Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de abril, 2018

¿Te apuntas a un ‘biomaratón’? Fotografía la naturaleza de tu ciudad en el City Nature Challenge 2018

Por Mar Gulis (CSIC)

Si te gusta la naturaleza urbana, entre el viernes 27 y el lunes 30 de abril tienes una cita clave. Durante estos cuatro días, cerca de 70 ciudades de todo el mundo competirán de forma amistosa en el City Nature Challenge 2018, un ‘biomaratón’ que invita a la ciudadanía a hacer la mayor cantidad posible de observaciones de seres vivos y publicarlas en internet. Cualquier persona con acceso a la red y un teléfono o cámara de fotos puede ayudar a que su ciudad sea la ganadora.

Impulsada desde 2016 por la Academia de las Ciencias de California y el Museo de Historia Natural del Condado de Los Ángeles, la competición se celebra este año por primera vez a escala internacional. En nuestro país, varios centros y proyectos vinculados al CSIC promueven la iniciativa, a la que se han sumado tres ciudades españolas y sus respectivas áreas metropolitanas: Madrid (con 28 municipios), Barcelona (con 36) y Cádiz (con 6).

CNC

¿Quieres participar? Es muy sencillo: durante los días que dure la competición haz fotografías o grabaciones sonoras de todo tipo de organismos (desde bacterias hasta árboles monumentales) que encuentres en alguna de estas zonas y luego súbelas a la plataforma de ciencia ciudadana NatuSfera. Ten presente que puedes hacer las observaciones por tu cuenta o acudir a alguno de los maratones convocados, como los organizados en Madrid por el Real Jardín Botánico y el Museo Nacional de Ciencias Naturales, o los que en Barcelona coordinan el Instituto de Ciencias del Mar y el Centro de Investigación Ecológica y Aplicaciones Forestales.

Tus observaciones podrán identificarse y validarse hasta el 3 de mayo gracias a un sistema de identificación colaborativa y quedarán disponibles para todo el mundo en NatuSfera, una herramienta creada por varios centros y proyectos vinculados al CSIC que funciona como un cuaderno de campo para el móvil, una red social naturalista y una plataforma de seguimiento de la biodiversidad.

Gráfica

Sistema de identificación colaborativa incorporado en NatuSfera, que permite identificar y/o validar un gran número de observaciones en un período de tiempo muy corto (como el requerido en la biomaratón).

Además, las observaciones validadas pasarán posteriormente a formar parte de la base de datos de GBIF, la Infraestructura Mundial de Información en Biodiversidad (por sus siglas en inglés), que con casi 1.000 millones de registros constituye la mayor red mundial de datos de biodiversidad.

Las ciudades ganadoras serán las que obtengan el mayor número de observaciones, especies observadas y participantes, pero el verdadero premio será aumentar el conocimiento de la biodiversidad urbana. Así, la información aportada por la ciudadanía proporcionará una ‘instantánea’ en tiempo real que permitirá hacer un seguimiento de cómo cambia la distribución o la presencia de las especies en las ciudades.

Por eso, todas las especies cuentan, sean o no nativas y con independencia de su abundancia o rareza. Y todas las observaciones sirven, aunque no puedas identificar la especie retratada o hayas fotografiado la misma especie en lugares distintos. Con esta metodología, el primer City Nature Challenge, que se celebró solo en San Francisco y Los Ángeles, alcanzó más de 20.000 observaciones, 1.000 participantes y 1.600 especies clasificadas, entre las que se incluían nuevas citas de especies que no se habían visto nunca en estas dos ciudades.

Observación

Jaume Piera, investigador del Instituto de Ciencias del Mar del CSIC, explica que “el objetivo principal de las biomaratones es crear y fortalecer una red de observadores a nivel local que aporten el conocimiento de la biodiversidad de sus respectivas áreas. Esta información, una vez integrada en bases de datos, servirá para obtener un conocimiento actualizado del estado de la biodiversidad a gran escala”. Y añade: “para lograrlo necesitamos datos de todos los lugares y en todo momento, y esto tan sólo lo podemos conseguir con la participación y el conocimiento local de la gente”.

¿Cómo participar?

  1. Inscríbete en el siguiente formulario.
  2. Visita natusfera.gbif.es o bájate la aplicación desde Google Play o AppStore.
  3. Regístrate y/o inicia la sesión.
  4. Haz y sube tus observaciones entre el 27 y el 30 de abril para que sumen al contador de tu ciudad.

¡Anímate y participa en el City Nature Callenge 2018! Tus observaciones serán útiles para la ciencia y para favorecer la conservación de la naturaleza de nuestras ciudades.

Gabriella Morreale, la investigadora del CSIC que introdujo la prueba del talón en España

Gabriella Morreale

Gabriella Morreale siguió trabajando en su laboratorio hasta pasados los 80 años.

Por María Jesús Obregón* y Mar Gulis

Un pequeño pinchazo en el talón a las pocas horas de nacer: quien haya nacido en España a partir de los primeros años 80 no se ha ‘librado’ de esta práctica médica hoy conocida como la prueba del talón. Gracias a ella es posible detectar de manera temprana algunas enfermedades congénitas que pueden generar serios problemas de salud y que, de otro modo, pasarían inadvertidas.

En nuestro país, debemos la introducción de esta prueba a Gabriella Morreale de Escobar, que falleció el pasado mes de diciembre. Nacida en Milán en 1930, hija de padre diplomático y madre bióloga, a los 11 años se afincó con su familia en Málaga. Estudió Química y realizó la tesis doctoral en la Universidad de Granada. Desde entonces su carrera científica estuvo estrechamente vinculada a la de su marido, el médico Francisco Escobar del Rey. Ambos realizaron una estancia postdoctoral en la Universidad de Leiden (Holanda) y se convirtieron en investigadores del Consejo Superior de Investigaciones Científicas (CSIC) en 1958. Más tarde contribuirían a la creación del Instituto de Investigaciones Biomédicas, centro mixto del CSIC y la Universidad Autónoma de Madrid (UAM), donde Morreale desarrolló su actividad hasta pasados los 80 años, mucho tiempo después de su edad de jubilación.

A lo largo de su vida, está investigadora realizó importantes contribuciones científicas que tuvieron un gran impacto sobre la salud pública en nuestro país. Entre otras cosas, luchó por la introducción de la sal yodada en España para la prevención del bocio, introdujo la mencionada prueba del talón y demostró la importancia de las hormonas tiroideas maternas en el desarrollo del cerebro del feto.

Morreale, junto a varias colaboradoras, en los años 60.

Ya durante su tesis doctoral, realizada bajo la dirección del químico Emilio Gutiérrez Ríos y como becaria del médico Emilio Ortiz de Landázuri, probó que en la Alpujarra granadina, al igual que en otras muchas regiones españolas, la carencia de yodo era la causante del bocio endémico, un aumento de la glándula tiroides que origina un bulto en el cuello y a veces hipotiroidismo y discapacidad intelectual. Morreale también demostró que este trastorno podía prevenirse dando sal yodada a la población, una campaña que resultó muy eficaz.

Estos estudios continuaron en Las Hurdes a partir de 1967 con resultados similares. Pese a ello, la administración de yodo añadido a la sal común no fue adoptada en España hasta 1983; y tampoco se ha logrado la yodación universal de la sal, como sí ocurre en otros países.

En 1976, Morreale inició un estudio piloto para la detección del hipotiroidismo congénito, una enfermedad que se caracteriza por la ausencia de tiroides y que puede derivar en casos de discapacidad intelectual y retardos en el crecimiento. A partir del análisis de la sangre del talón de los recién nacidos, estableció un programa que hacía posible el diagnóstico eficaz y precoz de la enfermedad, lo que a su vez permitía tratar a los afectados con hormona tiroidea y evitar así que desarrollaran los otros trastornos.

Prueba del talón

En España, la prueba del talón ha permitido prevenir unos 6.500 casos de discapacidad intelectual y cretinismo.

En pocos años, el programa fue adoptado por todas las comunidades autónomas, algo que ha permitido prevenir unos 6500 casos de discapacidad intelectual y cretinismo hasta la fecha. Por esta contribución, en 1983 Morreale y Escobar recibieron junto a su equipo el I Premio Reina Sofía de Prevención de la Subnormalidad (hoy conocido como Premio Reina Sofía de Prevención de la Discapacidad).

Otra de sus líneas de investigación fue la importancia de las hormonas tiroideas maternas para el desarrollo del feto y, sobre todo, del cerebro fetal. Morreale fue una pionera a nivel mundial al demostrar que las hormonas tiroideas maternas protegen el desarrollo fetal, una conclusión que llevó a promover el control médico de la función tiroidea (hipotiroxinemia) en las mujeres gestantes, especialmente en las áreas de deficiencia de yodo, así como a la vigilancia de los niños prematuros.

Cuando se repasa la trayectoria de científicos y científicas es habitual destacar imágenes de la última etapa de su vida: normalmente, fotografías de una persona ya entrada en años a la que no le faltan reconocimiento ni galardones. Este también podría ser el caso de Gabriella Morreale, merecedora de innumerables premios, entre los que además del mencionado Premio Reina Sofía destacan el Premio Nacional de Medicina, el Severo Ochoa y el Jaime I.

Mañana, martes 24 de abril, el CSIC y la UAM han organizado un acto de homenaje a su figura, en el que se hablará de sus importantes aportaciones científicas, pero también de su infancia y juventud, de la pasión por el conocimiento que transmitió a las varias generaciones de investigadores e investigadoras a las que formó, así como su carácter afable y de su penetrante inteligencia, siempre acompañada de una gran sencillez.

 

* María Jesús Obregón ha sido investigadora del CSIC y discípula de Gabriella Morreale en el Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM).

¿Sabías que el primer “viaje” bajo los efectos del LSD se realizó en bicicleta?

Por José Antonio López Sáez y Mar Gulis (CSIC)*

Corría el año 1938 cuando el prestigioso químico suizo Albert Hofmann (1906-2008), en su búsqueda de aplicaciones medicinales de los alcaloides ergolínicos procedentes del hongo cornezuelo del centeno, consiguió sintetizar un nuevo derivado del ácido lisérgico. Como este nuevo compuesto ocupaba el puesto 25 de la serie de dietilamidas del ácido lisérgico que hasta entonces este eminente investigador había sintetizado en su laboratorio, lo llamó LSD-25.

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva como cambios en el color, forma y brillo de objetos. // Mark Bray. Flickr (modificada)

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva.  / Mark Bray. Flickr (modificada)

En principio, este nuevo alcaloide semisintético pretendía obtener pro­piedades estimulantes de la respiración y la circulación sanguínea. Sin em­bargo, tras numerosos ensayos clínicos acabó siendo desechado por los laboratorios Sandoz, donde trabajaba Hofmann. El LSD fue encerrado en un cajón y pasó a mejor vida, pero el químico no desistió en su empeño: en 1943 decidió sin­tetizar de nuevo el compuesto, a la vez que sintetizaba otro, el LA-111, que resultó ser la ergina, y su isómero isoergina.

Mientras realizaba su trabajo de laboratorio en Basilea (Suiza), sin dar­se cuenta sus dedos se impregnaron de estas tres ergolinas (LSD, ergina e isoergina). De repente comenzó a sentirse extraño, inquieto y mareado, según describió en su propio diario. Dejó el trabajo y se marchó a casa. Allí, tumbado y con los ojos cerrados, comenzaron las alucinaciones: luces deslumbrantes, colores caleidoscópi­cos, imágenes fantásticas… Había descubierto, sin quererlo, el poder alucinógeno de los alcaloides del ergot, aunque a partir de productos sintéticos.

Como buen científico, para estar realmente seguro de lo que había descubierto, unos días después, concretamente el 19 de abril de 1943, decidió hacer un experimento consigo mismo. Ingirió una dosis (que pensaba que era una dosis baja) de 0,25 miligramos (250 microgramos), pero como él mismo narraba más tarde, “resultó que era cinco veces la dosis debida. La dosis normal es 0,05 miligramos, y yo, para mi primer viaje, había tomado cinco veces más”.

Estando en el laboratorio, después de la ingesta, comenzó a sentirse mal. Al parecer se quedó casi sin habla y a duras penas consiguió pedir a su ayudante que le acompañara a casa. Según se cuenta, los vehículos motorizados estaban prohibidos a causa de las restricciones impuestas por la II Guerra Mundial. Así, aquel camino en bicicleta se convertiría en uno de los episodios psicodélicos más emblemáticos de la contracultura de los años 60. “Fue una experiencia terrible, un mal viaje. Todo cambió, y tuve la sensación de que había abandonado mi cuerpo, estaba en el espacio y podía ver mi cuerpo allí, y pensé: tal vez te has vuelto loco, o a lo mejor ya estás muerto. Fue realmente terrible, porque seguía consciente de mi situación y de la realidad cotidiana al mismo tiempo”.

El consumo de LSD produce notables alteraciones en la percepción visual y auditiva como cambios en el color, forma y brillo de objetos. También son frecuentes las sinestesias entre sentidos, es decir, ver un sonido u oír un color. A menudo provoca taquicardias, náu­seas, vómitos y disminución del apetito, incluso temblores y cierta descoordinación motora. Los efectos psicológicos pueden llegar a provocar cambios de ánimo brutales, incapacidad de comunicación, manías o depresio­nes profundas, así como psicosis persistente, cuyos efectos pueden ser devastadores en algunas perso­nas, incapaces de sentir la realidad de su vivir cotidiano y de pensar racionalmente.

El Dr. Albert Hofmann en 2006, con 100 años. // Stepan vía Wikipedia

El Dr. Albert Hofmann en 2006, con 100 años. / Stepan vía Wikipedia.

Prosigue Hofmann el relato de su autoexperimento: “Después de cinco o seis horas volví de nuevo a la normalidad, y entonces realmente me lo pasé muy bien. Disfruté con la sensación de haber vuelto a nacer. Volver de un mundo muy extraño y encontrarme con el mundo cotidiano y familiar. (…) Todas esas cosas que uno no valora en estado normal me parecían bellísimas, me di cuenta de lo bonito que es nuestro mundo, y estaba realmente feliz. Y así fue como descubrí la LSD”.

El LSD es una sustancia líquida, inodora e incolora. Su presentación usual es impregnada en pequeñas planchas de papel secante, que se dividen en cuadraditos o monodosis —conocidos como tripis, ácidos, micropuntos, bichos, secantes, ajos…— que se consumen por vía oral. Los efectos de esta droga psicodélica forman parte del llamado viaje o trip, de ahí que popularmente se la haya co­nocido como “tripi”.

La fecha de aquel viaje en bicicleta, que reveló a Hofmann el descubrimiento de una sustancia psicotrópica de enorme potencia a dosis muy bajas (recordemos que el químico veía el potencial del fármaco como herramienta médica y psiquiátrica, no para uso lúdico), sirvió para que años más tarde, en 1985, se celebrara por primera vez en Illinois (EEUU) el 19 de abril como Día Internacional de la Bicicleta.

Hofmann falleció en su casa de Basilea en 2008 a la increíble edad de 102 años. Un año antes, Lorenzo Veracini, Nandini Nambiar y Marco Avoletta recreaban en el cortometraje de animación A Bicycle Trip lo que pudo ser la experiencia de Hofmann en aquel emblemático viaje:

Aunque el LSD está incluido en la Lista I de los tratados y convenios sobre estupefacientes, es decir, es considerado una sustancia prohibida, la Administración para el Control de Drogas de los Estados Unidos ha aceptado su uso terapéuti­co. En la actualidad se siguen realizando estudios sobre esta sustancia en pacientes con determinadas problemáticas psíquicas, especialmente en aquellos que no han obtenido resultados beneficiosos con tratamientos tradicionales.

 

* José Antonio López Sáez es investigador del Instituto de Historia del CSIC en Madrid y autor del libro Los alucinógenos, disponible en la Editorial CSIC y Los Libros de la Catarata.

¿Qué tiene que ver la gravedad con la vida en el universo?

Por Carlos Barceló Serón (CSIC)*

La gravitación, el fenómeno por el cual los objetos con masa se atraen entre sí, parece estar detrás de la vitalidad que muestra el universo, es decir, de su capacidad para generar vida.

Remolinos de polvo interestelar en la nebulosa del Águila captados por el telescopio Hubble. Son conocidos como los “pilares de la creación” de la nebulosa, por ser un lugar donde nacen estrellas. / NASA-ESA.

Así ocurre porque la vida tal como la conocemos requiere para su existencia de una gran variedad de elementos químicos. Para que esta complejidad química se haya producido, fue necesario formar primero un ecosistema de estrellas. Es en estos inmensos y potentes hornos donde se generaron los elementos químicos complejos (todos salvo los elementos primordiales generados en fases del universo temprano); incluido el carbono, que es fundamental en los compuestos orgánicos. Es más, algunos elementos pesados solo pudieron formarse en explosiones de tipo nova, supernova o en las colisiones de estrellas de neutrones.

Esto quiere decir que únicamente un medio suficientemente procesado por el nacimiento y muerte de generaciones de estrellas es un terreno abonado para la vida. Y la fuerza suprema responsable de la formación de estrellas es la gravedad. Es ella la que tiende a compactar la materia, aumentando su densidad hasta permitir las reacciones termonucleares responsables del enriquecimiento químico.

Sin embargo, existe otro aspecto todavía más importante que relaciona biología y gravedad, considerada una de las cuatro interacciones físicas fundamentales. Es el hecho de que la gravedad, a través de la generación de estrellas, abre una puerta entrópica en el universo.

¿Qué quiere decir esto? Para entenderlo, hay que saber que la entropía es un concepto fundamental en física de sistemas complejos (gases, fluidos, etc., en general, sistemas con muchos componentes). En la descripción propuesta por Ludwig Boltzmann, la entropía de un sistema es una medida de cómo de ordinaria es la configuración en la que se encuentra entre todas las configuraciones que el sistema podría adoptar. Todos los sistemas físicos conocidos satisfacen la segunda ley de la termodinámica, la cual nos dice que todo sistema evoluciona de lo singular a lo ordinario, es decir, que su entropía y su desorden siempre aumentan.

Restos de una explosión estelar en la nebulosa de Orión. /ALMA (ESO-NAOJ-NRAO), J. Bally-H. Drass et al., via Wikimedia Commons.

Sin embargo, la evolución biológica parece ir a primera vista en contra de esta ley, ya que aparentemente produce de forma progresiva estructuras más organizadas, más singulares. No obstante, esta violación es solo una apariencia y, de hecho, la segunda ley de la termodinámica no se vulnera aquí tampoco. Lo que sucede es que cada disminución de entropía de un sistema vivo se ve compensada con aumentos de entropía en otras partes del sistema total. Nosotros y todos los seres vivos consumimos energía empaquetada de forma singular para devolverla al sistema en forma ordinaria. Al contrario de la visión popular, no funcionamos a base de consumir energía como si de hacerla desaparecer se tratara; nuestros procesos vitales conservan la cantidad de energía. Funcionamos a base de desorganizar la energía. Para poder hacer esto necesitamos que haya fuentes de energía susceptibles de ser desorganizadas. Y un foco caliente –una estrella– en un universo frío proporciona precisamente esta situación.

Todo apunta a que el universo comenzó su andadura a partir de un estado extremadamente singular y que este hecho ha permitido que en la actualidad contenga tal riqueza estructural. Aunque la conexión exacta todavía se nos escape, deberíamos retener la idea de que la gravedad guarda la clave de lo que podría ser el más singular de todos los hechos: el nacimiento entrópico del universo.

 

* Carlos Barceló Serón es investigador del CSIC en el Instituto de Astrofísica de Andalucía, autor del libro de divulgación La gravedad (CSIC-Catarata) e impulsor del proyecto audiovisual ‘Territorio gravedad’.

¿Puede un robot diagnosticar una enfermedad mejor que un médico?

Por Ramón López de Mántaras y Pedro Meseguer (CSIC)*

La respuesta es ‘sí’. Pero, como casi todas las respuestas, hay que matizarla.

Históricamente, uno de los ámbitos de aplicación de la inteligencia artificial (IA) ha sido la medicina. En la actualidad la técnica de IA que está dando los resultados más espectaculares en el ámbito del diagnóstico basado en la imagen es el llamado aprendizaje profundo, que consiste en aprender a reconocer patrones de manera muy eficiente. Con esta técnica, recientemente científicos de la Universidad de Carnegie Mellón (EE UU), en colaboración con cuatro hospitales de Chicago, han desarrollado un sistema capaz de predecir infartos con cuatro horas de antelación en enfermos ingresados en UCIs, lo que mejora en más de tres horas los tiempos de predicción de los cardiólogos. Otro ejemplo exitoso de aplicación del aprendizaje profundo es el análisis combinado de imágenes médicas de rayos rayos X, MRI y ultrasonidos desarrollado por un grupo de la Universidad de Queensland (Australia), el cual puede diagnosticar el cáncer de mama mejor que los médicos.

diagnostico por ordenadorEste tipo de sistemas se entrenan a partir de enormes cantidades de datos. Así, el software capaz de predecir infartos fue entrenado con datos de 133.000 pacientes, que incluían 72 parámetros presentes en la historia clínica de estas personas (signos vitales, edad, glucemia, recuentos de plaquetas, etc.).

Cuando no se dispone de suficientes datos o el problema médico que se quiere resolver no se basa en el reconocimiento de patrones, sino más bien en razonamiento lógico basado en el procesamiento de conocimientos médicos, entonces es posible recurrir a otra técnica de IA menos novedosa pero también muy útil. Se trata de los denominados sistemas expertos, que utilizan el conocimiento acumulado sobre los síntomas de una enfermedad, el historial médico y los resultados de análisis médicos para llegar a conclusiones sobre el estado de un paciente, es decir, para diagnosticar. Cuanto mayor sea su capacidad para combinar sus conocimientos con las observaciones reales, más exacto será su diagnóstico.

El primer sistema experto médico fue HEURISTIC DENDRAL, desarrollado a partir de los años 70 en la Universidad de Stanford, en el ámbito de la química orgánica. Poco después, en la misma universidad se desarrolló MYCIN, orientado a las enfermedades infecciosas. Una parte del sistema describía posibles síntomas y otra expresaba una posible causa de los mismos. Además de incorporar conocimientos que permitían diagnosticar el agente causante de la infección, MYCIN también contenía información acerca del tratamiento adecuado, por lo que resultaba útil para la toma de decisiones por parte de los médicos.

Hoy ya hay multitud de sistemas en este campo que se usan regularmente en hospitales y centros médicos de todo el mundo. Por ejemplo, ATHENA, que ayuda a los médicos a tratar a pacientes con problemas de hipertensión. Este sistema procesa los datos clínicos de cada paciente y, a partir de su base de conocimientos sobre hipertensión, genera recomendaciones para mejorar la atención clínica personalizada.

Una de las aplicaciones más potentes a nivel mundial es el sistema GIDEON, que ayuda a diagnosticar 337 enfermedades infecciosas específicas en 224 países. Su base de datos cubre 1.147 taxones microbianos y 306 agentes antibacterianos y vacunas. La información que maneja es actualizada semanalmente e incluye más de 20.000 imágenes, gráficos, mapas infografías, etc. Todo ello le permite llegar a un 94% de diagnósticos correctos, y de ahí que sea uno de los sistemas más usados en el ámbito de la medicina. GIDEON es útil tanto para el diagnóstico y tratamiento de las enfermedades infecciosas, como para mejorar su conocimiento, identificar microorganismos patógenos y detectar brotes epidémicos. Básicamente lo que hace GIDEON es mejorar la exactitud del diagnóstico y ampliar la base de conocimientos de la persona experta. Ahora bien, como todo sistema, presenta algunas limitaciones. Por ejemplo, no es capaz de diagnosticar simultáneamente enfermedades concurrentes. Además, los signos y síntomas que se introducen para realizar una consulta se relacionan únicamente con las enfermedades transmisibles registradas en el sistema, por lo que quedan excluidas muchas otras.

En cualquier caso, es importante recalcar que los sistemas basados en IA, a pesar de ser capaces de proporcionar diagnósticos rápidos y certeros, nunca superarán el sentido común y el buen juicio de una persona, ni tampoco el efecto placebo resultante del trato humano y la empatía que caracteriza a un buen profesional de la medicina en la relación con sus pacientes. Otro punto fuerte de los expertos humanos respecto a la inteligencia artificial es la capacidad de aplicar el conocimiento existente cuando, por ejemplo, los datos son incompletos o la información sobre el estado de un paciente no se corresponde bien con los casos usuales.

Sin embargo, para un médico la capacidad de recordar datos organizados puede ser un factor limitante, igual que la de correlacionar los casos observados con el patrón de datos existente. Por ello el uso de sistemas de IA es una excelente ayuda. De hecho, los sistemas de IA en medicina no deberían diseñarse con el objetivo de sustituir al médico u otro personal sanitario, sino como sistemas de ayuda y complemento de su labor.

 

* Ramón López de Mántaras y Pedro Meseguer son investigadores del CSIC en el Instituto de Investigación en Inteligencia Artificial del CSIC y autores del libro de divulgación Inteligencia Artificial (CSIC-Catarata).