BLOGS

Entradas etiquetadas como ‘método de Gauss’

Interpolando que es gerundio

–¿Lo has anotado, Ven?

–Claro, Sal, ¿qué te crees? Soy un gran científico.

–Bueno, no siempre Ven, recuerdo aquella vez que…

–Lo siento mucho. Me equivoqué. No volverá a ocurrir.

Nuestros dos amiguitos están haciendo un experimento para ver cómo se enfría el agua que han calentado en el microondas. Para ello, el pequeño Ven está anotando en su cuaderno de científico la temperatura del agua del vaso cada 30 segundos. Sal es el encargado de las mediciones con un termómetro y Gauss permanece atento garantizando la no manipulación de los datos.

–¿Estáis listos, chicos? –pregunta Mati entrando en la habitación –Tenemos que irnos.

–¿Ahora? –preguntó Sal un poco disgustado.

–Sí –dijo ella –. Tenéis que haceros la foto para el DNI si queréis viajar a Lyon a visitar a Fis.

–¿Podemos ir mañana, Mati? –preguntó Ven –Si nos vamos ahora no podemos terminar el experimento…

Mati20M_49p

–Me temo que no, cielo –respondió Mati –. Tenemos que ir ahora.

–Vaya –se quejó Sal sin mucho entusiasmo –, ahora no sabremos cuánto tarda en enfriarse el agua…

–Si queréis –les propuso Mati –, podéis interpolar los datos que habéis obtenido y predecir qué ocurriré dentro de un rato…

–¿Como nos enseñaste el otro día? –preguntó Sal.

–Sí –dijo ella –. Podéis hacerlo como el otro día, resolviendo el sistema de ecuaciones, o bien os puedo enseñar otro método.

–¿Tenemos que encontrar una parábola? –preguntó Ven.

–Depende del número de datos del experimento que tengáis –respondió Mati –, si son solo 3 datos, el polinomio que pasará por esos 3 dato será una parábola. Pero si son más puntos no tiene por qué serlo.

–No me entero, Mati –terminó aceptando el pequeño.

–Voy a tratar de explicarlo –propuso la pelirroja –.  Supongamos que medimos la temperatura en el instante 0, cuando sacamos el agua del microondas y está a 75ºC. Al cabo de 30 segundos, está a 70ºC y los 60 segundos está a 60ºC, a los 90 a 45ºC y a los 120 segundos a 25ºC. Podemos representar en el plano estos datos, dibujando los puntos (0,75), (30, 70), (60, 60), (90, 45) y (120,25). 

interpola_1

 

–Si ahora –les dijo –, conseguimos una curva que pase por todos los puntos amarillos, por ejemplo un polinomio que son las funciones más sencillas…

interpola_2

 

 

–…podríamos intuir cuál era la temperatura  a los 45 segundos –siguió Mati –viendo que valor de la curva corresponde a 45:

interpola_3

 

–¡Toma! ¡Claro! –exclamó Ven –¡Qué chulada!

–Se trata entonces –dijo Sal –de calcular el polinomio que pasa por los 5 puntos amarillos, ¿no?

–Efectivamente –confirmó la gafotas –, como vimos el otro día, como son 5 puntos buscamos un polinomio de grado 4 (o menos) o menor con las siguientes pistas:

interpola_4

–¡Hala! ¡Qué sistema tan grande, Mati!  –exclamó Ven.

–Lo es –aceptó ella.

–¿Lo resolvemos con el método de Gauss? –preguntó el gafotas.

–Se puede resolver con el método de Gauss –dijo la pelirroja — pero os voy a a enseñar otro método de interpolación que calcula el polinomio que pasa por los puntos que queráis sin tener que resolver ningún sistema de ecuaciones.

–Sí, hombre…–dijo Ven –¿Cómo?

–Con el método de interpolación polinómica de Lagrange –anunció Mati –Pero como tenemos que ir a hacernos las fotos y tenemos un poco de prisa, os lo contaré sobre un ejemplo más sencillo, con 3 puntos, no con 5. Si lo quieres con más puntos, se hace igual.

interpola_5

 

–3 puntos…–comenzó diciendo Sal que pensaba en voz alta –, nos sale un polinomio de grado 2… o menos… una parábola, ¿no?

–Efectivamente, Sal –confirmó ella –, como máximo, un polinomio de grado 2. Vamos a etiquetar las coordenadas de estos 3 puntos con x1, x2, x3, y1, y2 e y3, así:

interpola_6

–Ajá –dijo Ven con cara de interesante.

–Para construir el polinomio que pasa por estos 3 puntos –continuó Mati –vamos a construir primero 3 polinomios más pequeñitos, los polinomios de Lagrange, uno por cada punto.

–Ajá –repitió el pequeño.

–Al polinomio correspondiente al primer punto, le llamamos L1 y se calcula como el producto de (x-x2) por (x-x3). Si hubiera más puntos, multiplicaríamos también por (x-x4), por (x-x5), etc… Todos los (x-xk) posibles menos (x-x1) porque estamos con el polinomio L1. Y ahora dividimos por la misma expresión que tenemos en el numerador, pero sustituyendo x por x1. así:

interpola_7

 

–Vamos a sustituir x1, x2, x3 por sus valores, 0,3 y 6 –propuso ella –, a ver que nos queda:

 

interpola_8

 

–Ya tenemos el primer polinomio de Lagrange, L1 –anunció Mati.

–Mola –dijo Sal.

–Para calcular el segundo polinomio de Lagrange,  L2 –continuó ella –, ponemos en el numerador el  producto de (x-x1) por (x-x3). Si hubiera más puntos, multiplicaríamos también por (x-x4), por (x-x5), etc… Todos los (x-xk) posibles menos (x-x2) porque estamos con el polinomio L2.  Y en este caso  dividimos por la misma expresión que tenemos en el numerador, pero sustituyendo x por x2. Vamos a ver que nos queda:

interpola_9

 

 

–Ea –dijo Ven –, pues ya tenemos L2, el segundo polinomio de Lagrange, ¿no, Mati?

–Efectivamente, Ven –confirmó esta –.Nos queda solo el tercero, porque tenemos 3 puntos.

–Vamos allá –dijo Sal con alegría.

–Para calcular el tercer polinomio de Lagrange,  L3 –anunció Mati –, ponemos en el numerador el  producto de (x-x1) por (x-x2). Si hubiera más puntos, multiplicaríamos también por (x-x4), por (x-x5), etc… Todos los (x-xk) posibles menos (x-x3) porque estamos con el polinomio L3.  Y para este polinomio,   dividimos por la misma expresión que tenemos en el numerador, pero sustituyendo x por x3. Nos quedará:

interpola_10

 

 

–Y ahora, ¿qué hacemos? –preguntó Ven impaciente.

–Ahora vamos a construir el polinomio interpolador que pasa por los 3 puntos usando L1, L2 y L3 así –respondió ella –: multiplicando L1 por y1, L2 por y2 y L3 por y3, y sumando los resultados:

interpola_11

 

 

–Sustituimos –continuó Mati — y1, y2 e y3 por sus valores 7, 7 y 6:

interpola_12

–Y por último –dijo la pelirroja –, sustituimos los polinomios de Lagrange por los que hemos calculado antes:

interpola_13

 

–¿Ya hemos terminado? –preguntó el pequeño.

–Casi –contestó ella –. vamos a simplificar este polinomio…

interpola_14

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven.

–Es una parábola –dijo Sal.

–Eso es –confirmó Mati –.Es esta parábola:

interpola_15

 

–Pero fijaos, chicos –señaló Mati –, que los valores y1, y2 e y3 solo los hemos usado al final para calcular el polinomio interpolador. Esto quiere decir, que si hacemos una medida diferente en los instantes 0, 3 y 6, de otra magnitud, por ejemplo, contenido de sal en el agua, para calcular el polinomio interpolador de los datos sobre salinidad, solo tenemos que sustituir y1, y2 e y3 por los datos obtenidos en esa medición.

–Qué interesante… –masculló el gafotas.

–¿Y si hacemos el polinomio de (0,75), (30, 70), (60, 60), (90, 45) y (120,25)? –preguntó el pequeño.

–Nos sale… –dijo Mati misteriosa.

–¡Un polinomio de grado 4! –gritó el gafotas y añadió bajando la voz –O menos…

–Menos, en este caso –anunció ella –, porque nos sale esta parábola: – x2/360- x/12  + 75

interpola_16

 

–Chulísima –dijo Sal –.Ahora podemos saber cómo se enfría el agua…

–Bueno, bueno –dijo Mati –, nos hemos inventado los datos, pero en cualquier caso, las curvas de enfriamiento las estudió Newton, le podéis preguntar a Fis cuando lo veais. Pero, ahora, ¡vamos que se nos hace tarde!

Parábolas, parábolas… tú siempre buscas parábolas

–Ya está –dijo Sal y añadió señalando con su dedo –. Ahora solo pinta una línea así.

–¿Así cómo? –preguntó muy serio Ven –. Deberías ser más técnico en tus instrucciones si quieres ser ingeniero aeroespacial.

–¡Puf! Ya estamos… –resopló el gafotas –. Luego dices que soy yo el empollón…

–Es que, como nos explicó Mati –respondió el aludido –, para definir una recta necesitas o dos puntos o un punto y un vector…

–Mira, Ven –dijo de nuevo Sal –, este, este y este. Toma, 3 puntos ¿No querías 2 puntos para tu recta? Pues toma 3, pinta la recta que pasa por esos 3 puntos.

–Bueno, bueno, bueno… –Mati acababa de llegar –Eso no siempre es posible, Sal.

Mati20Min_48p

–Hola, Mati –la saludó Sal sin apartar la vista de su diseño.

–Hola, Mati –dijo el pequeño –¿Cómo no vas a poder pintar la recta con 3 puntos? ¿No dijiste que necesitábamos 2? Pues con 3 mucho mejor, hombre.

–No, Ven –dijo ella –. Por 1 punto pasan infinitas rectas, por 2 puntos solo una y por 3, puede que ninguna.

parabolas_1

 

–¡Toma! –aceptó el pequeño –¡Es verdad!

–Claro, Ven –dijo Sal –. Yo ya me había dado cuenta en nuestro dibujo…

Ven miró a su hermano con el ceño fruncido, Gauss resopló.

–Pero, ¿sabes, Ven? –dijo rápidamente Mati para aliviar la tensión ambiental –. Por 3 puntos, siempre pasa una única circunferencia.

–Ya lo sé –dijo el pequeño sin perder de vista a su hermano –, nos lo contaste.

–Tienes razón –dijo la pelirroja –, qué buena memoria tienes.

–Es cierto –añadió Sal queriendo congraciarse con su hermano –, Ven tiene muy buena memoria.

–Mirad –dijo la gafotas –Como ya sabéis lo de la circunferencia y sabéis que una circunferencia no es una función, si queréis os cuento cómo calcular una función cuya gráfica pase por esos 3 puntos. Eso sí, si no tienen la misma abscisa.

–¿Cuál era la abscisa, Mati? –preguntó Ven de repente.

La abscisa es la coordenada horizontal –dijo Mati –, la que mide la distancia al eje de ordenadas, ¿recuerdas?

–Sí, sí –dijo Ven.

–¿Y por qué no pueden tener la misma abscisa, Mati? –quiso saber el gafotas.

–Porque si queremos que sea una función –respondió ella — para un valor de la x, de la abscisa, no puede tener más de un valor de la y, la ordenada.

–No entiendo –aceptó Ven.

–A ver –siguió ella –No podemos dibujar la gráfica de una función que pase por los puntos (3, 6) y (3, 8), por ejemplo. Porque la segunda coordenada del punto representa el valor de la función, y en este ejemplo, para x igual a 3, tendríamos dos posibles valores de la función, 6 y 8.

–Ah, vale –aceptó el pequeño.

–¿Y cómo será esa función, Mati? –preguntó Sal –¿Será muy rara o parecida a una recta?

–La gráfica de la función que pasa por 3 puntos que no estén alineados, –dijo esta –y que tengan distintas abscisas, será una parábola.

–¡Toma! Esa la conozco –dijo Ven –, es la curva de los tiros parabólicos de fútbol, ¿no?

parabola-soccer

–Eso es, Ven –dijo Mati -, esa será la forma de nuestra función.

–¿Y cómo sabes que siempre se puede, Mati? –preguntó Sal curioso.

–Porque dados 3 puntos no alineados y con abscisas distintas –respondió ella –, siempre existe un polinomio de grado 2 que pasa por esos 3 puntos, y la gráfica de un polinomio de grado 2 es una parábola.

-¿Un poliqué? –preguntó Ven arrugando la carita.

–Un polinomio –dijo ella –. Una función (de x) que se escribe como suma de potencias (naturales)  de x multiplicadas por unos números, que llamamos coeficientes. Mira, te pongo unos ejemplos:

parabolas_2

 

 

–¿Cómo son esos grados, Mati?  –preguntó Ven con cara de pillo —¿Celsius o Fahrenheit?

–No, Ven –respondió la pelirroja –, el grado de un polinomio es el valor de la potencia más alta de x que aparece. En el polinomio f1 la potencia más grande es 4, en el polinomio f2 es y en el polinomio fla más grande es 3.

–¡Quietos, parados! –exclamó Ven –Hay números sin potencias de x en los polinomios fy  f3.

–Sí, es como si x estuviera elevada a 0 -dijo ella –por eso no aparece, por que x elevado a 0 es 1. A esos números que aparecen sin x, se les llama términos independientes, porque como no multiplican a x, no dependerán del valor de esta.

parabolas_3

–¿Qué tienen de especial los polinomios, Mati? –preguntó Sal.

–Huy, un montón de cosas –respondió ella –. Son las funciones más simples que hay y, entre otras cosas, se usan para dar valores aproximados de otras funciones mucho más difíciles, pero eso os lo cuento más adelante. Ahora os voy a enseñar a encontrar un polinomio de grado 2, una parábola, que pase por 3 puntos no alineados y con abscisas diferentes.

–¡Venga! –exclamó Ven con alegría.

–Decidme 3 puntos, chicos –pidió Mati.

–A ver… (1,6) –dijo el pequeño –… (2,13)...

–Y (0,3) –apuntó el gafotas.

–Muy bien –dijo ella –. Queremos un polinomio de grado 2, una parábola que pase por estos tres puntos {(0,3), (1,6), (2,13)}. El polinomio que buscamos tiene esa pinta: ax²+bx+c.

–¿Qué son esas letras, Mati? –preguntó Ven.

¿a, b y c? –preguntó Mati y añadió con voz misteriosa  –Son las incógnitas que tenemos que descubrir…

–¿Cómo las descubrimos? –preguntó el gafotas.

–Con un poco de inteligencia -dijo ella guiñando un ojo –. Vamos a ir apuntando las pistas que tenemos:

parabolas_4

–¡Toma! –dijo Ven –Parecemos detectives.

–A ver, Ven Holmes –dijo Mati teatrera –¿Qué sabemos de la función?

El pequeño se quedó pensativo y dijo:

–Se le ha visto pasar por (0,3).

–Hum –Mati se rascó la barbilla –Eso significa que f(0) debe valer 3, vamos a sustituir x por 0, a ver qué pasa…

parabolas_5

 

–¿Tenemos más pistas, Sal Poirot? –preguntó Mati.

–Sí, Mati Marple –dijo el gafotas–. También pasó por (1,6).

–Ajá –dijo la pelirroja, eso significa que f(1) es 6.

parabolas_6

 

–Hum, estamos cerca… –dijo Mati –¿Puede aportar algo, Gauss Colombo?

–Guau, guuuuauuuu, guaaaaau

–Dice Colombo que también pasó por (2,13) -dijo Ven divertido.

–Vaya, vaya –dijo ella –, así que f(2) es 13

parabolas_7

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó Ven.

–Me encanta, Mati –dijo Sal.

–¿Os gusta? –dijo Mati –En realidad, lo que hemos hecho es resolver este sistema de ecuaciones:

parabolas_8

 

–¿También se puede resolver con el método de Gauss que nos enseñaste? –preguntó Sal.

–Efectivamente –respondió ella –, podéis elegir hacerlo como queráis.

–¿Pintamos la parábola, Mati? –pidió Ven.

–Os tengo que enseñar a dibujar funciones –dijo ella –, pero hoy la dibujamos con Google.

parabolas_9

–Es preciosa… –dijo el pequeño Ven.

–Entonces, si tenemos 3 puntos con abscisas diferentes -dijo Sal –, siempre tenemos una parábola.

–Si no están alineados, en cuyo caso sería una recta,  –corrigió Mati y añadió con un guiño –,una parábola chafada.

–¿Y si tenemos 4 puntos, Mati? –preguntó el gafotas.

–En ese caso, si repetimos este procedimiento –les contó –llegaremos un polinomio que pase por ellos de grado,  como máximo 3. Pero podrá ser de grado 2, y que los 4 estén sobre una parábola, o de grado 1, que estén alineados…

–¡Mola! –dijo Ven.

–A esto –continuó Mati –, a buscar polinomios que pasen por un conjunto de puntos se le llama interpolación polinómica. Otro día os explico para qué se utiliza y otras formas de hacerlo sin resolver sistemas de ecuaciones, ¿vale?

–¡Vale! –exclamó de nuevo Ven.

–¿Y con 5 puntos, Mati? –siguió indagando Sal.

–Con 5 puntos, tendríamos un sistema de 5 ecuaciones con 5 incógnitas, tantas como puntos –respondió esta –, que nos daría como función sospechosa un polinomio de grado, como máximo, 4.

–Claro –dijo el gafotas –, porque si están alineados, será un polinomio de grado 1, una recta…

–¿Qué forma tiene un polinomio de grado 4, Mati? –preguntó el pequeño.

–Vamos a mirar uno en Google –les propuso.

parabolas10

 

–¡Me gustan los polinomios! –gritó Ven.

–Como dice un amigo mío, –dijo Mati con una sonrisa — a mí también, pero solo hasta cierto grado.

 

Con Gauss en el super

–Vamos, Ven –dijo Sal –. Estoy deseando llegar para prepararnos la merienda.

–Voy todo lo rápido que puedo, Sal –respondió el pequeño –, pero es que estas manzanas pesan mucho.

–No te quejes, enano –dijo el gafotas –, que yo llevo todo el queso…

–Claro, como te has comprado todo el queso del super… –protestó el pequeño — Oye, Sal, ¿te puedo hacer una pregunta?

–Dime.

–¿¿Cuánto te has gastado en queso?? –le espetó Ven un poco ofuscado.

Mati20Blogs_43p_b

–No tanto… –respondió este –¿Por qué?

–Porque mamá te avisó de que no te pasaras comprando queso, ¿sabes?

–Bueno –se defendió el mayor –, mamá nos dio 20 € y nos han sobrado 4. No lo hemos gastado todo y hemos comprado también manzanas y pan.

–Ya, pero las manzanas y el pan eran más baratas –insistía Ven en su reprimenda.

–No te creas –siguió el gafotas –, en manzanas hemos gastado el doble que en pan.

–¿Y en queso? –continuó el pequeño en su indagación.

–En queso sólo el triple que en pan –dijo Sal y añadió bajando la voz —más lo que hemos gastado en manzanas.

–¿Y eso cuánto es? –preguntó Ven cada vez más impaciente.

–Huy, eso se puede calcular muy bien resolviendo un sistema de ecuaciones –intervino Mati que había estado pendiente de la conversación mientras los acompañaba de vuelta a casa.

–Ea, pues ya sabes, Ven –concluyó el gafotas –, solo tienes que resolver el sistema de ecuaciones que dice Mati.

–¿Qué ecuaciones, Mati? ..preguntó el pequeño –¿Cuál es la incógnita?

–Las, las incógnitas –dijo esta –. Son tres en este caso: lo que habéis gastado en manzanas, lo que habéis gastado en pan y lo que habéis gastado en queso.

–¿¿3 incógnitas?? –el gafotas se interesó de pronto en la conversación –Solo sabemos resolver sistemas de 2 ecuaciones con 2 incógnitas.

–Sí –confirmó Mati –, pero el mismo método de Gauss que os enseñé para sistemas de 2 ecuaciones con 2 incógnitas se puede usar para sistemas de 3 ecuaciones con 3 incógnitas.

–¿Seguro? –preguntó Sal desconfiado –¿Cómo?

–Os lo explico con vuestra compra –les dijo Mati –. Vamos a definir las incógnitas del problema.

 

gauss2_1

 

–Esto tiene pinta de ser muy difícil… –dijo Ven por lo bajini.

–Para nada, Ven –dijo ella –, ya verás. Ahora vamos a ir escribiendo las ecuaciones con los datos que me habéis dicho ¿Cuánto habéis gastado en total?

–¡16 €! –se apresuró a contestar el pequeño.

–Ajá, eso significa que la suma de las 3 incógnitas es igual a 16.

 

gauss2_2

 

–En manzanas hemos gastado el doble que en pan –añadió el gafotas.

–Muy bien –dijo la pelirroja –, vamos a expresar ese dato como otra ecuación:

 

gauss2_3

 

 

–Sí, pero en queso hemos gastado el triple que en pan más lo que hemos gastado en manzanas –dijo Ven con vehemencia.

–Ese dato –dijo Mati –lo expresaremos de la siguiente forma:

 

gauss2_4

 

–¿3 ecuaciones? –preguntó Ven con cara de espanto.

–Sí –le respondió Mati –. Si queremos tener un solución única, necesitamos, al menos,  tantas ecuaciones como incógnitas, como nos pasaba el otro día. Ya tenemos nuestro sistema de ecuaciones:

 

gauss2_5

 

–¿Y ahora? –preguntó impaciente el gafotas.

–Ahora –les dijo –ordenamos la escena del crimen, poniendo todas las incógnitas en el término de la izquierda:

gauss2_6

–¿Ahora tenemos que escribir la cajita de coeficientes, Mati?  –preguntó Sal.

–Efectivamente –confirmo esta –.Vamos a escribir la matriz de coeficientes:

 

gauss2_7

 

 

–Ahora –continuó Mati –la escribimos como nos gusta a los matemáticos…

 

gauss2_8

 

–¿Qué hacemos ahora, Mati? –preguntó el pequeño.

–Lo que tenemos que conseguir operando con las filas –dijo ella –es transformar en 0 los números que os marco con círculos  en la matriz:

 

gauss2_9

 

 

–Empezamos con el número del círculo rojo –propuso Mati –. Como es un 1 igual que el mismo número en su posición en la Fila 1, sólo tenemos que calcular Fila 2 menos la Fila 1, y sustituir la Fila 2 por la nueva fila obtenida:

 

gauss2_10

 

–Con esto, la matriz de coeficientes se transforma en la siguiente: -dijo la pelirroja.

 

gauss2_11

 

–Le toca el turno –anunció ella –al número en el círculo verde. Como es -1 y en la Fila 1 en esa columna tenemos un 1, bastará con sumar la Fila 3 con la Fila 1, y sustituir la Fila 3 por la nueva fila obtenida.

 

gauss2_12

 

–Sustituimos en la matriz de coeficientes –continuó Mati –la Fila 3 por la nueva fila obtenida

 

gauss2_13

 

–¡Eh, el número del círculo amarillo ha cambiado! –exclamó Ven.

–Efectivamente –dijo Mati –si hubiese cambiado a 0 ya habríamos acabado. Pero no, aún no es 0. Tenemos que seguir currando. Pero antes que nada, fijaos que todos los coeficientes de la Fila 3 son pares, todos son divisibles por 2.

–Ajá –dijeron los dos hermanos al unísono.

Cuando toda una fila es divisible por un número -dijo Mati —podemos dividir la fila por ese número en cuestión y así trabajaremos con números más pequeños.

–¡Mola! -dijo Ven, Sal lo miró muy serio.

–Si dividimos la Fila 3 por 2, nos quedará:

 

gauss2_14

 

–Otra vez ha cambiado el número del círculo amarillo, Mati –advirtió el pequeño.

–Sí, pero sigue sin ser 0 –respondió Mati –. Para conseguir que el -1 en el círculo amarillo sea 0, ahora usamos la Fila 2, porque si usamos la Fila 1 podríamos perder el 0 del círculo verde que acabamos de conseguir.

–Ajá –repitió Ven, Sal esta vez no lo miró.

–Tenemos que multiplicar el número de la Fila 2 correspondiente a la columna de nuestro círculo amarillo, el -3 en nuestro ejemplo, por un número para que el resultado sea 1 y al sumarlo a la Fila 3, nuestro -1 se convierta en un 0.

–Eso es imposible –dijo Ven.

–¿Por qué? –preguntó ella.

–Ningún número multiplicado por -3 da como resultado 1 –dijo el pequeño.

–Eso no es verdad –intervino el gafotas –Si multiplicas -1/3 por -3, el resultado es 1.

–Ajá –dijo de nuevo Ven rascándose la barbilla. Gauss resopló,

–Muy bien, chicos –continuó Mati –. Multiplicaremos la Fila 2 por -1/3 y lo sumaremos a la Fila 3, el resultado será la nueva Fila 3 de la matriz de coeficientes.

 

gauss2_15

 

–Ahora tenemos la matriz:

 

gauss2_16

 

–Mati –dijo Sal —¿podemos multiplicar la última fila por 3 para quitar los denominadores?

–Podemos –confirmó ella.

gauss2_17

 

–Pero ahora –dijo Ven excitado —¡se puede dividir la Fila 3 por 4!

–Ajá –dijo Mati cómica –, podemos.

gauss2_18

 

–Ya no podemos hacer nada más –se lamentó Ven.

–Bueno –dijo Mati –, vamos a escribir el sistema de ecuaciones asociado a esta matriz y ya veréis que fácil es resolverlo:

gauss2_19

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó el pequeñajo –Ya sabemos que z vale 10 –Ven hizo un pausa –¿¿Te has gastado 10 € en queso??

–No es tanto, Ven –se defendió el gafotas –, es un queso francés y estaba en oferta.

–¿Cuánto hemos gastado en pan, chicos? –preguntó Mati tratando de desviar la conversación –Podéis calcularlo muy fácilmente con la segunda ecuación, sustituyendo z por 10.

Los niños se pusieron a calcular lo que Mati había propuesto.

gauss2_20

–Hemos gastado 2 € en pan, Mati –anunció Ven.

–Y como en total hemos gastado 16 € –añadió su hermano –, hemos gastado 4 € en manzanas.

–¡Muy bien, chicos! –exclamó Mati con alegría –. Ya os dije que el método de Gauss también servía para 3 ecuaciones, y para 4, para 5…

–¡¡Gaussito es el mejor!! –gritó Ven tomando a su mascota en brazos.

–Lo es –apostilló el gafotas –, pero vamos ya a casa que quiero mi bocata de queso.