiva Mar Gulis, en homenaje a la científica Lynn Margulis.

¿Ha resuelto la inteligencia artificial el enigma de la estructura de las proteínas?

Por Emilio Tejera* (CSIC)

Cuando oímos hablar del creciente poder de los ordenadores y, en concreto, de la inteligencia artificial, suelen llamarnos la atención los aspectos más perturbadores: que si sirve para colarnos bulos (aunque también para combatirlos), desafiar nuestra privacidad o volvernos más consumistas; que si los robots nos robarán los trabajos; incluso, que una inteligencia artificial, influida por los seres humanos, se ha vuelto racista. Al final, sentimos un temor instintivo que nos lleva a apagar el ordenador, pensando en Hal9000 o en Terminator. Sin embargo, hoy quiero mencionar la historia de una inteligencia artificial que, quizá, haya resuelto un enigma científico que llevaba más de 50 años desafiando a la comunidad científica. En una palabra, hoy quiero hablar del día en que una máquina nos hizo un gran favor.

Empezaremos con los artífices de este logro: Deepmind. La empresa, dirigida por Demis Hassabis y adquirida por Google, empezó desarrollándose sobre todo en el campo de los videojuegos, pero también utilizaba los clásicos juegos de mesa para perfeccionar sus propios sistemas de inteligencia artificial, como refleja el documental AlphaGo, que trata sobre el entretenimiento de origen chino denominado Go. En él se narra cómo su algoritmo fue capaz de derrotar de manera aplastante al campeón mundial de este juego milenario, mucho más complejo que el ajedrez.

Imagen del juego Go / Prachatai / Flickr

Los frikis de los juegos se meten en ciencia

Pero el equipo de Deepmind quería llegar mucho más lejos y aplicar su experiencia a la ciencia. En concreto, se interesaron por una cuestión clave para la biología: cómo conocer la estructura de una proteína –las moléculas que realizan buena parte de las funciones biológicas– a partir de su secuencia de aminoácidos (es decir, de sus componentes fundamentales). Resulta que poseemos esta secuencia básica de la mayoría de las proteínas, pero para obtener su estructura hay que realizar complicados estudios bioquímicos que tardan meses o años en extraer resultados. Por eso, siempre existió el interés en que las máquinas pudieran acortar este proceso y deducir las estructuras, aunque hasta ahora los resultados eran bastante pobres. Hasta que Deepmind, con su programa AlphaFold, ganó de modo rotundo las ediciones de 2018 y 2020 del concurso bienal CASP, que premia los software que trabajan en este ámbito. Se intuía que algo gordo iba a ocurrir y, en efecto, sucedió.

En julio de 2021, Deepmind, en colaboración con el Laboratorio Europeo de Biología Molecular, publicaba dos artículos en la prestigiosa revista Nature. En uno describían el proceso para crear una versión mejorada del software de AlphaFold (cuyo código fuente donaron al mundo, como corresponde a una investigación financiada en parte con fondos públicos). Y en el otro aportaban las estructuras del 98,5% de las proteínas de las células humanas: un resultado espectacular si tenemos en cuenta que hasta entonces solo conocíamos la estructura del 17% de ellas. Además, publicaron las estructuras de 365.000 proteínas de 20 tipos de organismos diferentes, muchos de ellos modelos clave para la investigación en biología. El manantial de nueva información a disposición de la comunidad científica era impresionante (y sigue aumentando).

Imagen de la estructura de la mioglobina, una de las primeras proteínas que se desentrañó/ Wikipedia

Un software que ahorraría años de investigación

Pero, ¿por qué es tan importante averiguar la estructura de las proteínas? Gracias a este conocimiento, podemos analizar cómo actúan estas moléculas y, a partir de ahí, elaborar fármacos que modifiquen su función y nos permitan actuar sobre toda clase de enfermedades. De hecho, softwares similares a AlphaFold podrían predecir cómo un medicamento interaccionará con determinada proteína y, así, ahorrar años de investigación y acelerar el desarrollo de nuevos tratamientos.

¿Ha desentrañado finalmente Deepmind este tan descomunal como intrincado problema? Probablemente tardaremos años en dilucidarlo, conforme las técnicas clásicas confirmen (o no) que las estructuras propuestas por AlphaFold en tan sólo unas pocas horas de análisis coinciden con las que realmente poseen dichas proteínas. Además, se plantean nuevos interrogantes: quizá existan estructuras concretas frente a las que AlphaFold no sea lo suficientemente resolutiva. Hasta ahora, el software no ha entrado en los cambios que se producen en las proteínas cuando interaccionan con otras moléculas; y, entre conocer la conformación de una proteína, y curar enfermedades como el alzhéimer, queda por recorrer un mundo. No obstante, si se confirma (de momento, los últimos artículos refuerzan tanto las perspectivas como las dudas), será un avance fundamental; y no logrado por especialistas en biología que llevan años estudiando la cuestión, sino por un grupo de frikis expertos en informática que empezaron trabajando en videojuegos.

Deepmind está desarrollando otras aplicaciones para sus software: quiere diagnosticar enfermedades mediante el análisis de imágenes de fondos de ojo, así como predecir dolencias futuras a partir de las constantes básicas de un individuo. Las aplicaciones de la inteligencia artificial (capaz de aprender de sí misma, y de detectar patrones que permanecen ocultos al intelecto humano) son todavía innumerables; entre otras cosas porque muchas, probablemente, no somos capaces aún de imaginarlas.

La inteligencia artificial, desde luego, representa un reto para la humanidad, pero, como la mayor parte de las creaciones humanas, presenta tantos inconvenientes como ventajas. Al final, la tecnología es una herramienta: la gran responsabilidad que tenemos es que nos lleve a prosperar como sociedad. De no ser así, poco importará que llegue Terminator para acabar con la humanidad: seremos nosotros mismos quienes habremos desaprovechado esta inmensa oportunidad.

* Emilio Tejera (@EmilioTejera1) es responsable de la Unidad de Biología Molecular del Instituto Cajal (IC-CSIC). En este post de su blog realiza una descripción más detallada del tema de este artículo.

Ultrasonidos: la revolución silenciosa de la medicina moderna

Por Francisco Camarena (CSIC-UPV)*

En 1983 nació la primera persona de mi familia sabiéndose de antemano cuál iba a ser su sexo. A su madre le habían hecho unas pruebas un poco raras echándole un gel pastoso y frío sobre el vientre, y el ginecólogo se había adelantado a la naturaleza diciendo: “creo que es una niña”. Las imágenes eran grises, ruidosas, bastante confusas y con mucho movimiento. ¿Cómo iba a deducirse de ese enredo de sombras que aquello iba a ser una niña?, debió pensar su madre con escepticismo.

Medida de la translucencia nucal con ecografía en la semana 13 de embarazo.

Corrían los años de la movida y las técnicas de imagen para diagnósticos médicos también se revolucionaban: acababan de concederles el Premio Nobel a los creadores de esa maravilla de imagen 3D que es la Tomografía Axial Computerizada (TAC). Los inventores de la resonancia magnética, también premiados con el Nobel, andaban haciendo imágenes espectaculares del cerebro humano utilizando propiedades cuánticas de la materia; y había unos científicos que obtenían imágenes de los procesos metabólicos del organismo con nada más y nada menos que antimateria, que es lo que se usa para obtener una imagen PET (Tomografía por Emisión de Positrones). Así que, ¿quién iba a dar importancia a unas imágenes tan pobres como las que se empezaban a tomar con sonidos?

Ventajas de los ultrasonidos

Lo cierto es que las imágenes tomadas con ultrasonidos no eran 3D, pero eran en tiempo real. Solo daban información anatómica, pero era complementaria a la que proporcionaban los Rayos X. Eran ruidosas, sí, pero incluso del ruido se podía extraer información relevante para el diagnóstico. Es verdad que dependían del operador que manejase la máquina, pero como no era más que sonido, y no podía ionizar átomos y afectar a nuestras moléculas de ADN, siempre se podía repetir la prueba las veces que fuese necesario. Y, sobre todo, se podía tener cien máquinas de ultrasonidos con lo que cuesta un TAC, una resonancia o un PET, y eso sí que es harina de otro costal.

Imagen de Microscopia de Localización con Ultrasonidos y Doppler Color de un corte coronal del cerebro de un ratón

Las décadas de los ochenta y noventa del S.XX permitieron la consolidación a nivel mundial de la técnica, con sus grandes éxitos en el campo de la obstetricia y la cardiología, que prácticamente no existirían sin esta modalidad de imagen, y con el desarrollo de la imagen Doppler, 3D y, en el campo de la terapia, de la litotricia para el tratamiento de cálculos renales y biliares con ondas de choque. El arranque del siglo XXI no fue menos fructífero: la elastografía, una variante de imagen ecográfica, permitió la mejora de los diagnósticos mediante la obtención de mapas de la dureza de los tejidos, y la aparición de sistemas cada vez más pequeños y económicos posibilitó la implantación de la tecnología en pequeñas clínicas de todo el mundo. En 2014, el número de pruebas con ultrasonidos a nivel mundial ascendió a 2.800 millones (éramos 7.200 millones de habitantes sobre la faz de la Tierra en ese momento), lo que aupó esta tecnología, junto con la de Rayos X, a la cima de las modalidades de imagen más utilizadas en medicina. Además, durante la segunda década de este siglo se ha extendido el uso del ultrasonido terapéutico, principalmente para producir quemaduras internas en los tejidos mediante la focalización del sonido, de un modo parecido a como focaliza una lupa la luz solar, lo que está permitiendo tratar de forma no invasiva enfermedades como el temblor esencial, la enfermedad de Parkinson, el cáncer de próstata o la fibrosis uterina.

Nuevas terapias contra el cáncer

El futuro próximo se vislumbra muy prometedor. Las mejoras técnicas están disparando el número de aplicaciones y en pocos años veremos consolidarse nuevas formas de terapia, como la histotripsia: ultrasonidos focalizados de altísima intensidad que trituran literalmente los tejidos tumorales y esparcen en derredor antígenos que favorecen la respuesta inmunológica del cuerpo contra el propio tumor. Otras novedades serán los dispositivos para modular con precisión quirúrgica el funcionamiento del cerebro humano y modalidades de imagen de una espectacularidad propia de la ciencia ficción, como la optoacústica o la microscopía de localización por ultrasonidos.

Mapeo de los vasos sanguíneos del cerebro humano realizado con ultrasonidos. 

Los ultrasonidos, ese sonido que los humanos no podemos oír, son la base de una tecnología que ha sido uno de los pilares sobre los que se ha construido el edificio de la medicina moderna. Han supuesto una revolución trascendental en el modo de observar el interior del cuerpo humano, hasta hace poco tan misterioso y opaco, y nos han permitido verlo como veríamos con los oídos, como ven los murciélagos, como componen su mundo las personas invidentes. Puede parecer menos, pero los murciélagos vuelan a oscuras y eso no lo pueden hacer los pájaros con sus flamantes ojos. Ha sido una revolución tranquila, de avances graduales pero fiables, sin excesivo ruido mediático, sin premios Nobel, sin estridencias, como no podía ser de otra manera al tratarse, como se trata, de sonido inaudible. Una revolución silenciosa, sí, pero una revolución, al fin y al cabo.

 

*Francisco Camarena Fermenía trabaja en el Instituto de Instrumentación para Imagen Molecular (i3M, CSIC-UPV), donde dirige el Laboratorio de Ultrasonidos Médicos e Industriales (UMIL)

Escuchar los virus y las bacterias para el diagnóstico de enfermedades

Por Eduardo Gil (CSIC)*

Imagina que estiras un muelle. Esto hace que lo muevas de su posición de reposo. Se contrae, se estira y vuelve a su forma original. Mantendrá este movimiento oscilatorio durante cierto tiempo. El número de veces que se repite en un segundo se llama frecuencia, medida en hercios (Hz) – un hercio equivale a una oscilación por segundo-. Las oscilaciones de los muelles podemos observarlas con nuestros ojos, e incluso contarlas sin gran dificultad. Sin embargo, cuanto más pequeño sea un objeto, las oscilaciones tendrán una menor amplitud y una mayor frecuencia y, por tanto, será más difícil verlas.

Otro ejemplo clásico de resonador mecánico es el de la cuerda de una guitarra. Cada una de las cuerdas tiene dimensiones diferentes y por ello emiten sonidos distintos. Por ejemplo, cuando se toca la nota musical LA3 la cuerda vibra a 440 Hz, es decir, se comprime y expande 440 veces por segundo. Las vibraciones de una cuerda son más difíciles de observar con nuestros ojos y, por supuesto, no es posible contarlas. Sin embargo, estas vibraciones las percibimos con nuestros oídos, que son sensibles a su frecuencia, por ello distinguimos entre vibraciones que producen sonidos graves o agudos.

Microdiscos optomecánicos que actúan como sensores y bacterias Staphylococcus Epidermidis, que vibran a frecuencias de cientos de megahercios, cayendo sobre ellos. / Imagen: Scixel

Toda estructura mecánica es elástica en mayor o menor medida. Pero cada objeto vibra a frecuencias determinadas que dependen de sus propiedades morfológicas (forma) y mecánicas (densidad, rigidez, viscosidad, etc.). Por lo tanto, ‘escuchando’ las frecuencias de las vibraciones de un objeto podemos inferir sus propiedades físicas. Como se ha mencionado anteriormente, cuanto más pequeño es un objeto, mayores son sus frecuencias de vibración. En el caso de las bacterias y los virus, sus tamaños microscópicos e incluso nanoscópicos hacen que sus frecuencias de vibración sean extremadamente altas. Las bacterias suelen tener tamaños en torno a las micras (una millonésima parte de un metro), vibran a frecuencias de cientos de millones de hercios (cientos de millones de oscilaciones por segundo) con una amplitud extremadamente pequeña, en torno al tamaño de un átomo. Los virus son entidades aún más pequeñas, por lo que oscilan con amplitudes aún menores. Sus dimensiones se encuentran en torno a los cien nanómetros, e incluso por debajo. Son entre 10 y 1.000 veces más pequeños que las bacterias y, por lo tanto, oscilan a frecuencias entre 10 y 1.000 veces más altas. Así, los virus vibran más de mil millones de veces por segundo con amplitudes menores al tamaño de un átomo.

Nanosensores para detectar virus y bacterias

¿Y si hubiera aparatos para identificar y medir estas vibraciones? Desde el grupo de Bionanomecánica del Instituto de Micro y Nanotecnología del CSIC trabajamos desde hace casi dos décadas en el desarrollo de nanosensores para la detección, caracterización e identificación de todo tipo de entidades biológicas (células humanas, bacterias, virus, proteínas, etc.). Estos nanosensores también se pueden considerar como muelles. Vibran a ciertas frecuencias que se ven modificadas cuando las entidades biológicas se adhieren a ellos. A través de estas variaciones se pueden determinar la masa y las propiedades mecánicas de las bacterias o los virus, además de poder identificarse a nivel individual.

Hace poco más de un año se descubrió que estos mismos nanosensores eran capaces de detectar las vibraciones de las bacterias, es decir, de escucharlas. Pero, ¿para qué sirve escuchar las bacterias? Con esta nueva aproximación, los nanosensores poseen una sensibilidad muchísimo mayor que sus predecesores en la caracterización de los objetos analizados y, por tanto, en su identificación. Una de las aplicaciones de esta técnica consiste en desarrollar sensores universales que sean capaces de detectar la presencia de todo tipo de bacterias y virus en un único test. El fin último sería el diagnóstico de enfermedades infecciosas.

Una tecnología que reduciría el coste de los diagnósticos

Hoy en día, para diagnosticar una enfermedad infecciosa, es necesario que desde la medicina se intuya previamente qué patógeno podría estar causándola. Después, deben realizarse pruebas específicas para determinar si el patógeno concreto se encuentra en el cuerpo del paciente. Si la prueba es positiva, problema resuelto. Sin embargo, si la prueba arroja un resultado negativo o no concluyente, el diagnóstico de la enfermedad se retrasa. Esto obliga a hacer nuevas pruebas y demora el tratamiento del paciente. Al disponer de una tecnología que permitiese diagnosticar las enfermedades infecciosas de forma universal, se reduciría el coste del diagnóstico de manera significativa. Y lo que es más importante, los pacientes recibirían el tratamiento adecuado lo antes posible. Por otro lado, ser capaces de caracterizar las propiedades físicas de estas entidades biológicas con suficiente precisión tendrá un gran impacto en la biomedicina, dado que este avance que permitirá desarrollar nuevos medicamentos y tratamientos. La aplicación de estos nanosensores no se limita al estudio o detección de bacterias y virus, sino que se podría extender la tecnología a otras entidades biológicas como proteínas o células humanas y aplicarla, por ejemplo, a la detección temprana del cáncer.

*Eduardo Gil es investigador en el grupo de Bionanomecánica del Instituto de Micro y Nanotecnología del CSIC.

Ciencia ciudadana para proteger la seguridad alimentaria: ¡cultiva variedades tradicionales de judías!

Por Mar Gulis (CSIC)

Judías, alubias, fabes, habichuelas, frijoles… Estos son solo algunos de los nombres que utilizamos para referirnos a los frutos, las semillas y las plantas de la especie Phaseolus vulgaris. A veces el nombre que les damos depende de la variedad de la que estamos hablando y otras de dónde nos encontramos: la especie es la misma, pero en Asturias decimos ‘fabes’, en Madrid ‘judías’ y en México ‘frijoles’. En cualquier caso, esta abundancia de términos no puede distraernos de una cuestión crucial: como ocurre con la mayoría de las especies cultivadas, las variedades de P. vulgaris que consumimos hoy presentan muy poca diversidad genética.

Se trata de variedades comerciales con un gran rendimiento agrícola que, a partir de los años 50 y 60 del siglo pasado, fueron sustituyendo a miles de variedades tradicionales, menos productivas, pero muy bien adaptadas a sus condiciones locales. Esta pérdida de diversidad genética reduce la capacidad de adaptación de las variedades comerciales a transformaciones del entorno, como la aparición de una nueva enfermedad o el cambio climático. Esto ocurre porque cuanto mayor es la homogeneidad genética de una población, más parecidos son entre sí sus individuos y menos probabilidades hay de que alguno de ellos albergue la clave genética para hacer frente a este tipo de ‘imprevistos’.

Del banco de semillas a tu balcón

La amenaza es seria porque no solo afecta a las legumbres, sino a la mayoría de las especies cultivadas. ¿Cómo podemos afrontarla? Pues entre otras cosas conservando y estudiando las variedades tradicionales que se han dejado de cultivar o han quedado relegadas a un segundo plano. En España, el Centro de Recursos Fitogenéticos del INIA-CSIC es el principal encargado de preservar toda esta agrobiodiversidad con el fin de garantizar la seguridad alimentaria. Además, casi todos los países de nuestro entorno cuentan con un centro que realiza funciones similares.

Sin embargo, las personas de a pie también podemos contribuir a esta labor. Una nueva forma de hacerlo es sumarse al experimento de ciencia ciudadana INCREASE, un proyecto europeo en el que participan 28 centros de investigación de 14 países. La iniciativa invita a la ciudadanía a cultivar distintas variedades tradicionales de judías (P. vulgaris) y compartir sus observaciones con el personal investigador del proyecto a través de una app. Además, quienes quieran también podrán contribuir a la conservación de estos valiosos recursos agrícolas distribuyendo los frutos y las semillas que cosechen o difundiendo recetas para cocinarlos.

Colaborar en el experimento es muy sencillo. Lo más importante son las ganas, tener acceso a una huerta, terraza, balcón o jardín y encontrarse en algún lugar de Europa. Si ese es tu caso, lo siguiente que tendrás que hacer será instalar en el móvil la aplicación gratuita INCREASE Citizen Science y registrarte en el experimento. Ojo, porque el plazo para apuntarse a la segunda ronda –la primera se celebró el año pasado y contó con la participación de 3.450 personas– concluye el 28 de febrero de 2022.

Si te inscribes a tiempo, a partir del mes de marzo recibirás semillas de seis variedades de judías: una variedad moderna y cinco seleccionadas al azar entre más de mil variedades antiguas u olvidadas, los llamados recursos fitogenéticos. Muchas de esas variedades proceden de España. “La especie es originaria de América, pero la Península Ibérica fue el primer territorio europeo en el que se comenzó a cultivar y donde se adaptó al continente, por lo que aquí surgieron muchas variedades”, explica Cristina Nieto, investigadora del Consejo Superior de Investigaciones Científicas (CSIC) en el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA).

Mil variedades tradicionales, a prueba

En la app y en la web del proyecto encontrarás indicaciones, consejos y tutoriales para sembrar las semillas y seguir el desarrollo de las plantas. A lo largo de su ciclo de vida, tendrás que hacerles fotos y anotar algunas de sus características –como la altura alcanzada, el número de vainas que tienen o cuándo se ha producido el periodo de floración– y volcar toda esa información en la aplicación. Los datos recopilados servirán al equipo del proyecto para evaluar las distintas variedades con el fin de mejorar y conservar la agrobiodiversidad de las judías europeas.

Quien se anime también podrá compartir los frutos y las semillas cosechados en el experimento, así como diferentes formas de cocinarlos. De hecho, en el futuro la web del proyecto recogerá todas las recetas tradicionales e innovadoras que se vuelquen en la app. “Se trata de promover el consumo y el cultivo de judías y de otras leguminosas, dado que son muy beneficiosas tanto para nuestra salud como para la agricultura. De un lado, nos aportan proteínas de altísima calidad y, del otro, fijan el nitrógeno al suelo y reducen la necesidad de fertilizantes”, señala la investigadora.

Todavía estamos a tiempo de recuperar variedades olvidadas y contribuir a la seguridad alimentaria. ¡Anímate a participar!