Archivo de mayo, 2018

El altramuz, de humilde aperitivo a «superalimento»

Por José Carlos Jiménez-López (CSIC)*

Altramuces en el mercado. / Tamorlan - Wikimedia Commons

Altramuces en el mercado. / Tamorlan – Wikimedia Commons

El altramuz (Lupinus albus) es una legumbre conocida popularmente por ser una planta ornamental en jardines rurales, con bellas y coloridas flores. Su semilla es denominada con varios términos como altramuces, lupín, lupinos, tremosos, así como «chochos» en determinadas localidades de la geografía española, concretamente en Andalucía. Es difícil que en algún momento, tomando una cerveza en el bar, no nos hayan puesto un cuenco de altramuces para picar.

Los altramuces se han consumido tradicionalmente en toda la región mediterránea durante miles de años. En España, las semillas del altramuz se convirtieron en un bien bastante preciado, y casi el único sustento que muchas familias tenían para “llevarse a la boca” tras la guerra civil. Hoy, 28 de mayo, se celebra el Día Nacional de la Nutrición (DNN), que este año está dedicado a promover el consumo de legumbres. Es un buen contexto para destacar los excelentes valores nutricionales de esta leguminosa que suele pasar inadvertida.

Las semillas del altramuz son consumidas típicamente como aperitivo en salmuera. Su harina se usa para la fabricación de horneados como pizza, pan, y repostería. Además de ser un buen acompañamiento en ensaladas, también es utilizado en la elaboración de humus, patés, quesos vegetales, y como integrantes principales de platos más elaborados, dignos de restaurantes renombrados con estrella Michelín. Numerosos productos basados en semillas de lupino están siendo actualmente introducidos comercialmente en tiendas de alimentación como alimentos fermentados, bebidas energéticas, snacks, leche, yogurt, productos de repostería, alimentación vegana, tofu, sustitutos de carnes, salsas, tempe, pastas y como base en dietas de adelgazamiento.

Pese a ello, el altramuz está infravalorado, siendo una legumbre que no está “de moda”, al contrario que otros alimentos como la soja, la quinoa o la chía, con un mayor auge debido a un marketing publicitario agresivo, haciéndolos llegar al consumidor de manera apetecible, para introducirlos en la dieta como productos saludables. Sin embargo, y respecto a beneficios para la salud y aporte nutricional, el altramuz no tiene nada que envidiar a estos alimentos tan publicitados, por ello se le puede adjudicar igualmente el término acuñado como «superalimento», que puede ser sinónimo de alimento funcional, cuyo consumo proporciona beneficios para la salud más allá de los puramente nutricionales. Hay muchas razones por las cuales se puede incluir el altramuz en esa lista privilegiada, empezando porque es una fuente muy importante de proteínas, aproximadamente el 40%, lo que equivale al doble del contenido en proteínas que los garbanzos, y cuatro veces más que el trigo.

Plantas de lupino. /José Carlos Jiménez-López

Plantas de altramuz (Lupinus). /José Carlos Jiménez-López

Su contenido en fibra dietética es del 34%, que actúa como fibra soluble (como la de la avena) e insoluble (como la del salvado de trigo), incrementando la saciedad, reduciendo la ingesta calórica para un mejor control del peso corporal y ayudando además a la reducción del colesterol y la prevención de dislipemia (altos niveles de lípidos). Posee bajos niveles de grasa (menos de un 6%) y abundantes ácidos grasos insaturados, sobre todo omega-6 y omega-9. El 24% de su contenido es un tipo de hidratos de carbono que favorecen un índice glucémico más bajo que otros granos comúnmente consumidos, ayudando a equilibrar el nivel de glucosa en sangre y, de este modo, a prevenir la hiperglicemia, lo que está especialmente indicado para personas que padecen diabetes tipo 2.

El altramuz es una legumbre naturalmente libre de gluten, por lo que es un alimento apto para personas con intolerancia al mismo (celiaquía). Por otro lado, son una excelente fuente de minerales (hierro, calcio, magnesio, fósforo y zinc), vitaminas B1, B2, B3, B6, B9 (ácido fólico) y Vitamina C, además de contener todos los aminoácidos esenciales, indicado para una correcta actividad intelectual y del sistema inmune. La semilla del altramuz también tiene entre sus componentes compuestos prebióticos, que ayudan al crecimiento de microflora bacteriana beneficiosa para una correcta salud intestinal. Estas semillas son también una de las mejores fuentes naturales del aminoácido arginina, el cual mejora la funcionalidad de los vasos sanguíneos y ayuda a la disminución de la presión sanguínea. Al contrario que otras legumbres como la soja, su contenido en fitoestrógenos (componentes similares a las hormonas) es insignificante, lo que evita problemas potenciales asociados a ellos.

Son abundantes los estudios científicos realizados en los últimos cinco años que demuestran el valor de algunos componentes de estas semillas en la lucha contra enfermedades consideradas como las nuevas epidemias del siglo XXI. Algunos de estos estudios se han realizado en nuestro grupo de investigación de la Estación Experimental del Zaidín (EEZ-CSIC, Granada), donde proteínas denominadas beta-conglutinas podrían ser utilizadas para la prevención y tratamiento de la diabetes tipo 2. Se ha demostrado que estas proteínas favorecen la activación de la ruta de señalización de la insulina, con la consiguiente captación de glucosa por los tejidos (disminución de la glicemia), así como la reversión del estado de resistencia a la insulina por sus tejidos diana, todo ello favoreciendo que el organismo recupere un estado similar a una persona no diabética. Además, numerosas pruebas experimentales han indicado que estas mismas proteínas son capaces de disminuir el estado de inflamación de pacientes diabéticos. Debido a que determinadas enfermedades, cuyo progreso cursa mediante un estado inflamatorio crónico sostenido (síndrome metabólico, obesidad, diabetes, enfermedades cardiovasculares), los altramuces, y concretamente las proteínas beta-conglutinas, constituyen un componente funcional que puede jugar un papel crucial como una nueva opción terapéutica para la prevención y tratamiento de estas enfermedades que tienen una base inflamatoria.

Seguro que a partir de ahora y con todos estos argumentos, recuperaréis el buen hábito de “coger un puñado de altramuces para llevároslos a la boca”, o prepararéis sabrosos platos que sorprenderán incluso a los paladares más exigentes.

 

*José Carlos Jiménez-López es investigador en la Estación Experimental del Zaidín (CSIC) y actualmente desarrolla una línea de investigación sobre las propiedades potencialmente beneficiosas del consumo de altramuces.

Una bacteria volcánica de Canarias, entre las especies más sorprendentes de 2017

Por Mar Gulis (CSIC)

La bacteria Thiolava veneris, capaz de colonizar el material depositado tras la erupción del volcán Tagoro, en la isla del Hierro, es la aportación española al Top 10 de especies descubiertas el año pasado. El comité liderado por Quentin D. Wheeler, del International Institute of Species Exploration (IISE) y coordinado por el investigador del Museo Nacional de Ciencias Naturales del CSIC Antonio G. Valdecasas, ha publicado su selección a partir de las alrededor de 18.000 especies descubiertas a lo largo de 2017. La difusión de este ranking se difunde hoy para celebrar el aniversario del botánico Carlos Linneo y  nos recuerda la importancia que tiene conocer y clasificar la biodiversidad. “Hoy es ya evidente que los seres humanos estamos acelerando el calentamiento global  y la extinción masiva de especies  que pueden enseñarnos cómo afrontar el futuro incierto al que nos enfrentamos”, afirma Valdecasas.

Un inmenso árbol de 40 metros, un crustáceo con joroba y dos escarabajos se suman a esta lista de diez integrantes que repasamos a continuación:

1. Thiolava veneris, la bacteria que colonizó los depósitos del volcán Tagoro

Cuando  en 2011 el volcán submarino Tagoro estalló frente a la costa de El Hierro, aumentó abruptamente la temperatura del agua, disminuyó el oxígeno y liberó cantidades masivas de dióxido de carbono y sulfuro de hidrógeno, eliminando gran parte del ecosistema marino. Tres años después, se descubrieron los primeros colonizadores de los depósitos que dejó la erupción volcánica. Los llamaron ‘pelo de Venus’ y se trata de una bacteria que produce estructuras largas y parecidas a pelos que, a modo de alfombra, cubren una superficie de unos 2.000 metros cuadrados alrededor de la cima recién formada del volcán Tagoro, ubicado a unos 130 metros de profundidad. Parece que esta nueva especie tiene características metabólicas únicas que le permiten colonizar este fondo marino recién formado, allanando el camino para el desarrollo de futuros ecosistemas.

Miquel Canals, Universidad de Barcelona.

2. Ancoracysta twista, un ser diminuto descubierto en un acuario

Este organismo unicelular pertenece al orden de los protistas: es un organismo eucariota, es decir, que tiene células con núcleo diferenciado. Posee un flagelo que  utiliza para impulsarse, así como unos orgánulos con forma de arpón que utiliza para inmovilizar a los organismos de los que se alimenta. La gran cantidad de genes que contiene su genoma mitocondrial podría dar pistas sobre cómo comenzaron a evolucionar los primeros organismos eucariotas. Se desconoce el origen geográfico de este diminuto ser vivo ya que fue descubierto en un acuario tropical de San Diego, EE UU.

 

Denis V. Tikonenkov.

3. Dinizia jueirana-facao, el árbol de más de 40 metros de altura y 60 toneladas que permanecía ‘en la sombra’

Pese a medir más de 40 metros de altura y sobrepasar el dosel de los bosques de Brasil en los que habita, este gigante acaba de ser descrito. Pertenece al género de leguminosas Dinizia, del que hasta ahora sólo se conocía la especie D. excelsa, descubierta hace casi cien años en los bosques amazónicos. Actualmente solo se han localizado 25 ejemplares en la Reserva Natural Vale. Tiene frutos leñosos de medio metro de longitud y se estima que su peso puede llegar a las 60 toneladas. Forma parte de los bosques atlánticos que dan refugio a más de 2.000 especies de vertebrados, incluyendo más de la mitad de las especies amenazadas de Brasil. La superficie de este tipo de bosques se ha visto reducida en más del 15%, una situación que, unida a la fragmentación que sufre, pone en peligro a D. jueirana-facao y a cientos de especies más.

Gwilym P. Lewis

4. Epimeria Quasimodo, el crustáceo jorobado

Nombrado a partir del personaje creado por Víctor Hugo, Epimeria quasimodo  es un pequeño crustáceo de unos 5 centímetros de longitud con un exoesqueleto tan curvado que parece tener joroba. Es una de las muchas especies del género que pueblan el Océano Austral, y se caracteriza por tener una morfología y colores espectaculares, con adornos crestados que recuerdan a los dragones mitológicos. Los dos investigadores que han publicado el trabajo han demostrado lo poco que sabemos de estos sorprendentes invertebrados.

Cédric d’Udekem d’Acoz/Royal Belgian Institute of Natural Sciences.

5. Nymphister kronaueri, un escarabajo que se aloja en el abdomen de hormigas obreras

El orden más prolífico en número de especies, el de los coleópteros, cuenta con un nuevo miembro: Nymphister kronaueri. Este diminuto animal de menos de dos milímetros de longitud, vive camuflado entre las hormigas Eciton mexicanum, una especie nómada que pasa dos o tres semanas capturando presas y otras dos o tres en un solo lugar. N. kronaueri se agarra al abdomen de una hormiga obrera cuando la colonia necesita trasladarse, de modo que, a simple vista, la hormiga cargada con el escarabajo parece tener dos abdómenes.

D. Kronauer.

6. Pongo tapanuliensis, el simio más amenazado del planeta

En 2001, los orangutanes de Sumatra y Borneo fueron reconocidos como dos especies distintas, Pongo abelii y P. pygmaeus. Tras examinar parámetros genéticos y morfométricos así como analizar variables de comportamiento, un equipo internacional de investigadores concluyó en 2017 que en Batang Toru, al norte de Sumatra, hay otra especie diferente de orangutanes: P. tapanuliensis, de tamaño algo menor. Los datos genéticos sugieren que, mientras las especies de Sumatra y Borneo se separaron hace 674.000 años, esta especie divergió mucho antes, hace alrededor de 3,3 millones de años. A día de hoy, este gran simio es el más amenazado del planeta. Se estima que solo quedan alrededor de 800 individuos en un hábitat fragmentado repartido en unos 1.000 kilómetros cuadrados aproximadamente.

Andrew Walmsley.

7. Pseudoliparis swirei, el pez habitante de las profundidades marinas

En el oscuro abismo de la Fosa de las Marianas, el lugar más profundo de los océanos, se ha encontrado esta especie menor de 10 centímetros que parece ser uno de los depredadores de su hábitat. Fue capturado a profundidades de entre 6.800 y 8.000 metros. Se cree que 8.200 metros de profundidad es un límite fisiológico por debajo del cual los peces no pueden sobrevivir. P. swirei pertenece a la familia Liparidae, peces babosos, de la que se conocen más de 400 especies que habitan en todas las profundidades.

Mackenzie Gerringer, Universidad de Washington / Schmidt Ocean Institute.

8. Sciaphila sugimotoi, una planta japonesa que se alimenta de un hongo

Tiene una altura que ronda los 10 centímetros y unas hermosas flores con tiempos cortos de floración entre los meses de septiembre y octubre. Se ha descubierto en Japón, y la mayor particularidad de S. sugimotoi es su condición de heterótrofa, es decir, que se alimenta a partir de otros organismos en lugar de por medio de la fotosíntesis. En este caso, mantiene una relación simbiótica con un hongo, a partir del cual consigue alimentarse sin dañarlo. La especie, cuya supervivencia depende de un ecosistema estable, se considera en peligro crítico de extinción, ya que se ha encontrado en solo dos lugares de la isla con una representación total de unas 50 plantas.

Takaomi Sugimoto.

9. Wakaleo schouteni, un león marsupial australiano descrito a partir de material fósil

Hace unos 23 millones de años, en el Oligoceno tardío, vivió Wakaleo schouteni, un león marsupial que vagaba por el hábitat forestal abierto de Australia, en el noroeste Queensland. Gracias al material fósil recuperado por un equipo de paleontólogos de la Universidad de Nueva Gales del Sur, se ha podido determinar que este león marsupial pasaba alrededor de 25 kilos y pasaba parte de su tiempo subido a los árboles. Sus dientes sugieren que era omnívoro. Los paleontólogos creen que hubo dos especies de leones marsupiales. El otro, Wakaleo pitikantensis, era un poco más pequeño y se describió en 1961 a partir de huesos de dientes y extremidades descubiertos al sur de Australia.

Recreación de ‘Wakaleo schouteni’ / Peter Schouten.

 10. Xuedytes bellus, un escarabajo capaz de vivir en cuevas cerradas gracias a sus adaptaciones

Este pequeño escarabajo de unos 9 milímetros de largo es el habitante de Duan, al sur de China, un área llena de las cuevas características del paisaje kárstico. Los escarabajos que se adaptan a la vida en el interior oscuro y húmedo de las cuevas comparten a menudo muchas de sus de características: un cuerpo compacto, muy alargado, apéndices en forma de araña, y pérdida de alas funcionales, ojos y pigmentación. Estos seres vivos son un excelente ejemplo de evolución convergente, es decir, especies no relacionadas entre sí con atributos similares resultado de su adaptación a medios parecidos. En China ya se han descrito más de 130 especies, que representan casi 50 géneros. Xuedytes bellus  es una incorporación espectacular a la fauna que habita las cuevas.

Sunbin Huang y Mingyi.

El secreto de la Vetusta Morla: ¿por qué unos animales viven más que otros?

Por Marta Fernández Lara*

“Hay un ser en Fantasía que es más viejo que todos los otros. Lejos, muy lejos, al norte, está el Pantano de la Tristeza. En medio de ese pantano se alza la Montaña de Cuerno y allí vive la Vetusta Morla. ¡Busca a la Vetusta Morla!”

Con esta cita, un búfalo purpúreo animaba en sueños a Atreyu a buscar a la Vieja Morla en la Historia Interminable de Michael Ende. Este singular animal no solo es el más viejo de Fantasía. En nuestro mundo, las tortugas de las Galápagos están entre los vertebrados más longevos que existen, llegando a vivir cientos de años. Pero, ¿cuál es la razón por la que estos animales son tan longevos?, ¿por qué hay tanta disparidad entre los años que viven unos organismos y otros?

La ciencia se ha planteado muchas veces este tipo de preguntas pues, de conocer sus respuestas, estaríamos más cerca de alcanzar el ansiado ‘elixir de la juventud’ que permitiera alargar la vida a los seres humanos.

Las bases del envejecimiento

Para tratar de encontrar respuestas a estas preguntas, primero hay que entender qué es lo que determina la esperanza de vida o el envejecimiento.

El envejecimiento es un proceso biológico que evita que un organismo viva eternamente, incluso en condiciones ideales en las que no hay depredación, ni fenómenos ambientales que puedan producir la muerte de los individuos.

En los últimos años, la comunidad investigadora se han sumergido en las profundidades celulares para comprender qué mecanismos biológicos contribuyen al proceso de envejecimiento. Dentro de la maquinaria celular, la acumulación de mutaciones y de daños en el ADN, la molécula que contiene nuestra información genética, está asociada con el envejecimiento. Tanto es así, que científicos como Luis Blanco y su equipo, del Centro de Biología Molecular (UAM-CSIC), se dedican a estudiar los mecanismos de reparación de estos daños. Del mismo modo, la alteración de algunos orgánulos componentes clave de la célula también contribuye a este proceso. Por ejemplo, la modificación de los componentes de la pared que envuelve el núcleo, el orgánulo que contiene el ADN, está relacionada con un envejecimiento prematuro.

Por otra parte, la actividad celular también tiene una gran influencia en el envejecimiento, ya que algunos mecanismos biológicos generan unas moléculas denominadas especies reactivas del oxígeno (ROS), que pueden producir daños a proteínas, membranas celulares, etc. Esto se denomina estrés oxidativo, y en algunos experimentos se ha observado que su reducción puede alargar la vida de ciertos animales de laboratorio.

Estos son solo algunos ejemplos de procesos que se han visto implicados en el envejecimiento, pero todavía queda mucho por comprender de este complejo fenómeno biológico. Resolver estas incógnitas nos acercaría a conocer la clave de las diferencias entre la velocidad a la que envejecen las distintas especies o por qué algunas, como las bacterias, parecen no hacerlo nunca.

Coral cerebro (‘Diploria labyrinthiformis’).

La longevidad bajo una perspectiva evolutiva

Sin embargo, otros investigadores tratan de desvelar ‘el secreto de la Vieja Morla’ observando las características de los ciclos de vida de los organismos desde un punto de vista evolutivo.

En la naturaleza observamos que los organismos tienen diferentes estrategias vitales: algunos crecen más rápido, otros más lento; unos se reproducen antes, otros después y algunos viven más tiempo que otros. Estas diferencias han surgido como consecuencia de la actuación de procesos evolutivos a lo largo del tiempo.

En lo que se refiere al envejecimiento, los científicos han propuesto distintas hipótesis para tratar de explicar cómo ha evolucionado este proceso y por qué se mantiene.

Una de estas hipótesis explica que el envejecimiento se produce principalmente por la acumulación de mutaciones en el ADN cuyos efectos negativos se manifiestan con la edad. Una segunda teoría plantea que habría genes que, en etapas tempranas de la vida, tendrían efectos positivos en los organismos, por lo que se favorecería su transmisión a la siguiente generación por selección natural. Sin embargo, con el tiempo estos genes desencadenarían procesos negativos relacionados con el envejecimiento. Por último, otra de las principales hipótesis explica que las especies tienen una cantidad limitada de energía que deben repartir entre mantenerse vivos y reproducirse; y en reparar los daños del ADN que contribuyen a este proceso.

Todas estas hipótesis estarían relacionadas con un factor esencial que explicaría las diferencias de longevidad entre los animales: la mortalidad por causas ambientales. Por un lado, los animales que viven en ambientes en los que corren menos riesgo de morir por factores externos como la depredación, enfermedades, etc., la selección natural favorecerá un desarrollo más lento de los individuos, la expresión tardía de las mutaciones con efectos negativos y, en definitiva, retrasará el envejecimiento. Por otro lado, si las especies experimentan un riesgo alto de mortalidad por factores externos, su vida será más corta, la selección natural no tendrá tiempo de actuar para eliminar estas mutaciones perjudiciales que se acumularán antes, favoreciendo un envejecimiento temprano.

Un ejemplo de cómo influye el ambiente en la velocidad de envejecimiento de los animales es la investigación en la que ha participado recientemente Jordi Figuerola, investigador de la Estación Biológica de Doñana (EBD-CSIC). El estudio, realizado en mirlos, muestra que las poblaciones de zonas urbanas, que experimentan más estrés, presentan un mayor acortamiento de telómeros frente a las de zonas naturales. Los telómeros son regiones de los cromosomas que protegen el ADN de la degradación, y su acortamiento es un signo de envejecimiento.

Ejemplar de mirlo / Eloy Revilla (EBD-CSIC).

Así, se ha observado que los animales que poseen rasgos que les protegen de morir por causas ambientales presentan una longevidad mayor. Este es el caso de las aves y mamíferos voladores como los murciélagos, que en muchos estudios se ha visto que viven más que los que no poseen esta capacidad. Del mismo modo, parece que los mamíferos que habitan en los árboles viven más años que otros mamíferos terrestres, lo que explicaría que, por ejemplo, los primates tengan una vida tan larga en comparación con otras especies. La explicación que han propuesto las diversas investigaciones a estas observaciones es que la vida en las alturas proporciona una mayor protección frente a los depredadores, reduciendo así la mortalidad por factores externos y favoreciendo un envejecimiento tardío. Un último ejemplo, que nos acerca al enigma que nos proponíamos al principio, es el de los animales con caparazón o conchas protectoras que, como en el caso de las tortugas, presentan también una mayor longevidad.

¿Está resuelto, entonces, el misterio? Sin duda, estas teorías evolutivas dan un paso más en la comprensión de este proceso y de las diferencias de longevidad entre los organismos pero, una vez más, todavía quedan muchas incógnitas por resolver. Parece que aún nos queda un largo camino hasta llegar a la Montaña del Cuerno donde la Vetusta Morla guarda celosamente su secreto.

 

Marta Fernández Lara es colaboradora del Museo Nacional de Ciencias Naturales (CSIC).

‘Operación polinizador’: el imprescindible trabajo de los insectos para el futuro de la agricultura

Por Alberto Fereres (CSIC) *

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Trichodes octopunctatus (Familia Cleridae) / Alberto Fereres

Con la llegada de la primavera, en plena ‘operación polinización’, esta imagen se repite cada año en campos, parques y jardines. Insecto y planta cooperan para obtener un beneficio mutuo, fenómeno que en biología se llama simbiosis. Estas interacciones, de crucial importancia en los ecosistemas naturales y en los agrícolas, se iniciaron hace más de 200 millones de años, en el Jurásico.

Las primeras angiospermas, plantas con flor, dependían del viento para asegurar su reproducción, igual que las gimnospermas, pinos y especies relacionadas. El ovario producía una secreción pegajosa llamada exudado para atrapar los granos de polen que llegaban a él. Este exudado contenía proteínas y azúcares y servía de alimento a los insectos, que empezaron a transportar de manera accidental el polen de una flor a otra. Así comenzó la polinización.

Se ha estimado que este gesto, en apariencia insignificante, representa la nada desdeñable cifra del 9,5% del valor de la producción agrícola dedicada al consumo humano, lo que a nivel europeo supone un total de 5.000 millones de euros al año. Atendiendo a estos datos, no cabe duda de que el servicio ecológico que ofrecen los polinizadores posee una enorme repercusión ambiental, social y económica en nuestro planeta.

La biodiversidad de los insectos que actúan como potenciales polinizadores es muy elevada. El 20% de estos organismos, unas 200.000 especies, visitan las flores. Hay familias de insectos polinizadores importantes entre los coleópteros (escarabajos), dípteros (moscas) y lepidópteros (mariposas) entre otros órdenes, pero los polinizadores por excelencia son los himenópteros: las abejas y abejorros de la superfamilia Apoidea. Son especies en las que el polen se adhiere a sus característicos pelos corporales. Además, pueden disponer de adaptaciones para facilitar su transporte, como las corbículas o cestillos de las patas traseras. En el campo agrícola, las especies que destacan por su importancia son la abeja común Apis mellifera L., los abejorros del género Bombus sp. y otras abejas menos conocidas que son las llamadas abejas solitarias.

Apis mellifera (Familia Apidae) / Alberto Fereres

Apis mellifera (Familia Apidae) / Alberto Fereres

La abeja común produce miel, jalea real, propóleo, cera, y poliniza un amplio espectro de flora silvestre. Es vital para algunos cultivos como los frutales, ya que asegura la polinización cuando otros insectos están ausentes. Su ‘transferencia de polen’ garantiza una tasa elevada de cuajado de frutos, mayor resistencia a las heladas y mejor calidad en los mismos. Esta especie de abeja común, natural de Europa, Asia y África, incluye 26 subespecies agrupadas en cuatro linajes.

Por su parte, los Bombus o abejorros han supuesto una enorme revolución para el sector de la horticultura, especialmente bajo invernadero. A partir de 1987 se empezaron a usar en la polinización de tomate y otras hortícolas. En la actualidad se emplean en más de 40 países. Se conocen más de 240 especies de abejorros a nivel mundial, y la mitad de ellas viven en la región Paleártica (Europa y Norte de Asia). La especie que más se cría para su uso en agricultura es el Bombus terrestris L., ampliamente distribuida por casi toda la zona Paleártica. En España tenemos una especie endémica de las Islas Canarias, B. canariensis Pérez.

A pesar de su papel imprescindible, la población de polinizadores está en declive en todo el mundo. Entre los factores que han contribuido a esta situación, destacan las técnicas agrícolas de producción intensiva que han conducido a la desaparición de hábitats, lo que ha modificado notablemente la estructura del paisaje y ha llevado a la eliminación de recursos alimenticios y refugios esenciales para este importante grupo de artrópodos beneficiosos.

Para intentar compensar esta disminución, las investigaciones en este ámbito apuestan por el uso de márgenes florales, es decir, plantar setos y vegetación entre las parcelas de cultivo que permitan el incremento de los insectos polinizadores y otros artrópodos, a la vez que consiguen preservar y mejorar la biodiversidad en las zonas agrarias. Además de favorecer la polinización, los márgenes florales suavizan el rigor de los elementos climáticos protegiendo los cultivos contra las heladas y la insolación; mantienen la humedad y funcionan como cortavientos; protegen contra la erosión y también aportan valor paisajístico y cultural.

Entre otras iniciativas, desde el Instituto de Ciencias Agrarias del CSIC hemos desarrollado un protocolo para el establecimiento de márgenes y lindes de especies herbáceas con flores que atraen estos insectos beneficiosos y que están bien adaptados a los suelos y condiciones de cultivo de la zona Centro de la Península Ibérica.

 

* Alberto Fereres Castiel es investigador del Instituto de Ciencias Agrarias del CSIC. Junto a investigadores/as de la Universidad Politécnica de Madrid y la empresa Syngenta ha trabajado en el proyecto ‘Operación polinizador’.

¿Qué peligros entraña para el cuerpo humano un viaje a Marte?

Por Juan Ángel Vaquerizo (CSIC)*

Cada vez resulta más evidente que en un futuro no muy lejano el ser humano acometerá definitivamente la conquista del espacio y la exploración de otros planetas y lunas. Las agencias espaciales de todo el mundo llevan décadas desarrollando programas de exploración robótica del Sistema Solar y, desde hace ya unos años, están planificando el siguiente paso en la conquista del espacio: los viajes humanos de exploración planetaria.

De todos los posibles objetivos, el planeta Marte es el favorito. Su cercanía y la posibilidad de vida presente o pasada en el planeta rojo lo convierten en un destino irresistible para la ciencia, e incluso ya se empieza a pensar en Marte como en un segundo hogar para la raza humana, llegado el momento. 

Pero llevar seres humanos a Marte o a cualquier otro destino del Sistema Solar entraña sus riesgos, derivados de los efectos que el espacio tiene sobre el cuerpo humano. Nuestra fisiología está adaptada a las condiciones de la Tierra, de modo que cualquier cambio tiene sus consecuencias a nivel anatómico. La diferencia fundamental es la situación de microgravedad que se sufre durante los viajes espaciales.

¿Qué entendemos por microgravedad? El término es un poco extraño. ¿Nos referimos a que la gravedad es muy pequeña, de ahí lo de ‘micro’? ¿Tiene algo que ver con lo que se denomina ingravidez, que sería, literalmente, ausencia de gravedad? Pues bien, el término microgravedad se usa para describir la situación en la que están los astronautas en una nave espacial que orbita alrededor de la Tierra. No se trata de una situación de ausencia de gravedad, pues los astronautas están orbitando y, por lo tanto, siguen siendo atraídos por el planeta, así que debemos desterrar el término ingravidez. Es una situación de caída libre “controlada”: los astronautas se desplazan a gran velocidad en su órbita alrededor de la Tierra (en concreto a unos 28.000 km/h), lo que hace que caigan continuamente, sin llegar a tocar tierra. El efecto es el de una caída libre continua de la nave espacial y de todo lo que contiene en su interior, astronautas incluidos. Por este motivo todo parece flotar dentro de la nave, y por eso deben tomarse medidas para que los objetos estén “sujetos” en todo momento.

Un viaje interplanetario es muy similar en sus efectos sobre el cuerpo humano a una estancia prolongada en microgravedad en una estación espacial orbital como la ISS (Estación Espacial Internacional, de sus siglas en inglés). La experiencia obtenida desde los años 70 del siglo pasado a partir de las numerosas estancias de astronautas en las sucesivas estaciones espaciales orbitales, ha permitido estudiar que le sucede al cuerpo humano.

Así pues, si alguien está pensando en embarcarse hacia Marte ¿cuáles son los riesgos físicos a los que se expone?

NASA/NSBRI

Mareos y vómitos

El oído interno y los órganos del equilibrio funcionan como un acelerómetro que indican al cuerpo si la persona está en movimiento o en reposo, si está de pie o tumbada. Pero en el espacio, sin una fuerza que “tire hacia abajo”, ese mecanismo no funciona. Esto provoca que cuatro de cada cinco astronautas sufran mareos en las primeras 24-48 horas en microgravedad, normalmente acompañados de pérdida de apetito y vómitos.

El líquido se sube a la cabeza

A través del cuerpo se mueve una gran cantidad de fluidos. En la Tierra, esos líquidos tienden a acumularse en las piernas y los pies, pero en microgravedad los fluidos comienzan a distribuirse de manera uniforme por todo el cuerpo, desplazándose desde la parte inferior hacia la parte superior. El resultado de esta redistribución de los fluidos es que la cara tiende a hincharse y las piernas adelgazan. Pero no se trata simplemente de un cambio en el aspecto. La acumulación de fluidos en la cabeza puede ocasionar un aumento en la presión intracraneal y en la del nervio óptico, y por tanto afectar a la agudeza visual. También nos hace menos sedientos, embota el sentido del gusto y causa una sensación de «nariz tapada» similar a las que producen las alergias. Generalmente cuando los astronautas regresan a la Tierra, los fluidos se redistribuyen de nuevo y estos problemas tienden a mejorar.

Atrofia muscular y pérdida de masa ósea

En microgravedad, los huesos y los músculos ya no tienen que soportar el peso del cuerpo, por lo que se debilitan. Sin peso, el cuerpo empieza a sufrir atrofia muscular y pérdida de densidad ósea. En microgravedad, los músculos que trabajan para mantenernos erguidos pueden llegar a perder hasta un 20% de su masa, y la masa muscular total puede reducirse hasta un 5% semanal. Según los datos, un astronauta puede perder, en un mes en el espacio, la misma cantidad de masa ósea (alrededor de un 1%) que una persona que sufre osteoporosis a lo largo de un año. Esta pérdida provoca un aumento del nivel de calcio en la sangre, lo que, a su vez y junto con la propensión a la deshidratación, conduce a un mayor riesgo de desarrollar cálculos renales. Para evitar todo esto, los astronautas consumen vitamina D y realizan dos horas al día de actividad física intensa, lo que, además de contrarrestar la pérdida ósea y la atrofia muscular, les ayuda “a tener los pies en la tierra”.

El corazón se hace pequeño

Los astronautas también experimentan pérdida de volumen de sangre, debilitamiento en el sistema inmunitario y falta de condición física cardiovascular, ya que flotan sin esfuerzo alguno y el corazón bombea la sangre con mucha mayor facilidad, lo que hace que se debilite y disminuya su tamaño.

Radiación diez veces mayor

Además, no se puede olvidar el efecto de la radiación en el cuerpo humano. En la Tierra el campo magnético funciona como una protección natural contra la radiación de alta energía. La ISS cuenta con una protección artificial diseñada para proteger a los astronautas de la radiación. Aun así, los astronautas siguen estando expuestos a un nivel de radiación diez veces mayor del que estarían en tierra. Los sistemas de protección limitan los riesgos, pero un hipotético viaje a Marte expondría a los astronautas tanto a la radiación de alta energía como a los rayos cósmicos dañinos. Sin una protección adecuada, aumentaría el riesgo de cáncer, podrían sufrir enfermedades por efecto de la radiación, se alterarían las funciones cognitivas y motoras, e incluso la exposición reiterada a la radiación podría llegar a provocar cataratas y enfermedades cardíacas y circulatorias.

Hay que trabajar después de flotar

Por último, habría que tener en cuenta el hecho del aterrizaje en el suelo marciano después de experimentar microgravedad durante un largo periodo de tiempo. La tripulación de una hipotética misión a Marte tendría que ser capaz de comenzar a trabajar justo después del aterrizaje. A pesar de que Marte tiene sólo un tercio de la gravedad terrestre, los astronautas tendrían que realizar un ajuste a la nueva situación después haber estado flotando durante varios meses. Por ejemplo, en microgravedad se pierde la referencia de lo que pesan las cosas, de modo que hay que estar atento cuando uno está de nuevo en la superficie de un planeta, porque los objetos “vuelven a pesar”.

En definitiva, a pesar de que nuestros cuerpos no fueron hechos para vivir en el espacio, el conocimiento adquirido hasta el momento nos muestra que el cuerpo humano es capaz de adaptarse a situaciones diversas y adversas, lo que nos permitirá sin duda superar esta última frontera, necesaria para acometer la conquista del espacio.

El rumbo está marcado: Marte nos espera. Y lo mejor de todo es que ya hemos iniciado el camino: el primer ser humano que pisará la superficie marciana ya ha nacido y puede estar leyendo estas líneas.

 

Juan Ángel Vaquerizo es el responsable de la Unidad de Cultura Científica del Centro de Astrobiología (CSIC-INTA). Este centro colabora con la misión marciana InSight de NASA, en la que viaja a bordo el instrumento TWINS desarrollado en el CAB. El lanzamiento a Marte de la misión se realizará el próximo sábado, 5 de mayo, y se podrá seguir en directo a través de NASA TV a partir de las 13:05 horas, hora peninsular española.