Archivo de agosto, 2020

Diatomeas: las algas que ayudan a respirar al planeta y limitan el cambio climático

Por Mar Gulis (CSIC)

Viven cautivas en cápsulas microscópicas de cristal, miden una décima parte de un milímetro y surgieron hace 240 millones de años en los océanos del Triásico, al mismo tiempo en que los primeros dinosaurios comenzaban a caminar sobre los continentes. Las diatomeas, algas unicelulares capaces de producir más oxígeno que todos los bosques amazónicos, centroafricanos e indonesios juntos, son ‘el otro pulmón’ de la Tierra.

Al igual que en los continentes, en los océanos también hay bosques y desiertos, y las diatomeas forman una parte esencial de los primeros, donde sirven de alimento para larvas, moluscos, crustáceos y peces. “Si pudiésemos acumular sobre los continentes toda la biomasa que producen las diatomeas, en tan sólo dos décadas tendríamos suficiente como para reemplazar todos los bosques tropicales del mundo”, explica Pedro Cermeño, investigador del CSIC en el Instituto de Ciencias del Mar y autor de Las diatomeas y los bosques invisibles del océano (CSIC-Catarata).

Ejemplares de algas diatomeas  ‘Coscinodiscus wailesii’ (redondas)  y de ‘Thalassiosira rotula’ (con forma de cadena). / Isabel G. Teixeira.

Otra de sus cualidades es que incrementan la eficiencia de la bomba biológica, un proceso mediante el cual los ecosistemas marinos absorben dióxido de carbono (CO2) de la atmósfera y lo transfieren hacia las capas más profundas del océano, lo cual contribuye a paliar el efecto invernadero y a enfriar el clima del planeta. Según Cermeño, “la mayor parte de los microorganismos que componen el fitoplancton no superan los 0,01 milímetros de diámetro, mientras que las diatomeas pueden llegar a sobrepasar los 0,5 milímetros”. Si volvemos al símil del bosque, estas algas unicelulares son el análogo oceánico de cedros y secuoyas. Sus abultadas dimensiones y sus pesadas cápsulas de sílice hacen que se hundan rápidamente al morir. “De esta forma, aumentan sobremanera los efectos de la bomba biológica”, añade el investigador del CSIC.

Las diatomeas también han sido un componente crucial en la formación de petróleo marino. Del mismo modo que la madera de los árboles acaba transformándose en carbón mineral fósil, una fracción de la biomasa de fitoplancton, principalmente de diatomeas, se acumula en los sedimentos marinos que, con el tiempo, se convierten en petróleo.

Pero, ¿cómo alcanzaron la hegemonía de la producción primaria oceánica estas “joyas del mar”, un sobrenombre que reciben por el color dorado de sus células? Desde su origen, hace 240 millones de años, hasta que lograron convertirse en los productores primarios más importantes de los océanos, las diatomeas pasaron 200 millones de años en la retaguardia. Una de las claves de su éxito reside en haber desarrollado vacuolas de almacenamiento, “algo así como una despensa para momentos en los que los nutrientes escasean”, ilustra Cermeño. La posibilidad de acumular nutrientes en vacuolas les permitió proliferar en ambientes turbulentos como los surgidos en los océanos durante la segunda mitad del Cenozoico, hace 40 millones de años, hasta la actualidad.

Ejemplares de diatomeas ‘Guinardia flaccida‘ y ‘Guinarida delicatula’. / Isabel G. Teixeira Pedro Cermeño

Aplicaciones beneficiosas para el medioambiente

Además de regular el clima y servir de sustento a las redes tróficas marinas, en el futuro las diatomeas podrían contribuir a la sostenibilidad de la agricultura y a conseguir un consumo energético sin huella de carbono.

Las principales ventajas de su uso agrícola son que las diatomeas producen de forma natural sus propios pesticidas, que frenan la proliferación de plagas y aumentan la productividad, y pueden ser útiles en la depuración de aguas residuales, un medio muy similar al utilizado para el crecimiento de microalgas en el laboratorio. En concreto, las diatomeas son expertas en procesar nitrato, amonio, fosfato, hierro, silicio y metales pesados como el cadmio, el cromo o el cobre, a menudo abundantes en las aguas residuales. Además, sus vacuolas les permitirían resistir las posibles fluctuaciones en la composición nutricional de este medio. También liberan sustancias pegajosas, lo que favorece la formación de agregados que, junto a la alta densidad de las capsulas de sílice, facilitan la decantación y la recolección de su biomasa. Con todos estos factores se abre un campo de estudio en expansión que “podría cambiar el paisaje en torno a nuestras ciudades si el cultivo de microalgas consigue ganar terreno y convertirse en un medio de aprovechar la fotosíntesis para depurar las aguas residuales”, afirma el autor.

La comunidad científica también ha visto en el uso de las microalgas una alternativa a los combustibles fósiles, ya que pueden cultivarse en terrenos marginales o en plataformas flotantes usando aguas residuales, como se ha mencionado, o aguas saladas. “Con un suministro adecuado de luz y nutrientes, las microalgas pueden producir más de 100 toneladas de biomasa por hectárea y año, hasta 30 veces más que un cultivo agrícola convencional. La biomasa generada se convertiría en biocombustible mediante la aplicación de procesos termoquímicos que imitan las condiciones geológicas bajo las que se forma el petróleo crudo en el interior de la Tierra”, apunta el investigador.

Reducir los costes de producción de la biomasa e incrementar la eficiencia de conversión de biomasa en biocombustible son algunas de las claves para poder producir biocombustible en cantidades relevantes y a precios competitivos con los combustibles fósiles. Y, de nuevo, las diatomeas se colocan como favoritas. “Los excelentes rendimientos fotosintéticos y las altas eficiencias de conversión de biomasa a biocombustible las convierten en una de las materias primas bioenergéticas con mayor potencial: está en nuestras manos producir en minutos el petróleo que la Tierra tardó millones de años en generar”, concluye Cermeño.

 

¿Cómo funciona en realidad un ordenador cuántico?

Por Carlos Sabín (CSIC)*

En una entrada reciente hablábamos de uno de los tópicos más resistentes en la divulgación de la física cuántica, aquel según el cual las cosas estarían en “dos sitios a la vez”. Cuando esa manera de pensar se traslada a los computadores, el ordenador cuántico es presentado como una máquina que estaría en un montón de estados a la vez y que, por tanto, sería capaz de “hacer un montón de cálculos en paralelo”. Este suele ser el enfoque, de hecho, en casi todos los textos divulgativos que se escriben sobre computación cuántica. Es un enfoque consistente desde el punto de visto lógico, pero tiene un problemilla: es falso.

Interior de un ordenador cuántico

Interior de un ordenador cuántico. / IBM Research (CC-BY-SA).

Como explica brillantemente Scott Aaronson en un cómic ilustrado por Zach Weinersmith, la computación cuántica tiene poco que ver con un montón de ordenadores clásicos trabajando en paralelo. De hecho, no sería tan interesante si fuera así, ¿no? En realidad, la computación cuántica se basa en dos ideas, digamos, ‘genuinamente cuánticas’, que en jerga técnica se denominan con las palabrejas ‘superposición’ e ‘interferencia’.

La primera es precisamente la palabra para designar que en la física cuántica las propiedades pueden estar indefinidas o, mejor dicho, definidas solo por probabilidades. Esto hace que el cúbit, la unidad mínima de información en computación cuántica, pueda comportarse de un modo muy distinto a los bits clásicos. Mientras que un bit tiene que estar necesariamente en uno de sus dos estados posibles, 0 ó 1, un cúbit se puede preparar para que tenga una cierta probabilidad de estar en 0 y otra cierta probabilidad de estar en 1. Lo mismo puede hacerse con un conjunto de cubits: se pueden preparar para tener una cierta probabilidad de estar en, digamos, 0000011000… y una cierta probabilidad de estar en 0000111111… o lo que sea.

La segunda palabreja quiere decir que en física cuántica las cosas pueden interferir, de la misma forma que interfiere la luz: cuando dos ondas de luz se encuentran en un sitio, el resultado puede ser que no haya la misma luz que la suma de la luz de las dos ondas por separado: puede haber más luz (interferencia constructiva) o menos luz (interferencia destructiva). Un ordenador usaría la interferencia constructiva para aumentar la probabilidad de tener una de las posibilidades iniciales (la solución del problema) y la interferencia destructiva para reducir las de todas las demás. Esto sólo es posible si en el proceso se genera el famoso entrelazamiento cuántico: es decir, en algún punto es preciso que un conjunto de cubits no solo esté en superposición, sino que existan correlaciones muy fuertes entre ellos, correlaciones que solo pueden alcanzarse en un sistema cuántico. No todas las superposiciones tienen esa propiedad.

Un ejemplo que sí la tiene sería un caso con dos cubits preparados para que tengan una probabilidad del 50% de estar en 00 y la misma probabilidad de estar en 11. El estado de cada cúbit es completamente aleatorio (cada uno de ellos tiene la misma probabilidad de estar en 0 o en 1) pero está totalmente correlacionado con el de su compañero: si hago una medida y determino que el estado de uno de ellos es, por ejemplo, 0, inmediatamente sé que el estado del otro cúbit es también 0.

Circuito de cuatro cubits

Circuito de cuatro cubits. / IBM Research (CC-BY-SA).

El ejemplo de la guía telefónica

Veamos un ejemplo bonito de esto. Por diversos motivos, el interés de este ejemplo es meramente académico, pero confío en que sirva para entender mejor cómo podría funcionar un ordenador cuántico.

Imagine que tiene un número de teléfono pero no sabe a qué persona pertenece. Imagine también que se le ocurre usar la guía telefónica para esto. Puesto que el orden de la guía es alfabético para los nombres, resulta que los números no tienen ninguna ordenación en absoluto, así que ya se puede preparar para una búsqueda lenta y tediosa.

¡Ah, pero podemos usar un ordenador! El ordenador, básicamente, hará lo mismo que haría usted: ir número por número y compararlo con el que tiene usted, hasta que haya una coincidencia. Podría haber mucha suerte y que el ordenador encontrase esa coincidencia tras comparar pocos números… pero también podría haber muy mala suerte y que el ordenador tuviese que rastrear casi toda la guía.

En general, podemos decir que el número de búsquedas que habrá que hacer (el número de pasos del algoritmo que está aplicando el ordenador) crecerá linealmente con el número total de teléfonos de la guía: si multiplicamos por dos el número total de números de teléfono, también aumentará por dos el número de pasos. Pues bien: si tenemos un ordenador cuántico, podemos usar una receta, el ‘algoritmo de Grover’, que hará que encontremos el resultado correcto en menos pasos. Con este algoritmo si aumentamos por dos el número total de teléfonos, el número de pasos aumentará sólo en la raíz cuadrada de dos.

Simplifiquemos aún un poco más, para ver exactamente de qué estamos hablando. Imagine que tras una fiesta usted ha apuntado cuatro números de teléfono en un ordenador (por supuesto, a estos efectos, un teléfono móvil es un pequeño ordenador), cada uno con su nombre correspondiente. Unas semanas más adelante, vaciando los bolsillos, usted se encuentra con una servilleta arrugada donde hay un número escrito, pero ya no se distingue el nombre. No hay problema: solo tiene que introducir el número en su ordenador para que busque a cuál de los cuatro contactos que usted apuntó corresponde.

Si su aparato es clásico, su agenda digital de cuatro números necesitará unos cuantos bits: la información de cada número (por ejemplo, “Nombre: …, Número: …”) estará clasificada por el valor de dos bits: o bien 00, o bien 01, o bien 10, o bien 11. Pongamos que el número que busca está guardado en la casilla 10. Cuando usted teclee el número de la servilleta, el ordenador irá casilla por casilla hasta encontrar la 10, identificar el nombre asociado al número y devolvérselo. Con mucha suerte, su número estará en la primera casilla de búsqueda, pero con mala suerte estará en la última, y el ordenador tendrá que dar cuatro pasos antes de encontrar lo que usted busca.

Pero usted mola mucho más que todo eso y tiene un pequeño ordenador cuántico. Entonces, para encontrar su número solo necesita dos cubits y haberse bajado la app ‘Grover’. El primer paso que dará la app será preparar los cubits para que tengan una probabilidad del 25% de estar en 00, una probabilidad del 25% de estar en 01… y así con las cuatro posibilidades. Cuando usted introduzca el número, la app lo identificará como el correspondiente a, por ejemplo, 01, y entonces sabrá la operación (puerta lógica cuántica) que tiene que aplicar sobre el ambos cúbits. Tras esa operación, el algoritmo de Grover nos dice que los cubits ahora estarán en un estado tal que la probabilidad de estar en 01 (o el que sea) es exactamente el 100%. Es decir, en este caso concreto, con solo cuatro números, usted encontrará siempre el número en un solo paso.

Errores cuánticos

Naturalmente, esto (aunque es muy molón) no tiene gran aplicación práctica: la diferencia en el número de pasos no es muy grande, y usted puede encontrar un número en una lista de cuatro con un golpe de vista. Pero si pensamos en una guía de un millón de números, estamos hablando de la diferencia entre hacer un número de pasos del orden de un millón (con un ordenador convencional) o del orden de mil (con un ordenador cuántico). Por supuesto, para eso necesitamos correr la app Grover en un ordenador cuántico con muchos más cubits, y eso todavía no es posible. De momento, los ordenadores cuánticos tienen a lo sumo unas cuantas decenas de cubits, y todavía cometen muchos errores.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Uso dos cubits del ordenador cuántico de IBM para encontrar un número de teléfono en una lista de 4.

Para hacernos una idea, he lanzado el experimento que acabo de describir con dos cubits en el ordenador cuántico de IBM, que es accesible en línea. En la imagen, vemos las operaciones que hay que hacer en el caso de estar buscando el 00. En el primer instante de tiempo (todo lo que ocurre en la misma línea vertical es simultáneo) las dos puertas H sirven para preparar a los cubits en el estado inicial descrito más arriba. Todo lo demás, salvo las dos últimas operaciones, es el proceso de transformación de los cubits, y podemos considerar que es un paso del algoritmo de Grover (este paso sería distinto si estuviera buscando el 01, el 10 o el 11). En el camino, los cubits se entrelazan. Para una búsqueda en una lista más larga, ese paso tendría que repetirse un cierto número de veces.

Las dos últimas operaciones son medidas del estado de los dos cubits. La teoría nos dice que en un ordenador cuántico ideal el resultado de estas medidas sería siempre 00, con probabilidad 100 %. Como los ordenadores cuánticos reales todavía tienen errores que los alejan del comportamiento ideal, el resultado real no es perfecto: como vemos en la segunda imagen, tras 1024 repeticiones del experimento, la probabilidad de obtener el 00 fue del 87 % (ocurrió en 890 ocasiones). Esto nos da una idea realista del estado de la computación cuántica en la actualidad: incluso en ejemplos sencillos y académicos como este los errores son todavía significativos. Por supuesto, esto podría cambiar rápidamente en los próximos años, pero, como ven, hay mucho trabajo por delante todavía.

Resultados de 1024 repeticiones del experimento de la imagen anterio

Resultados de 1024 repeticiones del experimento de la imagen anterior. El resultado correcto se obtuvo el 87% de las veces.

Como resumen, confiamos en que haya quedado claro que un ordenador cuántico no es un aparato que realiza muchas operaciones a la vez o en paralelo. Si así fuera, no sería muy distinto de un supercomputador clásico. Al contrario, un ordenador cuántico usa las propiedades de la física cuántica para acelerar un cálculo concreto. Las correlaciones entre los distintos bits cuánticos pueden hacer que se llegue al resultado deseado significativamente antes de lo que lo haría un ordenador convencional. Eso requiere de recetas específicas para cada problema, las cuales conocemos en un número pequeño de casos, de momento. En el futuro, no solo habrá que diseñar esas recetas para cada caso de interés, sino que habrá que conseguir que los ordenadores cuánticos cometan muchos menos errores, o sean capaces de corregirlos.

* Carlos Sabín es investigador del CSIC en el Instituto de Física Fundamental, responsable del blog Cuantos completos y autor del libro Verdades y mentiras de la física cuántica (CSIC-Catarata).

Zeolitas en Etiopía: una solución ecológica contra la fluorosis

Por Mar Gulis (CSIC)

¿Te has preguntado alguna vez por qué aparecen manchas en los dientes? El tabaco o el vino tinto son algunas de las causas que te vendrán a la cabeza más rápidamente. Entre la multitud de motivos posibles que encontrarás, nos detendremos en uno que va más allá del esmalte dental: la fluorosis. Además de las manchas que produce en los dientes, esta enfermedad ósea causada por el consumo excesivo del ión fluoruro (conocido como flúor) en la dieta, sobre todo a través del agua, puede provocar osteoesclerosis, calcificación de los tendones y ligamentos, deformidades de los huesos, y otras afecciones.

Fuente de agua potabilizada

Fuente de agua potabilizada por la tecnología del CSIC en Etiopía. / César Hernández.

Según estima la Organización Mundial de la Salud (OMS), la fluorosis afecta a unos 300 millones de personas en el mundo. No en vano, la OMS considera que el flúor es una de las diez sustancias químicas que constituyen una preocupación para la salud pública, entre las que también figuran el amianto, el arsénico y el mercurio, entre otras.

A pesar de que el fluoruro tiene efectos beneficiosos para nuestra dentición como la reducción de las caries, la presencia de elevadas cantidades de este elemento en el agua puede convertirlo en un contaminante natural. Consumir agua con una concentración de fluoruro superior a 1,5 miligramos por litro (límite establecido por la OMS) puede provocar problemas de salud asociados a la fluorosis, como los antes citados, y es especialmente perjudicial para mujeres en estado de gestación y niños/as que están formando sus huesos.

La existencia de flúor en el agua tiene un origen geológico, es decir, se debe a que el agua está en contacto con rocas de acuíferos que tienen el ion fluoruro en su composición química. Estas rocas se hallan en terrenos volcánicos, por tanto, más de 25 países en todo el mundo están afectados por la contaminación de fluoruros en el agua, entre los que se encuentran España, China, India, Estados Unidos y Etiopía. En este último país, el 41% de sus fuentes de agua potable tienen una concentración de fluoruro superior a 1,5 mg/l y se calcula que aproximadamente el 15% de la población etíope está afectada por fluorosis.

Zeolitas naturales

Mineral de Estilbita, zeolita natural de Etiopia. / Defluoridation Ethiopia.

Filtros naturales para atrapar el fluoruro

Etiopía es uno de los países pertenecientes al valle del Rift, junto con Kenia, Uganda y Tanzania. En la zona del valle del Rift etíope, “donde se abra un pozo, va a haber contaminación por fluoruro y, por tanto, la enfermedad tiene elevados números”, asegura Isabel Díaz, investigadora del CSIC en el Instituto de Catálisis y Petroleoquímica (ICP). Díaz es además una de las inventoras de una tecnología que permite extraer el fluoruro del agua de una manera barata y sostenible.

Esta tecnología está basada en zeolitas naturales, un mineral abundante en Etiopía, así como en otros lugares del mundo, ya que también es de origen volcánico. “Su principal característica es que es un material muy poroso, lleno de cavidades de tamaño molecular”, explica la científica del CSIC. Gracias a esta estructura, las zeolitas tienen la capacidad de atrapar una amplia variedad de elementos, como sodio, potasio, calcio y magnesio, y son utilizadas como catalizadores y absorbentes en un gran número de procesos químicos industriales, sobre todo en la industria petroquímica.

Estructura zeolita

Estructura atómica de la Estilbita. En azul moléculas de agua, verde cationes calcio y morado cationes sodio. / Defluoridation Ethiopia.

Con la nueva tecnología desarrollada por el grupo del ICP —además de Isabel Díaz como investigadora principal, forman parte del equipo los científicos Joaquín Pérez Pariente y Luis Gómez Hortigüela—, junto con la Universidad de Adís Abeba, se modifica la zeolita para que absorba selectivamente el ion fluoruro. “De esta forma es posible abastecer a la población de agua potable”, afirma Díaz. Esta solución resulta primordial en el valle del Rift en Etiopía, dado que el agua de los pozos en la zona tiene una concentración de fluoruro de 2-3 mg/l, prácticamente el doble del límite que establece la OMS.

Planta potabilizadora

Planta potabilizadora con zeolitas en Etiopía. / César Hernández.

Aunque este tipo de métodos basados en absorbentes generan una gran cantidad de residuos tras su uso, una de las mayores ventajas de la zeolita es que luego puede usarse como fertilizante del suelo. En la actualidad, se han instalado dos plantas potabilizadoras con zeolitas en las localidades etíopes Dida y Obe, gracias al proyecto Defluoridation Ethiopia, del CSIC y la ONG Amigos de Silva. Esta acción supone un primer paso para que empiece a mermar la cifra de 14 millones de personas en riesgo de padecer fluorosis que, según los estudios, viven en el país africano.