Archivo de febrero, 2019

¿Conoces las tierras raras? Son 17 y algunas te acompañan cada día

Por Mar Gulis (CSIC)*

¿Has oído hablar del europio? ¿Y del gadolinio? ¿O quizá te suene el neodimio? Si alguna de tus respuestas es afirmativa, seguramente querrás saber más de estos y otros elementos de las tierras raras. Si no has escuchado nunca esos nombres, te sorprenderá averiguar que el europio está presente en tus billetes de euro para evitar falsificaciones, que el gadolinio se inyecta a los pacientes durante las resonancias magnéticas para detectar un cáncer, o que el neodimio entra en contacto con nuestras orejas cuando usamos auriculares. El investigador del CSIC Ricardo Prego Reboredo cuenta estas y otras muchas curiosidades en su libro Las tierras raras (Editorial CSIC-Los libros de la Catarata), donde se remonta a los primeros hallazgos de estos elementos químicos.

Fue a finales del siglo XVIII cuando, en el pequeño pueblo de Ytterby (Suecia), se abrió una mina para extraer feldespato, un mineral utilizado en la industria cerámica y del vidrio. Prego relata que un joven teniente del ejército sueco, Karl Arrhenius, visitó la mina y se fijó en un extraño trozo de roca negra que parecía carbón. Tras muchas vicisitudes y los trabajos de varios químicos, a partir de ese trozo de mineral se aislaron por primera vez varios elementos de las tierras raras: itrio, terbio y erbio. Pese a los avances, en el siglo XIX aún reinaba el desconcierto entre los mineralogistas y químicos que investigaban los nuevos elementos químicos y trataban de descifrar sus propiedades para ubicarlos en la tabla periódica. Tuvo que comenzar el siglo XX para que pudiera completarse “el mágico número de 17 elementos” de esta curiosa familia química: escandio, itrio, lantano, cerio, praseodimio, neodimio, prometio, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio. Según la Unión Internacional de Química Pura y Aplicada, todos ellos, excepto el escandio y el itrio, pertenecen al grupo de los lantánidos, situados en la parte inferior de la tabla periódica.

 

Este año se conmemora el 150º aniversario de la creación de la tabla periódica por el científico ruso Dimitri Mendeleiev. La Asamblea General de la ONU ha proclamado 2019 como el Año Internacional de la Tabla Periódica / Tximitx

En cualquier caso, no fue hasta después de la II Guerra Mundial cuando se avanzó en las aplicaciones de estos minerales. Desde entonces, la utilización de las tierras raras -denominadas así porqueen un principio los minerales que las contenían eran muy escasos y, además, todos ellos había que buscarlos en Escandinavia- se ha multiplicado exponencialmente, utilizándose en medicina y todo tipo de procesos industriales y desarrollos tecnológicos. Por ejemplo, el cerio aún se usa en cremas para el tratamiento de quemaduras, y también en catalizadores. El escandio forma parte de aleaciones empleadas para fabricar componentes de la industria aeroespacial. Uno de los elementos menos abundantes es el tulio, demandado como fuente de radiación en equipos de rayos X portátiles y láseres de estado sólido. El neodimio, el holmio y el disprosio son necesarios en algunos tipos de cristales de láser. Igualmente han sido exitosos los antiinflamatorios basados en compuestos con samario, y, en general, son varias las tierras raras utilizadas en la fabricación de teléfonos móviles, ordenadores, baterías, imanes y electrodomésticos.

Desde los años 60, las transformaciones económicas y tecnológicas han ido de la mano de la explotación de estos minerales, hoy considerados esenciales para las tecnologías del futuro. He aquí la paradoja: dependemos de ellos, pero pocas personas los conocen. “Las tierras raras están omnipresentes en nuestra sociedad de alta tecnología hasta el punto de que se podría hablar de una Edad de las Tierras Raras con la misma propiedad que lo hacemos de las edades de Bronce o de Hierro”, explica Prego. “Sin embargo, esos elementos químicos no ocupan portadas en los periódicos”, agrega.

Desde el centro superior, en el sentido de las agujas del reloj: praseodimio, cerio lantano, neodimio, samario y gadolinio / Peggy Greb, US department of agriculture

La atención mediática podría aumentar, pues son minerales estratégicos para los Estados. Tanto es así que su explotación genera crisis económicas y tensiones geopolíticas entre países. Ese ‘lado oscuro’ de las tierras raras tiene distintas ramificaciones; por ejemplo, su utilización por la industria militar para la fabricación de los misiles teledirigidos. Pero quizá sea la dimensión ambiental la más preocupante. Aunque los elementos de las tierras raras se emplean en las denominadas tecnologías verdes (en la fabricación de aerogeneradores, paneles fotovoltaicos, coches eléctricos o iluminación LED), su extracción y procesamiento provocan graves impactos ambientales. Precisamente por ello, en Galicia, donde hay una importante concentración, Prego no ve de momento factible su explotación.

Las tierras raras se extraen de minas a cielo abierto –China concentra la mayor producción– a través de procesos en los que se emiten gases contaminantes a la atmósfera, se utilizan agresivos productos químicos y se filtran aguas residuales a ríos y lagos. A partir de ahí, puede darse el círculo vicioso que ya conocemos: deterioro del entorno natural y la producción agroalimentaria, problemas de salud en las zonas afectadas y desplazamientos masivos de población. Pero todo esto daría para varios post.

 

* Este post se basa en varios fragmentos del libro Las tierras raras (CSIC-Los libros de la Catarata), escrito por el investigador Ricardo Prego Reboredo, del Instituto de Investigaciones Marinas de Vigo.

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

Fibra óptica: cómo tus ‘mails’ pueden viajar a 200.000 km/s

Por Mar Gulis (CSIC)*

Cable de fibra óptica iluminado con un puntero láser / Hustvedt

Sabemos que la velocidad de la luz alcanza los 300.000 kilómetros por segundo en el vacío. Ese es el límite máximo que determinan las leyes físicas. Nada en el universo puede viajar más rápido. Por eso, el reto de las tecnologías de telecomunicaciones es alcanzar ese límite: lograr que la información, los millones de datos que intercambiamos cada día en mails, llamadas, compras on line y transacciones de todo tipo, ‘viajen’ a la velocidad de la luz.

De momento, la fibra óptica es la tecnología que más se ha acercado. A partir de la herencia del telégrafo y el teléfono, “los cables de fibra óptica han reemplazado a los hilos de cobre porque pueden transportar una mayor cantidad de datos y más deprisa que su contraparte electrónica”, explica el libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la Catarata). Aun así, las fibras ópticas tienen limitaciones. No pueden reproducir el vacío del espacio, donde, al no existir atmósfera, la luz se mueve sin resistencia, de ahí que a través de la fibra los datos viajen a ‘tan solo’ 200.000 kilómetros por segundo (la cifra es aproximada).

En las comunicaciones ópticas se envía información codificada en un haz de luz por un hilo de vidrio o de plástico muy procesado. “Este sistema fue originalmente desarrollado para los endoscopios en la década de los 50, con el objetivo de ayudar a los médicos a ver el interior del cuerpo humano sin necesidad de abrirlo. En 1960, los ingenieros encontraron una forma de utilizar esta misma tecnología para transmitir llamadas telefónicas a la velocidad de la luz”, continúa el libro.

Sin embargo, las leyes físicas que explican el funcionamiento de esta tecnología se descubrieron tiempo atrás. Ya en el siglo XIX, el físico irlandés John Tyndall demostró a la Royal Society en Londres que la luz podía viajar a través de un chorro de agua. En óptica, este fenómeno se conoce como reflexión interna, y se produce cuando un rayo de luz atraviesa un medio con un índice de refracción menor que el índice de refracción en el que este se encuentra. Así, el haz luminoso se refracta de tal modo que no es capaz de atravesar la superficie entre ambos medios, reflejándose completamente. La reflexión interna total solo se produce en rayos que están viajando de un medio de alto índice refractivo hacia medios de menor índice de refracción. Precisamente este principio explica la conducción de la luz a través de la fibra sin que haya fugas.

La reflexión total puede realizarse mediante el experimento de Tyndall. En la imagen, un puntero láser (a la dcha.) atraviesa el plástico del recipiente y el agua que hay en su interior, para ‘salir’ por el agujero realizado previamente en el recipiente. Al atravesar los dos medios, la luz queda confinada dentro del chorro viajando con su misma curvatura / Juan Aballe / CSIC-IOSA

Una fibra óptica está formada por un núcleo, que es por donde viajan las señales luminosas, y una cubierta o revestimiento transparente. Intuitivamente, cualquiera pensaría que la luz que transita por este tipo de hilos transparentes se saldría por los bordes. Sin embargo, los fotones (partículas elementales en que se puede dividir un rayo de luz) viajan por el núcleo de la fibra óptica rebotando contras sus paredes constantemente, como una pelota entre las paredes de vidrio de una pista de squash. De este modo el haz de luz  queda confinado y se propaga sin que se produzcan pérdidas de información. Esto es posible porque el material interno tiene un índice de refracción más grande que el material que lo rodea.

Ocurre algo parecido con el agua: si un haz de luz incide en un chorro de agua bajo un cierto ángulo, la luz quedará confinada dentro del chorro, viajando con su misma curvatura, tal y como demostró Tyndall en su experimento. La superficie agua-aire actuaría como un espejo en el que la luz se refleja y, por tanto, sigue la trayectoria del líquido. En una fibra óptica la luz viaja de forma similar: va rebotando por sus paredes internas, pero manteniendo la dirección del cable, sin detenerse y pudiendo recorrer miles de kilómetros en segundos.

 

*Este post se basa en varios fragmentos del libro Descubriendo la luz. Experimentos divertidos de óptica (CSIC-Los libros de la catarata), coordinado por María Viñas Peña.

11 de febrero: científicas en las aulas

Por Mar Gulis (CSIC)

‘De mayor quiero ser científica’, ‘¿Qué hace una investigadora del CSIC en Etiopía?’ o ‘Cómo contar peces sin mojarse’ son algunos de los títulos de las más de 2.000 actividades que estos días se celebran en centros educativos, universidades e institutos de investigación de toda España para celebrar el Día internacional de la mujer y la niña en la ciencia y visibilizar el trabajo femenino en el ámbito de la investigación.

Entre el 1 y el 15 de febrero se han programado múltiples iniciativas para que las investigadoras hablen sobre sus carreras científicas en campos tan diversos como la genética, la nanotecnología o la arqueología, y compartan con el alumnado cómo se convirtieron en científicas. Junto con su experiencia vital, las investigadoras también abordarán la situación de la mujer y la ciencia en España, pues aún queda mucho recorrido para alcanzar la igualdad en este ámbito.

El campus central del CSIC en Madrid se ha sumado a esta celebración con unas banderolas que visibilizan a mujeres científicas de la institución. / Sandra Díez (CSIC)

Las charlas en las aulas de centros educativos de todos los niveles son las actividades más abundantes, pero también hay otras muchas propuestas, como talleres, exposiciones, proyecciones y yincanas en los propios centros de investigación. Toda la agenda de actividades puede consultarse en la web https://11defebrero.org/.

El Consejo Superior de Investigaciones Científicas (CSIC) participa en esta iniciativa con 200 actividades que se desarrollarán en todo el país, tanto en sus centros de investigación como en las aulas de colegios e institutos. “Es esencial que las niñas y los niños cuenten con referentes femeninos, y que vean la ciencia como una opción profesional factible si queremos que la investigación en España tenga futuro”, explica Leni Bascones, investigadora del Instituto de Ciencias de los Materiales de Madrid del CSIC y coordinadora del Día internacional en España.

Además, en las redes sociales de la institución se irán colgando diversos vídeos que destacan el papel de algunas investigadoras del CSIC, como María Ángeles Durán, Susana Marcos o Auxiliadora Prieto. “No es que tú necesites a la ciencia, la ciencia te necesita a ti”, afirma Durán, Premio Nacional de Sociología 2018, en uno de estos vídeos. “La ciencia es mucho mejor cuando hay gente muy distinta tratando de empujar el carro”, comenta. Los centros de Andalucía también hacen su particular homenaje a las investigadoras que trabajan en ellos con un relato audiovisual en el que las madres de investigadoras narran cómo ha sido la carrera de sus hijas.

En diciembre de 2015, la Asamblea General de las Naciones Unidas decidió proclamar el 11 de febrero como el Día internacional de la mujer y la niña en la ciencia en reconocimiento al papel clave que las mujeres desempeñan en la ciencia y la tecnología. Con esta conmemoración se persigue también apoyar a las mujeres científicas, promover el acceso de las mujeres y las niñas a la educación y la investigación en ciencia y tecnología, y favorecer su participación en esas actividades.