Archivo de octubre, 2018

¿Pueden existir estrellas y galaxias de antimateria?

Por Beatriz Gato Rivera y Mar Gulis (CSIC)*

Quizás lo más distintivo de la antimateria es que al entrar en contacto con la materia se aniquilan la una a la otra produciendo una gran cantidad de radiación. Si se pudiera almacenar un gramo de antimateria –algo imposible con la tecnología actual–, al entrar en contacto con la materia generaría una deflagración equivalente a más de dos veces la bomba atómica que asoló Hiroshima en 1945.

La física de partículas y la cosmología han llegado a la conclusión de que en el Big Bang se crearon idénticas cantidades de materia y antimateria que, solo unos breves instantes después, se aniquilaron casi totalmente entre sí. Algo sucedió, sin embargo, justo antes de la Gran Aniquilación para que se generara un ligerísimo excedente de partículas sobre antipartículas, el cual bastó para que el universo material pudiese tomar forma y llegar a existir tal como lo conocemos. En efecto, de las observaciones se deduce que por cada protón primordial –originado en el Big Bang– que sobrevivió, miles de millones sucumbieron a la extinción, junto a la misma cantidad de antiprotones primordiales.

aniquilación de un antiátomo

Aniquilación de un átomo de antihidrógeno observada por el detector ATHENA en 2002. / CERN

Sin embargo, no es posible descartar que haya sobrevivido una pequeñísima cantidad de antimateria primordial en nuestro universo observable, quizás un antiprotón por cada decena de millones de protones. En este caso no es impensable que pudieran existir estrellas e incluso galaxias pequeñas de antimateria, como predicen algunos modelos teóricos propuestos por varios grupos de investigación, siempre que estas estuviesen suficientemente aisladas de la materia –y lo cierto es que en el universo hay regiones extremadamente vacías–. De confirmarse esta circunstancia tampoco sería inimaginable que orbitando dichas antiestrellas existieran antiplanetas habitados por seres vivos e incluso civilizaciones tecnológicas, compuestos todos ellos por antimateria.


¿Qué es la antimateria?

Para comprender mejor las consecuencias de esta posibilidad, hay que entender qué es la antimateria. En un sentido amplio, la antimateria puede considerarse como el reverso de la materia o como una imagen especular de la misma respecto a varios ‘espejos’. Como sabemos por experiencia propia, cuando nos miramos en un espejo el rostro que vemos no es nuestro rostro sino que tiene intercambiados los lados derecho e izquierdo. Del mismo modo, las partículas de antimateria tienen sus propiedades opuestas respecto a las de las partículas de materia. Esto se refiere solo a aquellas propiedades que admiten valores opuestos, ya que las propiedades que no admiten valores opuestos son idénticas para las partículas y sus antipartículas. Por ejemplo, el electrón y su antipartícula, el positrón, con la misma masa y el mismo espín, tienen valores opuestos de la carga eléctrica, la carga débil y la carga leptónica.

Todas las partículas elementales tienen su antipartícula, aunque hay partículas que son sus propias antipartículas. Es el caso del fotón –la partícula de luz– o del bosón de Higgs. Se da la curiosa circunstancia de que la única antipartícula con nombre propio es el positrón –“electrón positivo”–, así denominado por Carl Anderson tras descubrirlo en 1932. Las demás antipartículas se denominan como las partículas ordinarias pero anteponiendo el prefijo anti.

Al igual que las partículas, las antipartículas pueden dar lugar a estructuras más complejas, como átomos de antimateria, que están constituidos por las antipartículas de los átomos de materia. En su núcleo, en lugar de protones (de carga eléctrica +1) y neutrones, compuestos todos ellos por quarks, hay antiprotones (de carga eléctrica -1) y antineutrones, compuestos por antiquarks –los quarks y sus antiquarks tienen valores opuestos de la carga fuerte, la carga débil, la carga eléctrica y la carga bariónica–. Orbitando alrededor del núcleo, en lugar de electrones (de carga eléctrica -1), encontramos positrones (de carga eléctrica +1).

átomo y antiátomo

A la izquierda, un átomo de helio. A la derecha, uno de antihelio.


Antimateria primordial y antimateria secundaria

Estamos conviviendo constantemente con la antimateria y con los productos de su aniquilación con la materia. Por una parte, una lluvia incesante de partículas de materia y de antimateria, producidas por las colisiones de los rayos cósmicos con los átomos de nuestra atmósfera, cae sobre la superficie terrestre y nos alcanza. Es más, neutrinos y muones muy energéticos (y sus antipartículas) atraviesan casas y edificios.

Por otra parte, las mismas estrellas producen antimateria en grandes cantidades en sus hornos nucleares en forma de positrones. Y sucede que la aniquilación de estos con los electrones del plasma del interior produce parte de la luz y del calor que emiten. En el caso del Sol, aproximadamente un 10% de la luz visible que irradia proviene de tales aniquilaciones.

Además, algunas sustancias radiactivas naturales que abundan en compuestos orgánicos, como el Potasio-40, emiten positrones, los cuales se aniquilan de inmediato con los electrones de su entorno. Esto hace, por ejemplo, que un plátano mediano emita cada 24 horas 15 positrones, aproximadamente, provenientes de los núcleos radioactivos de los átomos de Potasio-40.

La inmensa mayoría de las partículas de antimateria con las que convivimos y que observamos es antimateria secundaria, pues se ha creado en colisiones entre partículas de materia ordinaria o en procesos astrofísicos conocidos muy energéticos, como las reacciones nucleares en el interior de las estrellas. Pero, como decíamos, cabe la posibilidad de que todavía haya en el universo partículas de antimateria primordiales.

El experimento AMS (Alpha Magnetic Spectrometer), instalado en la Estación Espacial Internacional, se afana por encontrar indicios de tal posibilidad, escudriñando el espacio en busca de núcleos de antiátomos. Si encontrase un solo antinúcleo mayor que el de antihelio, como un núcleo de antilitio o antiberilio (con tres y cuatro antiprotones respectivamente), esto constituiría un gran acontecimiento, pues indicaría que la antimateria primordial no desapareció totalmente, ya que estos núcleos no se pueden producir en nuestro universo material, a diferencia del núcleo de antihelio. Pero si el experimento AMS encontrase un solo antinúcleo aún mayor, como un núcleo de antiboro o anticarbono (con cinco y seis antiprotones respectivamente), este hallazgo sería la prueba definitiva de la existencia de antiestrellas, pues estos antinúcleos solo podrían haberse generado en los hornos de las capas más profundas de estas.

AMS2

Simulación del detector AMS2 montado en la Estación Espacial Internacional. / NASA-JSC

Civilizaciones extraterrestres de antimateria

Ahora dejemos volar nuestra imaginación y vayamos hacia el futuro, a una época en la que pudiéramos realizar viajes intergalácticos de forma eficiente; por ejemplo, a través de atajos espacio-temporales o por otras dimensiones. Supongamos que descubrimos una estrella de antimateria, porque emite antineutrinos en lugar de neutrinos, y que al acercarnos avistamos todo un sistema planetario con algunos planetas localizados en la zona de habitabilidad. Así que decidimos enviar señales que denoten su procedencia inteligente, y con este propósito elegimos unas secuencias de flashes de luz láser con los números impares: 1, 3, 5, 7, 9…

Si nos encontramos lo suficientemente cerca de estos antiplanetas, por ejemplo a tan solo dos horas luz de distancia, nuestras señales tardarán dos horas en llegar a su destino. Imaginemos entonces que, para nuestro asombro, unas seis horas después recibimos una respuesta inteligente, consistente en otras secuencias de flashes de luz láser, pero esta vez con los números pares: 2, 4, 6, 8…

¡Nuestras señales han sido interceptadas por seres inteligentes de una civilización tecnológica!, y nos envían acuse de recibo utilizando señales similares aunque no idénticas, para que no las confundamos con un eco de nuestras propias señales. Con gran entusiasmo, esta vez les enviamos un vídeo amistoso enseñándoles la Tierra y sus gentes, al que nos responden con otro vídeo amistoso enseñándonos su planeta e invitándonos a visitarlo, como se deduce de su lenguaje no verbal y sus gesticulaciones.

Obviamente, estos seres ignoran que nosotros somos de antimateria en relación a la materia de la que ellos y su mundo están constituidos. Pero nosotros sí sabemos que ellos lo son, en relación a la nuestra. Así que no podemos aceptar la invitación y hemos de restringir nuestro contacto al intercambio de ondas electromagnéticas exclusivamente. Nada de recepciones oficiales, ni de intercambios de obsequios: la aniquilación mutua estaría asegurada.

 

* Beatriz Gato Rivera es investigadora del CSIC en el Instituto de Física Fundamental y autora del libro Antimateria (Editorial CSIC-Los libros de la Catarata).

¿Qué le pasa a tu cerebro cuando haces ejercicio? Ojo, no todo son ventajas

Por José Luis Trejo (CSIC)*

La Grecia clásica ya sabía de los beneficios del ejercicio físico para el cuerpo y para la mente, y hoy día todo el mundo es consciente de los perjuicios del sedentarismo. El ejercicio mejora la capacidad de aprendizaje, es antidepresivo, ansiolítico, y favorece la formación de nuevas neuronas en el área cerebral dedicada a la memoria. Sin embargo, pocas personas son conscientes de que no todo ejercicio es bueno para la salud. El ejercicio físico moviliza una serie de moléculas de nuestro cuerpo que, una vez entran en el cerebro y activan las células diana, producen efectos que explican todas estas ventajas y desventajas.

En cuanto a los beneficios del ejercicio, su práctica incrementa la cantidad de los llamados ‘factores de crecimiento’, una gran familia de moléculas que se liberan en sangre durante la actividad. Mejoran la irrigación sanguínea en las zonas activas del cerebro, aumentan el número de conexiones neuronales (o sinapsis), el número de ramificaciones de las células neurales (conocidas como dendritas) y la división de células madre neurales, responsables de generar nuevas neuronas en el hipocampo del individuo adulto. Todo ello contribuye a que la conectividad nerviosa mejore y se incremente la eficiencia del cerebro, es decir, nos ayuda a que pensemos mejor. Ejercitar tanto el cuerpo como el cerebro mejora la salud de ambos. La máxima mens sana in corpore sano es cierta, la actividad cognitiva unida a la actividad física no solo incrementa la división sino también la conectividad de las nuevas neuronas, y ahora, además, sabemos cómo sucede.

XXXVII Carrera de la Ciencia organizada por el CSIC./ Eliezer Sánchez.

Averiguar estos detalles ha requerido investigar con animales de experimentación. Gracias a estudios relacionados con la neurobiología del ejercicio hemos sabido que la actividad que más efectos beneficiosos conlleva es el ejercicio físico sumado a la actividad cognitiva. En los animales de experimentación esto se conoce como enriquecimiento ambiental. Examinar la memoria y el estado de ánimo de un animal de laboratorio no es tarea sencilla. Para ello los neurobiólogos han tenido que diseñar tests específicos que no causen ningún estrés ni malestar en los animales, pero que sirvan para analizar su estado de ánimo y su capacidad cognitiva. Con este propósito, se han refinado los métodos para analizar cómo los factores de crecimiento ejercen su acción sobre las neuronas, y han aparecido marcadores de las nuevas neuronas que nos permiten su detección y seguimiento.

Gracias a estas nuevas herramientas se ha determinado, por ejemplo, que un animal ejercitado es capaz de distinguir dos objetos muy parecidos, pero en realidad diferentes, con mayor exactitud que un animal sedentario. También se ha demostrado que tras el ejercicio, el miedo que el animal siente ante los espacios abiertos y desconocidos se reduce, y le permite aventurarse a explorarlos sin ansiedad. Todos estos efectos son mediados por los factores de crecimiento. De hecho, la administración de dichos factores por sí solos a animales sedentarios ha producido los mismos beneficios sin necesidad de ejercicio.

Estos hallazgos abren la posibilidad de que los factores de crecimiento (como decíamos, la familia de moléculas que se liberan en sangre durante la actividad física) pudieran usarse como farmacomiméticos del ejercicio en personas que no pueden hacerlo por una u otra razón. Sin embargo, no son las únicas moléculas que participan en los efectos beneficiosos de la actividad física, y además aún no se conocen todas, así que el mensaje para todos aquellos que sí pueden hacer ejercicio es que comiencen de inmediato a practicarlo, pero con una nota de cautela.

Desventajas del ejercicio físico

Lo mencionábamos al principio. ¿Todo el ejercicio es bueno?, ¿cuánto más, mejor? Si el ejercicio es extenuante, además de los citados factores de crecimiento, se acabarán liberando hormonas del estrés, que también entrarán en el cerebro y se dirigirán a las mismas células neurales, produciendo los consabidos efectos perjudiciales cuando el estrés tiene lugar de manera continuada en el tiempo. Por decirlo rápidamente: la intensidad del ejercicio es la que marca si su práctica es beneficiosa o perjudicial. Cuando un mismo estímulo es beneficioso a baja intensidad y se torna perjudicial a altas intensidades decimos que tiene una curva de respuesta dual. Este fenómeno se denomina hormesis y varía en cada persona. Esto significa que el estímulo es el mismo, pero es su intensidad, moderada o extenuante, la que determina si los efectos son beneficiosos o perjudiciales, respectivamente. La baja exposición al estímulo (en este caso ejercicio) produce cierto efecto, mientras que mucha exposición produce el efecto contrario, o ningún efecto.

 

El gráfico, en forma de U invertida, muestra cómo los efectos positivos se acumulan a medida que incrementamos la intensidad del ejercicio, llegan a un punto máximo, y a continuación, aunque aumente la intensidad, éstos empiezan a perderse hasta llegar a un punto similar a la situación de partida./ Nutrition Journal.

Desde tiempo inmemorial se ha sabido que el ejercicio es bueno, pero también se alaba la virtud del término medio, o aurea mediocritas de Aristóteles. Así pues, el ejercicio moderado, no extenuante, nos puede hacer más listos, más felices, ¡y con más neuronas!

José Luis Trejo es investigador en el Instituto Cajal del CSIC.

Virus y bacterias para estudiar en directo la evolución

Por Ester Lázaro (CSIC)*

Todos sabemos que en nuestra vida cotidiana hay actos que son perjudiciales para nuestra salud, como tomar el sol sin protector solar, hacerse radiografías innecesarias o ingerir alimentos con ciertos aditivos. Esto es así por la capacidad que la radiación y algunas sustancias químicas tienen para alterar nuestro ADN, la molécula que porta las instrucciones para que nuestras células y nuestro cuerpo sean como son y puedan realizar todas las actividades necesarias para mantenerse vivos.

Los cambios en el ADN se denominan mutaciones y pueden, desde no tener efecto, hasta ser responsables de la aparición de muchos tipos de cáncer. Sin embargo, a pesar de su mala fama, las mutaciones son absolutamente necesarias para que los seres vivos puedan adaptarse a los cambios que continuamente ocurren en el ambiente. Vivimos en un entorno tan dinámico que, sin esta capacidad, la vida se habría extinguido al poco tiempo de iniciar su andadura por nuestro planeta. En lugar de eso, se ha diversificado en un grado tal que cuesta creer que toda la vida tenga el mismo origen.

Virus infectando bacteria

La ilustración muestra un conjunto de bacterias que están siendo infectadas por sus virus característicos, los bacteriófagos. Los experimentos detallados en este artículo se llevan a cabo utilizando un bacteriófago que infecta la bacteria Escherichia coli./ María Lamprecht Grandío

Gran parte de las mutaciones ocurren de forma espontánea, debido a los errores que se producen cada vez que la molécula de ADN es copiada, algo que tiene que suceder siempre antes de que cualquier célula se divida. Las mutaciones son responsables de que los individuos que componen las poblaciones no sean iguales, sino que posean diferencias que les dotan de diferente éxito reproductivo. De este modo, y gracias a la selección natural –de la que ya nos hablaba Darwin hace más de un siglo–, los individuos más aptos acabarán siendo más frecuentes, hasta que lleguen a ser mayoritarios en la población. A lo largo de la historia, esta acción combinada de las mutaciones y la selección natural es lo que ha conducido a la evolución y diversificación de la vida a partir de un ancestro común que vivió hace 3.800 o 4.000 millones de años.

La gran capacidad evolutiva de los microrganismos

Estudiar la evolución no es tarea fácil. No solo por los largos tiempos que normalmente son necesarios para observar sus resultados; también porque su causa primera –la generación de mutaciones– ocurre por azar y porque el efecto de estas depende del ambiente. Para reducir el desconocimiento que todavía existe sobre los principios que gobiernan la evolución sería deseable poder realizar experimentos en el laboratorio que nos permitieran aplicar el método científico.

Las poblaciones experimentales tendrían que satisfacer dos requisitos: evolucionar rápido y ser fáciles de manipular y de analizar, algo que donde mejor se cumple es en los microorganismos. De hecho, la rapidez evolutiva de los virus y las bacterias puede ser observada en el día a día. La contrariedad de que podamos coger la gripe más de una vez, las resistencias de las bacterias a los antibióticos y de los virus a los antivirales, la aparición de nuevas cepas de virus… Todo eso no es más que el resultado de la gran capacidad evolutiva de los microorganismos, que les permite adaptarse en un tiempo récord a casi cualquier circunstancia que pueda limitar su crecimiento.

Pero, ¿por qué los microorganismos evolucionan tan rápido? La respuesta está en la gran velocidad a la que se reproducen y en que durante la copia de su material genético se producen muchas más mutaciones que en otros tipos de organismos más complejos. La consecuencia es que tanto los virus como las bacterias son capaces de generar en poco tiempo poblaciones de gran tamaño y con una elevada diversidad, en las cuales pueden existir mutantes que son beneficiosos en determinadas condiciones ambientales, las mismas bajo las cuales se verán favorecidos por la selección natural.

Entender la evolución para entender el origen de la vida

Los experimentos que realizamos en el laboratorio de Evolución Molecular del Centro de Astrobiología (CSIC-INTA) consisten en propagar poblaciones virales en ciertas condiciones que imponemos y controlamos. Con el paso del tiempo, los procesos de mutación y selección permiten que se genere una población evolucionada, que se podrá analizar y comparar con la ancestral. De este modo, podremos no solo encontrar la respuesta adaptativa frente a una condición ambiental concreta, sino también extraer conclusiones generales sobre el proceso evolutivo.

Las preguntas a las que intentamos dar respuesta son del tipo: ¿cómo pueden responder los virus al aumento de la temperatura ambiental? ¿Existe un límite en la producción de mutaciones que sea incompatible con la supervivencia? ¿Qué relaciones hay entre el tamaño poblacional y la adaptación? ¿Cómo interaccionan las mutaciones? Buscamos entender la evolución de la vida actual, pero también aproximarnos a cómo pudo ser la evolución de las moléculas de replicadores primitivos que precedieron a la vida celular, algo para lo que las poblaciones virales también constituyen un modelo excelente. Pero eso ya es otra historia que nos lleva hacia el pasado de la vida, en lugar de hacia su futuro… Algo fascinante que trataremos en otra entrega de este blog.

* Ester Lázaro es investigadora en el Centro de Astrobiología (CSIC-INTA), donde dirige el grupo de evolución experimental con virus y microorgamismos.

Emigrar a la ciudad, precaria solución para aves amenazadas

Por Álvaro Luna (CSIC) *

Cuando se piensa en una ciudad, rara vez se hace desde el punto de vista de la naturaleza que alberga. Sin embargo, hoy se estima que el 20% de especies de aves del mundo está presente en ciudades, y cada vez conocemos más casos de plantas y animales en peligro de extinción que encuentran un insospechado refugio en ecosistemas altamente humanizados.

Un ejemplo que recientemente hemos dado a conocer tiene como protagonistas a dos psitácidas (especies normalmente llamadas loros o papagayos). Se trata de dos aves autóctonas de La Española, isla caribeña que engloba a República Dominicana y Haití: la cotorra Amazona ventralis y el perico Psittacara chloropterus.

Pericos de La Española anidan en la ciudad de Santo Domingo. / Álvaro Luna

Pericos de La Española anidan en la ciudad de Santo Domingo. / Álvaro Luna

La transformación del hábitat para uso ganadero y agrícola fue relegando a estos animales a zonas cada vez más recónditas. Para más inri, han sido y son cazados al acudir a comer a los cultivos y, últimamente, el ‘mascotismo’ se ha unido al resto de factores que han llevado al límite a estos loros, convirtiéndose en un terrible problema que diezma las escasas poblaciones restantes a través de la captura ilegal, que se da incluso dentro de espacios protegidos.

Un estudio llevado a cabo por un grupo de investigación de la Estación Biológica de Doñana del CSIC ha profundizado en la alarmante situación de la cotorra y el perico de la isla La Española en sus ecosistemas originarios, y ha detectado escasos ejemplares incluso en las zonas mejor conservadas del país (se visitaron 12 espacios protegidos y todo tipo de hábitats), un escenario que resulta ser aún peor de lo que se estimaba.

Esta situación contrasta con las poblaciones de dichas especies que se han descubierto en las grandes ciudades de República Dominicana, único lugar donde se observa con facilidad a estos animales. Por ejemplo, en Santo Domingo se han censado dormideros con unos 1.500 ejemplares de perico, y en Santiago otro de 50 cotorras. En la naturaleza, por establecer una comparación, en un dormidero encontrado en la reserva de la biosfera, donde a priori están las mejores poblaciones, se contaron solo 137 pericos y 15 cotorras. Así, los datos obtenidos sobre observaciones de estas especies a lo largo y ancho del país arrojan que el perico es 6 veces más abundante en la ciudad que en entornos naturales, y 3 veces más en el caso de la cotorra.

Hábitat de cría usado por las poblaciones de loros urbanos en ciudades de República Dominicana. /Álvaro Luna

Hábitat de cría usado por las poblaciones de loros urbanos en ciudades de República Dominicana. / Álvaro Luna

No obstante, más allá de números, no hay que desatender el hecho de que estas especies realizan unas funciones ecológicas en la naturaleza que además, en el caso actual de esta isla, no pueden desarrollar otras especies, como es la dispersión de semillas de árboles. A modo de ejemplo, durante este estudio se recolectaron 306 semillas pertenecientes a 11 especies diferentes de árboles (el 99.5% aptas para germinar) que habían sido dispersadas por estos loros, y se midieron las distancias entre las semillas y el árbol más cercano de su misma especie. La distancia mínima media de dispersión fueron 37 metros, siendo el 93% de los casos dispersiones en un rango de entre 20-60 metros, con algunos casos de mayores distancias. Prácticamente todos los casos fueron en ciudad, dada la ausencia de las dos especies en el medio natural.

Se podría decir que para estas aves amenazadas puede que la ciudad sea su última baza para evitar la extinción, pero la desaparición de poblaciones viables de su hábitat real y originario acarreará también la extinción de funciones ecológicas en sus ecosistemas naturales, algo sobre lo que casi nadie está reparando. El hecho de que estos loros estén ecológicamente extintos en los bosques de la isla afectará a la estructura y dinámica de los mismos, con repercusiones presentes y futuras negativas.

 

* Álvaro Luna es investigador doctorando en la Estación Biológica de Doñana del CSIC y autor del libro Un leopardo en el jardín. La ciudad: un nuevo ecosistema (Tundra)