Entradas etiquetadas como ‘sistemas de ecuaciones’

Parábolas, parábolas… tú siempre buscas parábolas

–Ya está –dijo Sal y añadió señalando con su dedo –. Ahora solo pinta una línea así.

–¿Así cómo? –preguntó muy serio Ven –. Deberías ser más técnico en tus instrucciones si quieres ser ingeniero aeroespacial.

–¡Puf! Ya estamos… –resopló el gafotas –. Luego dices que soy yo el empollón…

–Es que, como nos explicó Mati –respondió el aludido –, para definir una recta necesitas o dos puntos o un punto y un vector…

–Mira, Ven –dijo de nuevo Sal –, este, este y este. Toma, 3 puntos ¿No querías 2 puntos para tu recta? Pues toma 3, pinta la recta que pasa por esos 3 puntos.

–Bueno, bueno, bueno… –Mati acababa de llegar –Eso no siempre es posible, Sal.

Mati20Min_48p

–Hola, Mati –la saludó Sal sin apartar la vista de su diseño.

–Hola, Mati –dijo el pequeño –¿Cómo no vas a poder pintar la recta con 3 puntos? ¿No dijiste que necesitábamos 2? Pues con 3 mucho mejor, hombre.

–No, Ven –dijo ella –. Por 1 punto pasan infinitas rectas, por 2 puntos solo una y por 3, puede que ninguna.

parabolas_1

 

–¡Toma! –aceptó el pequeño –¡Es verdad!

–Claro, Ven –dijo Sal –. Yo ya me había dado cuenta en nuestro dibujo…

Ven miró a su hermano con el ceño fruncido, Gauss resopló.

–Pero, ¿sabes, Ven? –dijo rápidamente Mati para aliviar la tensión ambiental –. Por 3 puntos, siempre pasa una única circunferencia.

–Ya lo sé –dijo el pequeño sin perder de vista a su hermano –, nos lo contaste.

–Tienes razón –dijo la pelirroja –, qué buena memoria tienes.

–Es cierto –añadió Sal queriendo congraciarse con su hermano –, Ven tiene muy buena memoria.

–Mirad –dijo la gafotas –Como ya sabéis lo de la circunferencia y sabéis que una circunferencia no es una función, si queréis os cuento cómo calcular una función cuya gráfica pase por esos 3 puntos. Eso sí, si no tienen la misma abscisa.

–¿Cuál era la abscisa, Mati? –preguntó Ven de repente.

La abscisa es la coordenada horizontal –dijo Mati –, la que mide la distancia al eje de ordenadas, ¿recuerdas?

–Sí, sí –dijo Ven.

–¿Y por qué no pueden tener la misma abscisa, Mati? –quiso saber el gafotas.

–Porque si queremos que sea una función –respondió ella — para un valor de la x, de la abscisa, no puede tener más de un valor de la y, la ordenada.

–No entiendo –aceptó Ven.

–A ver –siguió ella –No podemos dibujar la gráfica de una función que pase por los puntos (3, 6) y (3, 8), por ejemplo. Porque la segunda coordenada del punto representa el valor de la función, y en este ejemplo, para x igual a 3, tendríamos dos posibles valores de la función, 6 y 8.

–Ah, vale –aceptó el pequeño.

–¿Y cómo será esa función, Mati? –preguntó Sal –¿Será muy rara o parecida a una recta?

–La gráfica de la función que pasa por 3 puntos que no estén alineados, –dijo esta –y que tengan distintas abscisas, será una parábola.

–¡Toma! Esa la conozco –dijo Ven –, es la curva de los tiros parabólicos de fútbol, ¿no?

parabola-soccer

–Eso es, Ven –dijo Mati -, esa será la forma de nuestra función.

–¿Y cómo sabes que siempre se puede, Mati? –preguntó Sal curioso.

–Porque dados 3 puntos no alineados y con abscisas distintas –respondió ella –, siempre existe un polinomio de grado 2 que pasa por esos 3 puntos, y la gráfica de un polinomio de grado 2 es una parábola.

-¿Un poliqué? –preguntó Ven arrugando la carita.

–Un polinomio –dijo ella –. Una función (de x) que se escribe como suma de potencias (naturales)  de x multiplicadas por unos números, que llamamos coeficientes. Mira, te pongo unos ejemplos:

parabolas_2

 

 

–¿Cómo son esos grados, Mati?  –preguntó Ven con cara de pillo —¿Celsius o Fahrenheit?

–No, Ven –respondió la pelirroja –, el grado de un polinomio es el valor de la potencia más alta de x que aparece. En el polinomio f1 la potencia más grande es 4, en el polinomio f2 es y en el polinomio fla más grande es 3.

–¡Quietos, parados! –exclamó Ven –Hay números sin potencias de x en los polinomios fy  f3.

–Sí, es como si x estuviera elevada a 0 -dijo ella –por eso no aparece, por que x elevado a 0 es 1. A esos números que aparecen sin x, se les llama términos independientes, porque como no multiplican a x, no dependerán del valor de esta.

parabolas_3

–¿Qué tienen de especial los polinomios, Mati? –preguntó Sal.

–Huy, un montón de cosas –respondió ella –. Son las funciones más simples que hay y, entre otras cosas, se usan para dar valores aproximados de otras funciones mucho más difíciles, pero eso os lo cuento más adelante. Ahora os voy a enseñar a encontrar un polinomio de grado 2, una parábola, que pase por 3 puntos no alineados y con abscisas diferentes.

–¡Venga! –exclamó Ven con alegría.

–Decidme 3 puntos, chicos –pidió Mati.

–A ver… (1,6) –dijo el pequeño –… (2,13)...

–Y (0,3) –apuntó el gafotas.

–Muy bien –dijo ella –. Queremos un polinomio de grado 2, una parábola que pase por estos tres puntos {(0,3), (1,6), (2,13)}. El polinomio que buscamos tiene esa pinta: ax²+bx+c.

–¿Qué son esas letras, Mati? –preguntó Ven.

¿a, b y c? –preguntó Mati y añadió con voz misteriosa  –Son las incógnitas que tenemos que descubrir…

–¿Cómo las descubrimos? –preguntó el gafotas.

–Con un poco de inteligencia -dijo ella guiñando un ojo –. Vamos a ir apuntando las pistas que tenemos:

parabolas_4

–¡Toma! –dijo Ven –Parecemos detectives.

–A ver, Ven Holmes –dijo Mati teatrera –¿Qué sabemos de la función?

El pequeño se quedó pensativo y dijo:

–Se le ha visto pasar por (0,3).

–Hum –Mati se rascó la barbilla –Eso significa que f(0) debe valer 3, vamos a sustituir x por 0, a ver qué pasa…

parabolas_5

 

–¿Tenemos más pistas, Sal Poirot? –preguntó Mati.

–Sí, Mati Marple –dijo el gafotas–. También pasó por (1,6).

–Ajá –dijo la pelirroja, eso significa que f(1) es 6.

parabolas_6

 

–Hum, estamos cerca… –dijo Mati –¿Puede aportar algo, Gauss Colombo?

–Guau, guuuuauuuu, guaaaaau

–Dice Colombo que también pasó por (2,13) -dijo Ven divertido.

–Vaya, vaya –dijo ella –, así que f(2) es 13

parabolas_7

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven.

–Me encanta, Mati –dijo Sal.

–¿Os gusta? –dijo Mati –En realidad, lo que hemos hecho es resolver este sistema de ecuaciones:

parabolas_8

 

–¿También se puede resolver con el método de Gauss que nos enseñaste? –preguntó Sal.

–Efectivamente –respondió ella –, podéis elegir hacerlo como queráis.

–¿Pintamos la parábola, Mati? –pidió Ven.

–Os tengo que enseñar a dibujar funciones –dijo ella –, pero hoy la dibujamos con Google.

parabolas_9

–Es preciosa… –dijo el pequeño Ven.

–Entonces, si tenemos 3 puntos con abscisas diferentes -dijo Sal –, siempre tenemos una parábola.

–Si no están alineados, en cuyo caso sería una recta,  –corrigió Mati y añadió con un guiño –,una parábola chafada.

–¿Y si tenemos 4 puntos, Mati? –preguntó el gafotas.

–En ese caso, si repetimos este procedimiento –les contó –llegaremos un polinomio que pase por ellos de grado,  como máximo 3. Pero podrá ser de grado 2, y que los 4 estén sobre una parábola, o de grado 1, que estén alineados…

–¡Mola! –dijo Ven.

–A esto –continuó Mati –, a buscar polinomios que pasen por un conjunto de puntos se le llama interpolación polinómica. Otro día os explico para qué se utiliza y otras formas de hacerlo sin resolver sistemas de ecuaciones, ¿vale?

–¡Vale! –exclamó de nuevo Ven.

–¿Y con 5 puntos, Mati? –siguió indagando Sal.

–Con 5 puntos, tendríamos un sistema de 5 ecuaciones con 5 incógnitas, tantas como puntos –respondió esta –, que nos daría como función sospechosa un polinomio de grado, como máximo, 4.

–Claro –dijo el gafotas –, porque si están alineados, será un polinomio de grado 1, una recta…

–¿Qué forma tiene un polinomio de grado 4, Mati? –preguntó el pequeño.

–Vamos a mirar uno en Google –les propuso.

parabolas10

 

–¡Me gustan los polinomios! –gritó Ven.

–Como dice un amigo mío, –dijo Mati con una sonrisa — a mí también, pero solo hasta cierto grado.

 

Cuántas ecuaciones, ¡por Gauss!

–¿Por qué tenemos que hacer lo que tu digas, Sal?

–No, eso no es cierto, Ven,  y lo sabes. Antes nos hemos subido en la atracción que tú has elegido.

–Pues ahora quiero probar aquí –insistió Ven –. Soy el mejor lanzador del mundo.

–Estás siendo presumido, Ven –replicó Sal –. Se lo diré a mamá…

–Lo que pasa, Sal, es que no quieres reconocer que soy mejor lanzador … –insistió el pequeño cada vez más enfadado.

–El dinero es de los 2, Ven –contestó el aludido — y en estas casetas de tiro casi nunca se gana…

–¡Ja!–dijo Ven con cara de enfadadísimo.

–Vaya, qué risa tan poco convincente… –dijo Mati interviniendo en la cumbre.

Mati20Blogs_42p

–Es que Sal no quiere que compitamos en esta caseta –se apresuró a contarle Ven.

–Es que nos queda poco dinero, Mati –se defendió el gafotas –, y en estas casetas es muy difícil conseguir premio.

–¡JA! –insistió Ven.

–Bueno, eso y que Ven es un poco presumido y se cree un gran lanzador…

–Huy, no os lo vais a creer –dijo Mati muy teatrera tratando de relajar el ambiente–, me acabáis de recordar un romance sobre un lanzador un poco presumido, ¿os lo cuento?

Los niños asintieron con la cabeza. Gauss resopló, estas discusiones le agotaban. Mati les recitó el romance:

Rafael Rodríguez Vidal. Enjambre matemático.

 

–Ni i-de-a –dijo Ven enfurruñado –¿Qué es un duro, Mati?

–Ah, tienes razón –le contestó la pelirroja –. Un duro eran 5 pesetas.

Sal se quedó pensando un buen rato al cabo del cual admitió:

–No me sale.

–Os enseñaré a hacerlo usando ecuaciones -les anunció.

–¡Ecuaciones! –exclamó Sal –Me encantan.  Ya nos enseñaste ecuaciones.

–Efectivamente –confirmó ella –. Pero en aquella ocasión solo teníamos una letra sospechosa, la x, y en este misterio –añadió bajando la voz imprimiendo misterio a la escena –hay dos sospechosas, la x y la y.

–¡Toma! –dijo el pequeño –¡Mola!

–¿Dos letras sospechosas? –preguntó el gafotas.

–Sí, la x representará el número de aciertos del tirador y la y representará el número de fallos del mismo –dijo Mati –. Tenemos que descubrir quién es x y quién es y.

gauss_1

–Como tenemos 2 sospechosas –continuó ella –, a las ecuaciones que vamos a tratar de resolver las llamamos ecuaciones con 2 incógnitas. 

–¿Qué ecuación tenemos que resolver, Mati? –preguntó Sal ansioso.

–Ecuaciones, Sal –respondió Mati –, para tener un único valor del acertijo, necesitamos tener, al menos, 2 ecuaciones, tantas como incógnitas.

–¿Qué pasa si solo tenemos una ecuación con 2 incógnitas? –preguntó el pequeño.

–En ese caso –respondió ella –, la ecuación tendrá infinitas soluciones.

–Sí, claro… –dijo Ven con sorna.

–Te lo voy a demostrar –anunció la pelirroja –. Vamos a ver una primera ecuación que deben verificar x e y, ¿cuánto debe valer la suma de x más y?

Los niños se quedaron pensativos hasta que el gafotas exclamó:

–¡16! Porque hizo 16 lanzamientos en total.

gauss_2

–Eso es –confirmó Mati –. Pues mira, Ven, si solo tenemos esa ecuación, tenemos varios  resultado distintos.

Mati empezó a escribir todas las posibles soluciones de la ecuación planteada:

gauss_3

–¡Eh! –interrumpió el gafotas –Esas soluciones no valen. Si acierta 16 y no falla ninguna, el feriante tendrá que pagarle 16 duros, y el romance dice que quedaron en paz.

–Efectivamente –confirmó Mati –, es por lo que necesitamos imponer la segunda condición, la de quedar en paz, para obtener otra ecuación y conseguir que la solución sea única: como por cada acierto le daban 5 pesetas, y por cada fallo él pagaba 3, si al final quedaron en paz fue porque 5 por x (el número de aciertos) era igual que 3 por y (el número de fallos). Ya tenemos la otra ecuación:

 

gauss_4

 

 

–Pues ya está –anunció Mati –, ya tenemos nuestro sistemas de 2 ecuaciones lineales con  2 incógnitas.

gauss_5

–¿Lineales? –preguntó Ven extrañado.

–Sí, lineales –le explicó Mati –porque las incógnitas no aparecen elevadas a ninguna potencia.

–Y ahora, ¿qué hacemos, Mati? –preguntó el gafotas –¿A quién desenmascaramos primero? ¿A la x o a la y?

–Veréis –anunció la pelirroja –, aunque existen distintos métodos para resolver este tipo de sistemas de ecuaciones, os voy a enseñar el método de Gauss para resolverlas.  

–¡Sí! –gritó el pequeño abrazando a su mascota con riesgo de asfixia –¡Tu método, Gaussito bonito! ¡Tú método!

–Ven, no seas burro –le pidió su hermano –. Vas a despachurrar a Gauss.

Ven lo depositó de nuevo en el suelo, Gauss fingió un desmayo. Él es así. Una vez recuperada la mascota, Mati continuó:

–Para ello, antes que nada, vamos a ordenar un poco la escena del crimen –les dijo guiñando un ojo –. Llevamos a las incógnitas con sus compañeros al término de la izquierda, y los números que no llevan incógnita al término de la derecha.  En nuestro ejemplo, solo tenemos que llevarnos las 3y al término de la derecha en la segunda ecuación, nos la llevamos pero cambiando su signo, pasan como -3y:

gauss_6

–Ahora vamos a construir una cajita especial –les anunció Mati –que llamaremos matriz del sistema. Como son 2 ecuaciones, será una caja con 2 filas (horizontales) y 3 columnas (verticales); una columna para la x, otra para la y y otra para el número que se ha quedado en el término de la derecha, al que llamamos término independiente porque no depende de las incógnitas, ya que no las acompaña.

gauss_7

–Qué caja tan mona –dijo Ven pícaro.

–En realidad, los matemáticos –dijo Mati –no dibujamos la cajita así, sino usando dos paréntesis grandotes, así :

gauss_8

 

–¿Y ahora? –preguntó Sal ansioso.

–Ahora vamos a tratar de conseguir que en la segunda fila, en la columna de la x, aparezca un 0 –les dijo –. Así tendremos en la segunda ecuación, una ecuación con una sola incógnita que es muy fácil de resolver como os enseñé.

–Ya –dijo Ven –, pero eso es hacer un poco de trampa, ¿no, Mati?

–¡Jajajajajaja! –se rio ella –No, tranquilo, lo haremos muy legalmente. Para ello tenemos que buscar un número, que llamaremos N, de forma que al multiplicar el coeficiente de x en la fila 1 (1 en nuestro ejemplo) obtengamos el coeficiente de x en la segunda fila (5) pero con el signo cambiado; o sea, N es el número que multiplicado por 1 nos da -5.

–Muy fácil –dijo Sal –. N es -5.

–Efectivamente -dijo Mati –. Ahora multiplicamos la fila 1 por -5 y se la sumamos  a la fila 2. El resultado será la nueva fila 2 de nuestra matriz.

gauss_9

 

–Veamos cómo queda nuestra nueva matriz del sistema –les dijo.

gauss_10

 

–Escribimos el sistema de ecuaciones asociados a esta nueva matriz –continuó la gafotas.

gauss_11

 

–Ahora fijaos en la segunda ecuación –les pidió.

–¡Toma! –dijo Ven -Esa es muy fácil, solo hay que pasar -8 al término de la derecha pero dividiendo, porque estaba protegiendo a la y multiplicándola.

gauss_12

 

–¡Toma, toma, toma!  ¡Cómo mola! –gritó el pequeño –¡Falló 10 veces, así que acertó 6 y ganó 30 pesetas!

–Bueno –añadió Sal –, en realidad no ganó nada, porque como falló 10 también tuvo que pagar 30 al feriante…

–Ya, ya –respondió Ven –, no seas aguafiestas…

–¿Sabéis? –interrumpió Mati de repente –De repente me apetece subir a la noria, ¿alguien me acompaña?

–¡Yo, yo! –gritó Ven y salió corriendo hacia la noria olvidando la disputa original. Sal y Mati se miraron, sonrieron y le siguieron. Gauss se quedó embobado mirando una perrita piloto que colgaba del puesto.

(*) El romance de esta entrada es de Rafael Rodríguez Vidal en Enjambre matemático.