Archivo de septiembre, 2019

Anfetaminas legales: ¿Qué fue del Katovit y otros medicamentos retirados?

Por Mar Gulis (CSIC)

¿Recuerdas el Bustaid, el Optalidón o el Katovit? “Te hacía sentir bien, servía para el malestar general y te ayudaba a comenzar el día con energía”, comentaba sobre el Optalidón un asistente al club de lectura sobre Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), una publicación de Carmen Fernández y Nuria Campillo*. En este evento, celebrado en el marco del proyecto Ciencia en el Barrio con mayores y adolescentes, se habló, entre otras muchas cuestiones, sobre la retirada de este popular medicamento que en los ochenta se podía adquirir en farmacias sin receta médica.

Medicamentos derramados de una botella

En el caso del Bustaid o el Katovit, el principal motivo de su retirada fue el mecanismo de acción de las anfetaminas que contenían. / jcomp – Freepik

¿Un superventas que, de la noche a la mañana, deja de comercializarse? No solo ocurrió con el Optalidón (ahora distribuido con una composición diferente, en la que se ha eliminado el ácido barbitúrico). El Bustaid o el Katovit fueron otros medicamentos muy populares en los setenta y noventa respectivamente que terminaron por desaparecer de las farmacias, y no fueron los únicos. El denominador común de muchos de ellos era que en su composición contenían derivados de las anfetaminas.

Hace ya más de cien años que las anfetaminas llegaron a nuestras vidas. A lo largo de su historia, desde que, en 1887, el químico Lazăr Edeleanu sintetizara por primera vez la anfetamina y se comenzara a estudiar en los años treinta, este grupo de sustancias y sus usos han evolucionado. Las anfetaminas son aminas simpatomiméticas, una clase de droga con una fórmula química estructural semejante a la adrenalina que produce estimulación del sistema nervioso central (SNC). Pero, ¿por qué se retiraron ciertos medicamentos que las contenían?

La investigadora y directora del Instituto de Química Médica (IQM) del CSIC Ana Castro insiste en la importancia del mecanismo por el que los fármacos ejercen su acción terapéutica. Es fundamental conocer el mecanismo de acción de un fármaco para controlar los efectos colaterales de su uso. “Todo nuestro cuerpo está interconectado y en él se producen numerosos y complejos procesos biológicos”, explica la científica. Por ejemplo, un fármaco diseñado para actuar sobre una determinada diana terapéutica, probablemente tendrá implicaciones en otros sistemas biológicos relacionados con ella. Es por este motivo que hay que valorar los efectos secundarios de todos los medicamentos, sopesar los beneficios y riesgos de su puesta en el mercado, señala Castro. En el caso del Bustaid o el Katovit, fue el mecanismo de acción de las anfetaminas que contenían el principal motivo de su retirada.

Patricia Robledo, investigadora en la Universidad Pompeu Fabra y el Institut Hospital del Mar d’Investigacions Mèdiques, analiza en profundidad en su trabajo de investigación sobre las anfetaminas el mecanismo de acción de estas sustancias psicotrópicas que involucra a varios neurotransmisores como la dopamina, la serotonina, la adrenalina y la noradrenalina. Al consumir anfetaminas aumentan la dopamina y la serotonina, que regulan la sensación de apetito, provocando el efecto anorexígeno (supresión del apetito). También se libera noradrenalina, cuyos efectos son el incremento de la actividad motora y la disminución del cansancio, así como la taquicardia, la sudoración y la dificultad para orinar.

Las anfetaminas, además, originan un aumento de la presión arterial y la frecuencia cardiaca y, a nivel del SNC, este tipo de estupefacientes produce sensación de alerta, estimulación y mejoría del rendimiento intelectual, entre otros efectos. Sin embargo, tiene gran potencial de abuso, es decir, puede causar dependencia y, a medida que aumenta su consumo, aparece la tolerancia y la necesidad irresistible de consumo. También “es frecuente la aparición de cuadros psicóticos”, como apunta Robledo en su estudio.

Farmacovigilancia: el control de los medicamentos en el mercado

Si tomamos como ejemplo el Katovit de los años noventa, asociado a un complejo vitamínico, vemos que cada gragea contenía 10 miligramos de clorhidrato de prolintano. El prolintano, un estimulante central derivado de la dexanfetamina, fue uno de los principios activos que la Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) prohibió en 2005 por diferentes problemas de seguridad.

Este organismo público es el encargado de garantizar a la sociedad la calidad, seguridad, eficacia y correcta información de los medicamentos y productos sanitarios. Por ello, el trabajo no finaliza tras el éxito de unos ensayos clínicos y la colocación del producto en el mercado. Para Castro, “los medicamentos son proyectos vivos y al ponerlos en las farmacias, la aventura no termina. De su uso en el contexto global podrán surgir nuevas observaciones clínicas que merezcan ser analizadas”. Así, la fase de la farmacovigilancia adquiere mucha importancia. De ella no es solo responsable la AEMPS, todas las compañías farmacéuticas cuentan con unidades de farmacovigilancia que controlan la eficiencia y la seguridad del fármaco.

Además de emitir notas informativas, de seguridad y alertas, la AEMPS también difunde informes de posicionamiento terapéutico. En 2017, publicó uno sobre el tratamiento de la narcolepsia donde recomendaba la utilización de un fármaco no anfetamínico, tan efectivo como los estimulantes del SNC en la reducción del sueño diurno, pero con menos efectos adversos y con bajo potencial de abuso.

En la actualidad, los productos derivados de las anfetaminas tienen dos vertientes: la de uso terapéutico y la de uso ilegal. Nos quedaremos con la primera, cuyas dos únicas indicaciones son el tratamiento de la narcolepsia y del déficit de atención infantil. “No nos podemos saltar los pasos y olvidar a los profesionales de la sanidad”, recuerda Castro, que apela a la responsabilidad del uso de cualquier medicamento.

 

*Carmen Fernández y Nuria Campillo son investigadoras del Centro de Investigaciones Biológicas (CIB), del CSIC, y autoras del libro Cómo se fabrica un medicamento (Editorial CSIC – Los Libros de la Catarata), de la colección ¿Qué sabemos de?

Matemáticas para hacer más seguro el coche autónomo

Por Mar Gulis y Ágata Timón (CSIC)*

El coche autónomo ya es una realidad. Las principales compañías de automóviles tienen previsto lanzar comercialmente sus prototipos entre 2020 y 2021, pero ¿está la sociedad preparada para este salto cualitativo? Entre los retos científicos y tecnológicos que supone la conducción automática en un entorno complejo e imprevisible, la comunidad investigadora se tiene que enfrentar a cuestiones como analizar los riesgos de este nuevo tipo de conducción, diseñar la comunicación entre la máquina y el humano, o estudiar el impacto que tendrá en la economía y en ciertos sectores industriales. De todo esto se ocupa el proyecto Trustonomy. Building Acceptance and Trust in Autonomous Mobility, financiado por la Unión Europea. Su objetivo principal es crear aceptación y confianza en la movilidad autónoma.

El proyecto, en el que participa el investigador del Instituto de Ciencias Matemáticas (ICMAT) del CSIC David Ríos, propondrá mejoras en los algoritmos que dirigen la conducción autónoma. Estos identifican la posición y el estado del coche y de todos los agentes que están a su alrededor, predicen su evolución en el tiempo y toman decisiones, minimizando los riesgos. “El coche ejecuta elecciones sencillas: frenar, acelerar o cambiar su dirección, pero tiene que evaluar las consecuencias de esas decisiones”, explica Ríos. Su misión es producir modelos de análisis de riesgos que permitan predecir y responder ante los peligros específicos vinculados a esta forma de movilidad emergente.

¿Cómo nos relacionamos con un vehículo autónomo?

También es indispensable prestar atención a la interacción entre el conductor y el vehículo. Siguiendo la clasificación más común, los coches autónomos se diferencian en seis categorías, del 0 al 5: los vehículos del nivel 0 dependen totalmente del conductor, y en el nivel 5 supone la conducción plenamente autónoma sin intervención humana. Hasta el momento los coches más avanzados han conseguido alcanzar el nivel 4, en el que solo se requiere la conducción humana en casos de falta de visibilidad o fallo del sistema, por lo que el papel humano seguirá siendo determinante en el transporte.

“Las últimas muertes provocadas por coches autónomos han sido causadas porque los humanos que los supervisaban no estaban prestando atención”, afirma Ríos. Para evitar estas situaciones, el coche debe ser capaz de comunicarse de forma efectiva con el conductor, saber cuál es su grado de atención (mediante cámaras y sensores) y lanzar advertencias cuando se requiera. Además, durante un tiempo coexistirán en la carretera los vehículos totalmente autónomos, los semiautónomos y los no autónomos. Esto presentará nuevos riesgos en la conducción, que también deberán ser analizados.

Otro problema importante es el de la ciberseguridad. “Un coche autónomo funciona a través de un sistema informático, y puede ser atacado, por ejemplo, por medio del reconocimiento de imágenes. Modificando unos pocos píxeles de una imagen, se puede identificar un obstáculo de manera errónea y, como consecuencia, frenar o acelerar cuando no corresponde. Es un riesgo grave”, explica el investigador.

Para analizar todos estos riesgos se desarrollarán modelos de aprendizaje automático, basados principalmente en estadística bayesiana y teoría de juegos. El catálogo resultante será útil para rediseñar las pólizas de seguro y revisar las regulaciones de seguridad vial, pero también servirá para estudiar los procesos éticos de toma de decisiones y los métodos de verificación en caso de accidentes o ambigüedad.

El proyecto, que cuenta con 3,9 millones de euros del programa H2020 de la Unión Europea, se desarrollará hasta el 30 de abril de 2022. En él participan, además del ICMAT, otras 15 organizaciones de diferentes países europeos.

 

*Ágata Timón trabaja en el Instituto de Ciencias Matemáticas (ICMAT), centro de investigación mixto del CSIC y tres universidades madrileñas: la Universidad Autónoma de Madrid (UAM), la Universidad Carlos III de Madrid (UC3M), y la Universidad Complutense de Madrid (UCM).

¿Qué son las “enzimas promiscuas”?

Por Francisco J. Plou (CSIC)*

Las enzimas son catalizadores biológicos, o biocatalizadores, responsables de regular y acelerar de forma sustancial la velocidad de las reacciones químicas en los seres vivos. Trabajos de los químicos estadounidenses Sumner y Northrop (ambos compartieron Premio Nobel de Química en 1946, junto con Stanley) permitieron determinar que las enzimas eran proteínas. Por tanto, al igual que estas últimas, las enzimas están formadas por aminoácidos y juegan un papel crucial en casi todos los procesos biológicos. El potencial químico de un ser vivo queda definido por su información genética, y las enzimas son las entidades biológicas que convierten dicha información en acción. Dicho de otro modo, las enzimas son proteínas que incrementan la velocidad de una reacción química sin consumirse y recuperándose sin cambios esenciales. Así, las enzimas son muy eficaces y específicas, ya que cada una está especializada en procesar una reacción concreta.

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen formando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En esta imagen de microscopía electrónica de barrido se pueden observar tres enzimas distintas formando complejos cristalinos con fosfato de cobre. Los complejos de proteína y sal crecen creando estructuras semejantes a algunas flores. / David Talens Perales (IATA-CSIC). FOTCIENCIA16

En los últimos años, un nuevo concepto, que se contrapone a esta especificidad de las enzimas, ha adquirido un notable protagonismo: la promiscuidad. Este término nos puede evocar a relaciones poco estables o “de flor en flor” entre personas, pero también se ha he­cho un hueco en el ámbito de la bioquímica, si bien suele utilizarse en su lugar el concepto más académico de “amplia especificidad”. En el metabolis­mo cada enzima se ha especializado, a través de la evolución, en una determinada reacción química, para lo que es necesa­rio que la enzima reconozca un sustrato muy concreto. Este es el caso de la glucosa oxidasa, una enzima que solo reconoce a la glucosa y se muestra indiferente con azúcares muy similares como la galactosa o la fructosa. Por ello tiene múltiples aplicaciones en biotecnología, entre las que destaca el poder cuantificar la glucosa libre en los fluidos biológicos (sangre y orina), base de los biosensores de las personas diabéticas. Sin embargo, cada año se publican nuevos artículos en los que se reseña cómo una enzima es capaz de aceptar sustratos alternativos al original (lo que se denomina “promiscuidad de sustrato”) o, lo que resulta mucho más rompedor, catali­zar otro tipo de transformaciones químicas (lo que se conoce como “promiscuidad catalítica”). La mayoría de enzimas, entonces, son promiscuas.

¿De dónde proviene esta propiedad? Se cree que las enzimas actuales han evolucionado a partir de enzimas ancestrales que mostraban una gran promiscuidad, esto es, las primeras enzimas eran generalistas y realizaban por tanto funciones muy diversas. Así, las células no podían gastar energía en producir enzimas especializadas y preferían en­zimas multifunción, como esos sacacorchos que, además de permitirnos abrir una botella de vino, incluyen una pequeña navaja y un sinfín de accesorios. Pero con el tiempo fue nece­sario dotar a las enzimas de mayor actividad catalítica y espe­cificidad, como laboriosa “mano de obra” cada vez más especializada y eficaz. Parece ser una consecuencia evidente de la divergencia evolutiva.

Estos conceptos chocan de frente con los descritos en uno de los libros más vendidos sobre estas cuestiones en los últimos años, La enzi­ma prodigiosa, del médico Hiromi Shinya. El autor señala, con poca base científica, que en nuestro organismo “hay una enzima madre, una enzima prototipo, sin especialización. Hasta que esta enzima madre se convierte en una enzima específica como respuesta a una necesidad particular, tiene el potencial de convertirse en cual­quier enzima”.

La Mata Hari de las enzimas

Pero sigamos con nuestras enzimas promiscuas. Desde el punto de vista aplicado, la promiscuidad de sustrato presenta connotaciones de gran interés. Por un lado, para ciertos usos es deseable que las enzimas sean poco es­pecíficas. Nos referimos, por ejemplo, a su empleo en deter­gentes, donde una lipasa debe atacar cuantos más tipos de manchas de grasa, mejor, o a su utilización en descontaminación, en la que una oxidorreductasa es preferible que oxide el mayor número posible de compuestos recalcitrantes.

En cuanto a la promiscuidad catalítica, que implica que una misma enzima es funcional en reacciones que pertenecen a varias de las seis clases descritas en el cuadro de la imagen (tabla 1), es notorio el caso de la lipasa B de la levadura Candida an­tarctica. Esta enzima, a la que podríamos denominar la Mata Hari de la enzimología, se ha convertido en uno de los bio­catalizadores con mayores aplicaciones industriales. Por citar algunas: cataliza reaccio­nes diversas que incluyen la hidrólisis e interesterificación de grasas, la obtención de poliésteres, la síntesis de amidas, reso­luciones racémicas, condensaciones aldólicas, epoxidaciones y la reacción de Mannich, que se usa por ejemplo para sintetizar fármacos, entre otras cosas. Como señalan algunos científicos, “es el momento de investigar nuevas re­acciones para viejas enzimas”. Con ello aumentarán las posibilidades catalizadoras de las enzimas.

 

* Francisco J. Plou es investigador en el Instituto de Catálisis y Petroleoquímica del CSIC y autor del libro ‘Las enzimas’ (Editorial CSIC  Los Libros de la Catarata).

Listeriosis: a veces ocurre

Por Marta López Cabo (CSIC)*

El 41% de los europeos considera la seguridad alimentaria una preocupación. Así lo reflejan las encuestas recogidas en el Eurobarómetro publicado recientemente por la Agencia Europea en Seguridad Alimentaria (EFSA, 2019). En España, esta cifra se sitúa en el 37%. No son porcentajes muy elevados porque la aparición de brotes o problemas de salud asociados con el consumo de alimentos no es frecuente. Pero a veces ocurre.

Es el caso del brote de listeriosis de Andalucía, asociado con el consumo de carne mechada y otros productos contaminados con la bacteria Listeria monocytogenes, y que ha provocado 3 defunciones, 2 abortos, 2 muertes fetales intraútero y alrededor de 212 personas afectadas, algunas de ellas hospitalizadas.

¿Qué es Listeria monocytogenes?

Frotis sobre cupón de acero inoxidable utilizado para la toma de muestras de biofilms de Listeria monocytogenes potencialmente presentes en superficies de la industria alimentaria / IIM-CSIC

Listeria monocytogenes es una bacteria patógena de alta relevancia transmitida por alimentos. Decimos ‘alta relevancia’ no tanto por el número de casos declarados, sino por los casos de muerte asociados a grupos de riesgo (embarazadas, inmunodeprimidos y población de elevada edad). Ello la ha convertido en un objetivo prioritario para la comunidad científica y las agencias de seguridad alimentaria, lo que ha resultado en el avance en el conocimiento de su biología y el desarrollo e implementación de diferentes soluciones para su control y eliminación.

A pesar de ello, los datos de los últimos informes publicados por EFSA (2017, 2018) ponen de manifiesto una tendencia creciente del número de casos notificados de listeriosis en humanos en Europa. En 2017, la listeriosis causó cerca del 50% de las muertes por zoonosis alimentarias (enfermedades que se transmiten entre los animales y el ser humano a través del consumo de alimentos) en la Unión Europea y el 98% de los casos registrados requirió hospitalización.

¿Qué está ocurriendo?

Que L. monocytogenes, como la mayoría de las bacterias patógenas, tiene unas características biológicas peculiares que favorecen su prevalencia en superficies de plantas de procesado y en alimentos. Ubicua, resistente al ácido y a bajas condiciones de actividad de agua, es además capaz de crecer a temperaturas de refrigeración, las mismas que utilizamos para prolongar la vida comercial de los alimentos.

Pero L. monocytogenes tiene otra particularidad: su condición de bacteria-parásito. Quizás se trata de un estado intermedio de la evolución entre ambas formas biológicas que puede implicar ventajas en su ecología y capacidad infectiva. Sin embargo, esto aún está por dilucidar.

Imagen de microscopía de fluorescencia de biofilms formados por L. monocytogenes (células rojas) y Acinetobacter jonhsonii (células azules) sobre superficies de acero inoxidable / IIM-CSIC

Son varios los grupos de investigación que estudian esta bacteria. El grupo de Microbiología y Tecnología de Productos Marinos (MICROTEC) del Instituto de Investigaciones Marinas de Vigo (CSIC) investiga desde 2006 la incidencia y prevalencia de L. monocytogenes en plantas de procesado de alimentos; también la relación entre su ecología (especies bacterianas con las que se asocia y convive) y la resistencia a desinfectantes de uso industrial. Más recientemente, los estudios se han orientado a la búsqueda de alternativas basadas en moléculas de comunicación bacteriana (quorum sensing) que interrumpan o dificulten el agrupamiento de la bacteria y por tanto la aparición de estructuras estables que puedan convertirse en focos de contaminación. Con ello, el microorganismo no desaparecería, pero podría evitarse o ralentizarse la formación de estos focos.

Nuestras conclusiones son claras. L. monocytogenes puede persistir asociada a diferentes especies bacterianas y adherida a superficies y maquinaria de las plantas de procesado de alimentos formando estructuras complejas o biofilms (comunidades de células bacterianas) potencialmente resistentes a los protocolos de desinfección aplicados. Estas colonias constituyen focos de contaminación y puntos críticos para la contaminación cruzada, bien directamente, por contacto de alimentos, o indirectamente a través de utensilios o mediante los propios operarios y trabajadores de la planta. Porque, aunque no es habitual, a veces ocurre.

La solución también es clara: mejorar los sistemas de control y autocontrol de la industria y a lo largo de la cadena de valor y seguir avanzando en la investigación de L. monocytogenes y otros patógenos para poder ofrecer al consumidor alimentos seguros.

 

*Marta López Cabo  es responsable del Grupo de Microbiología y Tecnología de Productos Marinos (MICROTEC) del Instituto de Investigaciones Marinas de Vigo (CSIC) y coordinadora de la Red Gallega de Riesgos Emergentes en Seguridad Alimentaria (RISEGAL).