BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de Julio, 2017

‘Nanobásculas’ para pesar virus y bacterias en la detección de enfermedades

Por Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero  (CSIC)*

Cada virus y bacteria tiene una masa diferente. El simple hecho de poder pesarlos nos permitiría identificarlos y distinguirlos y, con ello, detectar de forma altamente precoz las enfermedades que provocan. Los recientes avances en nanotecnología han permitido la creación de unos nuevos dispositivos, los sensores nanomecánicos, que actúan como básculas a escala nanométrica, permitiendo detectar estos objetos con una precisión mucho mayor que los métodos convencionales de diagnóstico de estas enfermedades.

Cuerdas de ukelele

Los nanosensores vibran como las cuerdas de una guitarra para detectar virus y bacterias.

La detección de estas partículas mediante sensores nanomecánicos se obtiene estudiando los cambios en su vibración. Estos sensores vibran igual que las cuerdas de una guitarra: cuando pulsamos una cuerda de una guitarra, esta vibrará y las ondas se transmitirán por el aire, lo que percibiremos como sonido. Además, si unimos un objeto a la cuerda, esta pesará más y, en consecuencia, su movimiento será más lento, lo que dará lugar a un sonido más grave. Esta diferencia en el tono del sonido se puede relacionar directamente con la masa del objeto unido. De la misma manera, los sensores nanomecánicos vibrarán más lentamente cuando se une a ellos una partícula (virus o bacteria). Esto se comprueba fácilmente adhiriendo un pequeño imán a un diapasón. Sin embargo, en estos sensores las vibraciones no son perceptibles por el oído y se necesitan métodos ópticos muy avanzados (similares a los utilizados en la detección de ondas gravitacionales, pero a escala nanométrica) para detectar estos cambios en la vibración del sensor.

Bacteria en nanosensor

Imagen de microscopía electrónica de barrido de una bacteria E. coli sobre un sensor nanomecánico con forma de micropalanca. El peso de esta bacteria es de 300 femtogramos (0,0000000000003 gramos, diez mil millones de veces menos que una hormiga).

Estos dispositivos también permiten medir otra propiedad muy interesante de las partículas depositadas: la rigidez. Conocer la rigidez de las partículas biológicas (virus, bacterias o células) puede ser de gran utilidad, ya que, por una parte, la rigidez junto con la masa permite una identificación todavía más precisa de los distintos virus o bacterias. Asimismo, podría permitir diferenciar entre células cancerígenas y sanas, ya que se ha descubierto que aunque ambas tienen una masa similar (lo que no permite distinguirlas a través de su masa), muestran una rigidez distinta: las células cancerígenas son menos rígidas que las células sanas. Por último, medir la rigidez de los virus hace posible distinguir su estado de maduración y conocer su capacidad infecciosa.

El grupo de Bionanomecánica del Instituto de Micro y Nanotecnología del CSIC desarrolla este tipo de dispositivos desde hace más de diez años. En la actualidad, este grupo lidera una serie de proyectos financiados por la Unión Europea (ViruScan, LiquidMass, Nombis) que contribuirán a la implantación definitiva de estas tecnologías a nivel clínico. En tan solo cinco años, estos sensores se probarán en países empobrecidos con gran riesgo de epidemias para la detección de los virus que producen fiebres hemorrágicas.

Al mismo tiempo, el equipo trabaja en el desarrollo de nuevas tecnologías para la comprensión y detección precoz de muchas otras enfermedades (distintos tipos de cáncer, Alzhéimer, etc.). En un futuro no muy lejano, este tipo de sensores estarán implantados directamente en el interior de nuestro cuerpo, preparados para detectar cualquier infección en el mismo momento de contraerla, lo que permitirá actuar contra ella de manera mucho más eficaz.

 

* Eduardo Gil Santos, Alberto Martín Pérez y Marina López Yubero son personal investigador del CSIC en el grupo de Bionanomecánica del Instituto de Micro y Nanotecnología.

¿Influyen nuestras bacterias en la forma en que nos comportamos?

Por Mar Gulis (CSIC)

Imagina un villano que logra controlar la voluntad de la gente mediante la manipulación de su microbiota intestinal, es decir, el conjunto de microorganismos –en su mayoría bacterias– que habitan en nuestro intestino y nos ayudan a digerir los alimentos. Tore Midtvedt, del Instituto Karolinska de Estocolmo, sugirió en clave de humor que éste podría ser el argumento de una novela negra. Cuentan la anécdota Carmen Peláez y Teresa Requena, investigadoras del CSIC, en su libro La microbiota intestinal (CSIC-Catarata). Tal y como señalan en la obra, hoy existe un creciente interés en torno a ese fascinante eje cerebro-intestino-microbiota.

Una parte de la comunidad científica está investigando la relación bidireccional que se da entre la microbiota y el funcionamiento del cerebro o incluso nuestros comportamientos. Se trata de un campo sumamente interesante, pero también muy complejo. La pregunta que espera respuesta es “si podemos conceder a los microorganismos cierto papel como participantes en nuestra inconsciencia”, que a su vez imperceptiblemente puede dictar nuestra conducta, señalan Peláez y Requena.

Las investigadoras recogen en el libro algunos ejemplos de esta tesis. John Cryan y Timothy Dinan, de la Universidad de Cork (Irlanda), sostienen que “las bacterias influyen en nuestro comportamiento alimentario”. Desde esta perspectiva, “la microbiota lanzaría alguna señal al cerebro para informarle de que le aporte tal o cual tipo de nutrientes, que son los que habitualmente ingerimos y a los que se ha adaptado su metabolismo”. Es más, el que nos apetezcan determinados alimentos se debe a la ‘expectativa de recompensa’ (el placer anticipado que nos aporta la elección), algo que depende de los niveles de dopamina en el cerebro. Y precisamente “algunas bacterias como H. pylori modulan la producción de dopamina y, por tanto, los niveles de recompensa. ¿Estaría esta bacteria del estómago diciéndonos qué es lo que nos apetece comer?”, se preguntan las investigadoras.

Helicobacter Pylori es una de las bacterias que habitan en nuestro estómago KGH / Wikipedia

Pero las relaciones entre el cerebro y la microbiota pueden ser más sofisticadas. Algunos autores consideran que esos millones de microorganismos serían capaces de manipular otros comportamientos. Por ejemplo, “influir en nuestro estado de ánimo a través de la serotonina, conocida como hormona de la felicidad, o tener el papel contrario y producir malestar o incluso dolor”. Peláez y Requena aluden a estudios recientes que han vinculado el estrés de los recién nacidos que sufren de cólicos con un desequilibrio intestinal producido por una pérdida de diversidad bacteriana.

Y aún más sorprendente es la siguiente hipótesis que plantean: la posibilidad de que las bacterias puedan manipular los comportamientos sociales, es decir, “nuestras preferencias para relacionarnos incluso sexualmente o para vivir en grupos sociales”. Las investigadoras se refieren a la mosca del vinagre, un insecto que, a la hora de aparearse, parece estar influido por la bacteria Lactobacillus plantarum, ubicada en su tracto intestinal. “Aparentemente esta bacteria produce metabolitos a partir de la fermentación del almidón que ingiere la mosca y que inducen la producción de feromonas, influyendo así en sus preferencias sexuales de apareamiento al solo elegir moscas que también ingieren almidón. Podríamos decir que la bacteria ayuda a la mosca a buscar pareja y, además, una pareja con sus mismos gustos alimentarios”.

Ahora bien, ¿se pueden extrapolar estas teorías a los seres humanos? Según algunos expertos, sí. Concretamente, las investigadoras citan a Michael Lombardo, de la Universidad Grand Valley (EE UU). Este autor defiende que la evolución de los seres vivos invertebrados y vertebrados hacia el comportamiento gregario y social “no ha respondido solo a la necesidad común de defensa, optimización de recursos alimentarios o crianza de la prole. Podría existir también otro factor más sutil como la necesidad de transmisión interindividual de una microbiota beneficiosa que aporta múltiples beneficios”.

Peláez y Requena coinciden en que, teniendo en cuenta los beneficios nutricionales y protectores que la microbiota intestinal nos aporta y la facilidad de transmisión vertical y horizontal en el ámbito familiar y social, estas teorías también pueden ser válidas para la especie humana. No obstante, advierten, “aún hay que profundizar en los mecanismos concretos por los que la microbiota afecta a la salud humana y a nuestro comportamiento”.

Acabar con los incendios es antinatural e insostenible

* Por Juli G. Pausas (CSIC)

Para que se produzca un incendio forestal se requieren tres condiciones: una ignición que inicie el fuego, un combustible continuo e inflamable, y unas condiciones de propagación adecuadas. ¿Se dan estas tres circunstancias en nuestros ecosistemas?

Empecemos por el final, las condiciones de propagación. Una de las principales características del clima mediterráneo es que la estación más seca coincide con la más cálida (el verano), cosa que no se da en la mayoría de los climas del mundo. En verano se genera un periodo relativamente largo con unas condiciones de elevadas temperaturas y baja o nula precipitación, que son ideales para que, si hay un incendio, se propague fácilmente. Además, no es raro tener días de viento relativamente fuerte, seco y cálido (por ejemplo, los ponientes en la costa valenciana) que facilitan aún más los grandes incendios.

Las tormentas de verano actúan como fuente de ignición e inician incendios forestales / D. Maloney.

La siguiente condición es la existencia de un combustible continuo e inflamable. En la mayoría de los ecosistemas ibéricos, la vegetación es lo suficientemente densa y continua como para que, si hay un incendio en verano, pueda extenderse a grandes superficies. Esto es aplicable tanto a los bosques como a la gran diversidad de matorrales que encontramos en nuestro territorio. De manera que la vegetación mediterránea forma lo que a menudo se llama el combustible de los incendios forestales. No hay que olvidar que este combustible está compuesto por una gran diversidad de seres vivos que tienen detrás una larga historia evolutiva; son parte de nuestra biodiversidad. Esta continuidad en la vegetación era especialmente evidente antes de que los seres humanos realizaran esa gran fragmentación que se observa actualmente en nuestros paisajes, principalmente debida a la agricultura, pero también a las abundantes vías y zonas urbanas.

Pero con una vegetación inflamable y unos veranos secos no es suficiente para que haya incendios, se requiere una ignición inicial. Hoy en día, la mayoría de igniciones son generadas por personas, ya sea de manera voluntaria o accidental. Pero, ¿hay igniciones naturales? La respuesta es . A menudo tenemos tormentas secas en verano, cuando las condiciones de propagación son óptimas, de manera que los rayos generados por estas tormentas pueden actuar como fuente de ignición e iniciar un incendio forestal. Tenemos muchos ejemplos de incendios generados por rayos (la mayoría sofocados rápidamente por los bomberos); y en los meses de verano, la Agencia Estatal de Meteorología (AEMET) detecta miles de rayos potencialmente capaces de generar igniciones (ver mapa).

31-07-2015, localización de 12.835 rayos que se registraron durante 6 horas en la Península Ibérica. / AEMET.

Por lo tanto, las tres condiciones arriba mencionadas se dan de manera natural en nuestros ecosistemas, y por lo tanto podemos afirmar que sí hay incendios naturales. Pero, ¿cuántos?

Las estadísticas de incendios actuales nos dicen que los generados por rayos son una minoría, comparado con la gran cantidad de incendios provocados por el ser humano. ¿Podría esta minoría de incendios por rayo representar la cantidad de los incendios esperables en condiciones naturales? La respuesta es no. Una gran cantidad de rayos cae en suelo sin vegetación combustible (zonas agrícolas y urbanas) y por lo tanto no producen los incendios que producirían en unas condiciones más naturales. La mayoría de las igniciones en el monte generadas por rayos son apagadas por los bomberos forestales cuando aún son sólo conatos o incendios muy pequeños. Nuestros bomberos apagan la inmensa mayoría de las igniciones; sólo un porcentaje muy pequeño se escapa y se transforma en los incendios que aparecen en los medios. Además, de los incendios que realmente progresan, la mayoría son más pequeños de lo que sería esperable en condiciones más naturales, porque los apagan los bomberos o porque se detienen en zonas no inflamables (zonas agrícolas, urbanas, cortafuegos, etc.). Como consecuencia, las estadísticas de incendios por rayos, ya sea en número de incendios o en área afectada, no reflejan la importancia que tendrían los incendios en condiciones naturales, sino que los subestiman. Algunos de los incendios que actualmente se dan por actividad humana, en realidad están sustituyendo a incendios naturales.

Es decir, en unos paisajes más naturales (con menos presión humana) que los actuales, sería de esperar que hubiese menos incendios porque habría muchas menos igniciones (la elevada población actual genera la mayor parte) pero, en muchos casos, esos incendios podrían ser más grandes. El balance probablemente sería de menos áreas afectadas por el fuego, pero sí habría incendios frecuentes. A todo esto hay que añadir que actualmente estamos alterando el clima, de manera que la estación con incendios tiende a ser más larga y las olas de calor más frecuentes. Todo ello incrementa la actividad de los incendios.

Incendio en el Parque Nacional Bitterroot, Montana (EE.UU.) . / John McColgan.

En definitiva, lo importante es saber si el régimen de incendios actual y futuro es ecológica y socialmente sostenible teniendo en cuenta el cambio climático. Eliminar los incendios es imposible, antinatural y ecológicamente insostenible. Nuestra sociedad ha de aceptar la existencia de incendios, aprender a convivir con ellos, adaptar las estructuras y los comportamientos, y gestionar las zonas semiurbanas, los paisajes rurales, las plantaciones forestales y los parques naturales para que el régimen de incendios sea ecológica y socialmente sostenible. Todo ello sin olvidar que lo normal es que un día puedan ser sorprendidos por un incendio.

* Juli G. Pausas trabaja en el Centro de Investigaciones sobre Desertificación (CIDE) del CSIC y es autor del libro Incendios forestales de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.

La ayahuasca: un brebaje chamánico convertido en reclamo turístico

Por José Antonio López Sáez (CSIC)*

Entre algunos colectivos urbanos cercanos a la filosofía New Age, la ayahuasca ha adquirido cierta notoriedad en nuestros días. Sin embargo, debido a sus efectos psicoactivos, en numerosos pueblos indígenas del Amazonas su uso religioso y ritual tiene miles de años de historia y aún se mantiene en países con cierta libertad de culto. Fuera de este contexto, la venta, distribución y consumo del antiguo brebaje están penados por las leyes internacionales.

Preparación de la ayahuasca. / Awkipuma.

La ayahuasca es una liana o bejuco del Amazonas, Banisteriopsis caapi, de la familia malpigiáceas. Esta vigorosa enredadera habita en las selvas de Bolivia, Brasil, Colombia, Ecuador, Perú y Venezuela. Pero la ayahuasca es también una bebida chamánica que se elabora cociendo a fuego lento porciones de tronco de caa­pi y hojas del arbusto conocido como chacruna (Psychotria viridis). El término ‘ayahuasca’ deriva de dos palabras quechua: aya (muerto) y huasca (soga); por eso, al caapi también se le conoce como soga de los muertos, enredadera de las almas u ombligo de la tierra. Los efectos alucinógenos de esta bebida se deben fundamentalmente a un alcaloide triptamínico pre­sente en ambas especies, dimetiltriptamina o DMT, aunque Banisteriopsis caapi también cuenta con otros β-carbolínicos como harmina, te­trahidroharmina y harmalina.

Vid de ayahuasca en Iquitos (Perú). / Apollo.

Su uso ritual está ligado a la cosmovisión de las tribus indígenas amazónicas, que consideran al yagé –otro de sus nombres comunes– una planta sagrada, espiritual y medicinal capaz de provocar visiones y cambios perceptuales notables. De hecho, se está considerando seriamente su uso terapéutico fren­te a trastornos psiquiátricos de tipo depresivo, así como en el tratamiento de problemas de adicción. En algunos lugares de la selva amazónica están prospe­rando clínicas de desintoxicación mediante tratamientos con ayahuasca. Incluso existen centros que publicitan experiencias extraordinarias con esta droga visionaria y que se ofre­cen dentro de paquetes turísticos por medio de agencias de viajes. Sin entrar en la veracidad de los tratamientos, que en algunos casos han sido constatados como muy beneficio­sos y efectivos mediante ensayos clínicos, lo cierto es que este tipo de turismo está alentando una concepción del mito de la ayahuasca muy diferente y alejada de que la que tuvieron y tienen los chamanes amazónicos. Algunos de ellos incluso han llegado a formar parte de este mercado, renunciando así a la vertiente ritual y espiritual en pos de otra exclusivamente lúdica o recreativa.

Los chamanes amazónicos consideran a la ayahuasca como un vehículo para contactar con los espíritus y el mundo sobrenatural, permitiéndoles a su vez ejercer un poder sanador diagnosticando las causas de las enferme­dades y estableciendo la cura preceptiva. La ayahuasca les dicta los cánticos ceremoniales o ícaros que deben entonar, y los conduce a estados alte­rados de conciencia plagados de visiones que los acercan a un estado de muerte del que renacen como personas nuevas. Visiones que recrean seres ancestrales, míti­cos y sobrenaturales, inclusive con formas animales entre las que predominan los felinos.

Mapa de las zonas de cultivo de ayahuasca. / ayahuasca.com

Los efectos derivados del consumo de ayahuasca com­prenden tres fases. En la primera aparecen síntomas como mareos, salivación, temblor, náuseas, aumenta la pre­sión arterial y la frecuencia cardiaca y se entra ya en un estado alterado de la conciencia, con los primeros efectos psicodéli­cos. A continuación se intensifican los cambios visuales, con visiones de tipo cósmico o místico, fenómenos de tipo geomé­trico y caleidoscopios de colores. Finalmente, el chamán o un potencial consumidor entran en un profundo estado de introspección muy emotivo, donde las ideas fluyen y la me­moria se conserva. También son frecuentes las sinestesias: se escuchan colores y la música fluye como ondas rítmicas en for­ma de extrañas nubes que flotan sobre el cuerpo.

Es importante señalar que la DMT por sí sola, ingerida por vía oral, resulta prácticamente inactiva, pues se degrada muy rápidamente en los intestinos y el hígado; de ahí que ne­cesite las β-carbolinas, que inhiben la enzima que degrada la DMT, para ejercer su efecto alucinógeno. Inhalada, fumada o inyectada, la DMT provoca efectos a los pocos minutos, si bien estos duran menos de una hora.

* José Antonio López Sáez es investigador del Instituto de Historia del CSIC y autor del libro Los alucinógenos de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y Los Libros de la Catarata.