Puentes que se derrumban y copas que estallan: el fenómeno de la resonancia mecánica

Por Daniel Ramos Vega y Mar Gulis (CSIC) *

El 12 de abril de 1831, una compañía del cuerpo de fusileros del ejército británico regresaba al cuartel después de unas maniobras militares. Al cruzar el puente de Broughton (Manchester), los 74 hombres que componían la compañía notaron un ligero balanceo. Comenzaron entonces a marcar el paso más firmemente e incluso llegaron a cantar canciones de marcha militar, cuando se escuchó un ruido atronador, como si de una descarga de armas se tratase. Uno de los cuatro pilares que sostenían la cadena que soportaba el peso del puente se desplomó y provocó su colapso: el puente acabó derrumbándose por completo sobre el río arrastrando consigo a 40 soldados. Por fortuna, en esa época del año aún no había crecido el nivel del agua y no hubo que lamentar víctimas mortales. Eso sí, 20 soldados resultaron heridos.

Puente de Tacoma Narrows oscilando

¿Por qué se derrumbó el puente? La causa más probable del colapso la encontramos en el fenómeno de la resonancia mecánica.

Para entenderlo, antes tenemos que hablar de ondas y frecuencias. Una onda es una perturbación que se trasmite por el espacio, lleva implícito un cambio de energía y puede viajar a través de diferentes materiales. Imaginemos por ejemplo las ondas que se generan cuando lanzamos una piedra a un estanque o cuando sacudimos una cuerda de arriba a abajo. Para definir una onda utilizamos conceptos como la amplitud, que es la distancia vertical entre el punto de máximo desplazamiento y el punto medio; el periodo, que se define como el tiempo completo en que la onda tarda en describir una oscilación completa; o la frecuencia, que es el número de veces que se repite la oscilación en un tiempo dado.

Onda, magnitud y frecuencia. / Daniel Ramos Vega.

Todo cuerpo presenta una o varias frecuencias especiales que se denominan frecuencias características o propias. Dependen de la elasticidad del objeto, sus dimensiones o su masa. Como los objetos transmiten mejor unas frecuencias que otras, cuando aplicamos una fuerza que oscila a la frecuencia propia del objeto, logramos hacer que el efecto se magnifique. Entonces decimos que entra en resonancia.

Una resonancia, por tanto, se produce cuando sometemos un cuerpo a una fuerza periódica igual a su frecuencia característica. En el caso del puente, la amplitud de las vibraciones es cada vez más grande, hasta el punto que se produce un colapso de la estructura. De esta forma, una fuerza relativamente pequeña, como pueden ser los pasos de unos soldados al marchar sobre él, puede causar una amplitud de oscilación muy grande.

Este curioso episodio tuvo una consecuencia inesperada que aún perdura hasta nuestros días: desde ese accidente, las tropas británicas tienen orden de romper la formación y el paso cuando cruzan un puente.

A lo largo de la historia ha habido episodios similares y han sido varios los puentes que han terminado derrumbándose por el efecto de la resonancia mecánica. Tal vez el más significativo sea el Puente de Tacoma Narrows (Washington), construido en 1940 y que acabó desplomándose violentamente cuatro meses después de su construcción. En este caso fue el viento el que provocó que el puente entrara en resonancia y hay varias filmaciones que muestran el momento del derrumbe.

Vibraciones que hacen estallar copas de cristal

Otro ejemplo de cómo la resonancia mecánica puede tener unos efectos cuanto menos sorprendentes es el siguiente. A principios del siglo XX la cantante de ópera australiana Nellie Melba era conocida por hacer estallar las copas de cristal al cantar. También el famoso tenor italiano Enrico Caruso conseguía este fenómeno cuando cantaba ópera. Y el marido de María Callas, considerada la cantante más eminente del siglo XX, afirmaba que se cortó el brazo al estallar una copa cuando su mujer ensayaba en casa.

¿Puede realmente una cantante de ópera hacer estallar una copa al cantar? La respuesta es sí y la razón es que se ha excitado la resonancia del cristal. Como hemos explicado, este fenómeno físico tiene lugar cuando se ejerce una fuerza sobre un cuerpo con una frecuencia que coincide con la frecuencia propia del sistema. Es lo que pasa cuando empujamos un columpio en el parque: no lo hacemos de cualquier forma, sino que damos un pequeño empujón en el momento adecuado, justo cuando el columpio alcanza su máxima amplitud. Si conseguimos aplicar la fuerza con la misma frecuencia que la frecuencia del balanceo del columpio, somos más efectivos. En el caso de la cantante y la copa de cristal, bastará con que se emita una nota musical cuya frecuencia coincida con la vibración propia de la copa. Manteniendo la nota con la potencia necesaria, como pasaba con el columpio, la energía que se acumula en ella gracias al fenómeno de la resonancia hará que se produzcan vibraciones tan grandes dentro del cristal que la copa estalle.

Eso sí, si algún cantante de ópera quisiera emular a Melba, Caruso o Callas, no le valdría cualquier copa. Debería ser de cristal muy fino y de gran calidad, cuya composición química sea homogénea para que la copa tenga una única frecuencia propia y se comporte como un sistema limpio, de forma que toda su estructura pueda entrar en resonancia. Afinen esas cuerdas vocales mientras alejan su cristalería más preciada.

 

*Daniel Ramos Vega es investigador del Instituto de Micro y Nanotecnología (IMN) del CSIC y autor del libro Nanomecánica (CSIC-Catarata) de la colección ¿Qué sabemos de?

2 comentarios

  1. Dice ser Rasek

    **Por favor, ya basta de difundir bulos y atrocidades científicas.

    El puente de Broughton se vino abajo sencillamente por la mala calidad de los materiales y por unos pernos dañados. Sencillamente no soportó el peso de la columna de soldados. Según todos los estudios, la catástrofe iba a ocurrir igualmente en cuanto se sobrecargara el puente. La resonancia no fue la causa, eso es un mito.

    https://www.jotdown.es/2019/04/puentes-colgantes-y-el-mito-de-la-resonancia-catastrofica/

    Con respecto a Tacoma Narrows, la causa una vez más, no fue la resonancia, sino un fenómeno aerolástico conocido como ‘flutter’. que afecta principalmente a aviones pero puede afectar también a puentes.

    http://www.gaiaciencia.com/2014/04/cayo-el-puente-de-tacoma-narrows-por-la-resonancia/

    Este artículo es abolutamente esclarecedor, y me voy a permitir copiar aquí la conclusión:

    «Lo que queda claro es que eso de que el puente de Tacoma Narrows cayó simplemente por el efecto de la resonancia no es cierto, y que sigue siendo hoy en día un tema de debate y controversia entre quienes defienden un extraño modelo de resonancia no lineal y quienes defienden un modelo de flutter en torsión.»

    Finalmente, decir que en el programa Cazadores de Mitos intentaron, no una sola vez sino en dos episodios distintos, provocar la caída de un puentecillo creado por ellos mismos, y no hubo manera por mucho que lo intentaron.

    Así que, sin negar en absoluto el fenómeno físico de la resonancia, dejemos eso para romper copitas de cristal.
    Un puente no se cae así como así.

    Saludos.

    24 noviembre 2020 | 12:28

  2. Mar Gulis (CSIC)

    Muchas gracias por tu comentario. Por supuesto que las estructuras se caen por la fatiga de los materiales. Esta fatiga se produce por el movimiento que origina un rozamiento y éste, a su vez, produce dislocaciones en el material que se propagan. Es este movimiento el que se ve amplificado por la resonancia mecánica. Evidentemente, si la calidad de los materiales es deficiente el deterioro se acelera, por eso es necesario hacer revisiones, mantenimientos periódicos, reemplazar materiales, etc.

    30 noviembre 2020 | 14:04

Los comentarios están cerrados.