Entradas etiquetadas como ‘Gauss’

Con Gauss en el super

–Vamos, Ven –dijo Sal –. Estoy deseando llegar para prepararnos la merienda.

–Voy todo lo rápido que puedo, Sal –respondió el pequeño –, pero es que estas manzanas pesan mucho.

–No te quejes, enano –dijo el gafotas –, que yo llevo todo el queso…

–Claro, como te has comprado todo el queso del super… –protestó el pequeño — Oye, Sal, ¿te puedo hacer una pregunta?

–Dime.

–¿¿Cuánto te has gastado en queso?? –le espetó Ven un poco ofuscado.

Mati20Blogs_43p_b

–No tanto… –respondió este –¿Por qué?

–Porque mamá te avisó de que no te pasaras comprando queso, ¿sabes?

–Bueno –se defendió el mayor –, mamá nos dio 20 € y nos han sobrado 4. No lo hemos gastado todo y hemos comprado también manzanas y pan.

–Ya, pero las manzanas y el pan eran más baratas –insistía Ven en su reprimenda.

–No te creas –siguió el gafotas –, en manzanas hemos gastado el doble que en pan.

–¿Y en queso? –continuó el pequeño en su indagación.

–En queso sólo el triple que en pan –dijo Sal y añadió bajando la voz —más lo que hemos gastado en manzanas.

–¿Y eso cuánto es? –preguntó Ven cada vez más impaciente.

–Huy, eso se puede calcular muy bien resolviendo un sistema de ecuaciones –intervino Mati que había estado pendiente de la conversación mientras los acompañaba de vuelta a casa.

–Ea, pues ya sabes, Ven –concluyó el gafotas –, solo tienes que resolver el sistema de ecuaciones que dice Mati.

–¿Qué ecuaciones, Mati? ..preguntó el pequeño –¿Cuál es la incógnita?

–Las, las incógnitas –dijo esta –. Son tres en este caso: lo que habéis gastado en manzanas, lo que habéis gastado en pan y lo que habéis gastado en queso.

–¿¿3 incógnitas?? –el gafotas se interesó de pronto en la conversación –Solo sabemos resolver sistemas de 2 ecuaciones con 2 incógnitas.

–Sí –confirmó Mati –, pero el mismo método de Gauss que os enseñé para sistemas de 2 ecuaciones con 2 incógnitas se puede usar para sistemas de 3 ecuaciones con 3 incógnitas.

–¿Seguro? –preguntó Sal desconfiado –¿Cómo?

–Os lo explico con vuestra compra –les dijo Mati –. Vamos a definir las incógnitas del problema.

 

gauss2_1

 

–Esto tiene pinta de ser muy difícil… –dijo Ven por lo bajini.

–Para nada, Ven –dijo ella –, ya verás. Ahora vamos a ir escribiendo las ecuaciones con los datos que me habéis dicho ¿Cuánto habéis gastado en total?

–¡16 €! –se apresuró a contestar el pequeño.

–Ajá, eso significa que la suma de las 3 incógnitas es igual a 16.

 

gauss2_2

 

–En manzanas hemos gastado el doble que en pan –añadió el gafotas.

–Muy bien –dijo la pelirroja –, vamos a expresar ese dato como otra ecuación:

 

gauss2_3

 

 

–Sí, pero en queso hemos gastado el triple que en pan más lo que hemos gastado en manzanas –dijo Ven con vehemencia.

–Ese dato –dijo Mati –lo expresaremos de la siguiente forma:

 

gauss2_4

 

–¿3 ecuaciones? –preguntó Ven con cara de espanto.

–Sí –le respondió Mati –. Si queremos tener un solución única, necesitamos, al menos,  tantas ecuaciones como incógnitas, como nos pasaba el otro día. Ya tenemos nuestro sistema de ecuaciones:

 

gauss2_5

 

–¿Y ahora? –preguntó impaciente el gafotas.

–Ahora –les dijo –ordenamos la escena del crimen, poniendo todas las incógnitas en el término de la izquierda:

gauss2_6

–¿Ahora tenemos que escribir la cajita de coeficientes, Mati?  –preguntó Sal.

–Efectivamente –confirmo esta –.Vamos a escribir la matriz de coeficientes:

 

gauss2_7

 

 

–Ahora –continuó Mati –la escribimos como nos gusta a los matemáticos…

 

gauss2_8

 

–¿Qué hacemos ahora, Mati? –preguntó el pequeño.

–Lo que tenemos que conseguir operando con las filas –dijo ella –es transformar en 0 los números que os marco con círculos  en la matriz:

 

gauss2_9

 

 

–Empezamos con el número del círculo rojo –propuso Mati –. Como es un 1 igual que el mismo número en su posición en la Fila 1, sólo tenemos que calcular Fila 2 menos la Fila 1, y sustituir la Fila 2 por la nueva fila obtenida:

 

gauss2_10

 

–Con esto, la matriz de coeficientes se transforma en la siguiente: -dijo la pelirroja.

 

gauss2_11

 

–Le toca el turno –anunció ella –al número en el círculo verde. Como es -1 y en la Fila 1 en esa columna tenemos un 1, bastará con sumar la Fila 3 con la Fila 1, y sustituir la Fila 3 por la nueva fila obtenida.

 

gauss2_12

 

–Sustituimos en la matriz de coeficientes –continuó Mati –la Fila 3 por la nueva fila obtenida

 

gauss2_13

 

–¡Eh, el número del círculo amarillo ha cambiado! –exclamó Ven.

–Efectivamente –dijo Mati –si hubiese cambiado a 0 ya habríamos acabado. Pero no, aún no es 0. Tenemos que seguir currando. Pero antes que nada, fijaos que todos los coeficientes de la Fila 3 son pares, todos son divisibles por 2.

–Ajá –dijeron los dos hermanos al unísono.

Cuando toda una fila es divisible por un número -dijo Mati —podemos dividir la fila por ese número en cuestión y así trabajaremos con números más pequeños.

–¡Mola! -dijo Ven, Sal lo miró muy serio.

–Si dividimos la Fila 3 por 2, nos quedará:

 

gauss2_14

 

–Otra vez ha cambiado el número del círculo amarillo, Mati –advirtió el pequeño.

–Sí, pero sigue sin ser 0 –respondió Mati –. Para conseguir que el -1 en el círculo amarillo sea 0, ahora usamos la Fila 2, porque si usamos la Fila 1 podríamos perder el 0 del círculo verde que acabamos de conseguir.

–Ajá –repitió Ven, Sal esta vez no lo miró.

–Tenemos que multiplicar el número de la Fila 2 correspondiente a la columna de nuestro círculo amarillo, el -3 en nuestro ejemplo, por un número para que el resultado sea 1 y al sumarlo a la Fila 3, nuestro -1 se convierta en un 0.

–Eso es imposible –dijo Ven.

–¿Por qué? –preguntó ella.

–Ningún número multiplicado por -3 da como resultado 1 –dijo el pequeño.

–Eso no es verdad –intervino el gafotas –Si multiplicas -1/3 por -3, el resultado es 1.

–Ajá –dijo de nuevo Ven rascándose la barbilla. Gauss resopló,

–Muy bien, chicos –continuó Mati –. Multiplicaremos la Fila 2 por -1/3 y lo sumaremos a la Fila 3, el resultado será la nueva Fila 3 de la matriz de coeficientes.

 

gauss2_15

 

–Ahora tenemos la matriz:

 

gauss2_16

 

–Mati –dijo Sal —¿podemos multiplicar la última fila por 3 para quitar los denominadores?

–Podemos –confirmó ella.

gauss2_17

 

–Pero ahora –dijo Ven excitado —¡se puede dividir la Fila 3 por 4!

–Ajá –dijo Mati cómica –, podemos.

gauss2_18

 

–Ya no podemos hacer nada más –se lamentó Ven.

–Bueno –dijo Mati –, vamos a escribir el sistema de ecuaciones asociado a esta matriz y ya veréis que fácil es resolverlo:

gauss2_19

 

–¡Toma, toma, toma! ¡Cómo mola! –gritó el pequeñajo –Ya sabemos que z vale 10 –Ven hizo un pausa –¿¿Te has gastado 10 € en queso??

–No es tanto, Ven –se defendió el gafotas –, es un queso francés y estaba en oferta.

–¿Cuánto hemos gastado en pan, chicos? –preguntó Mati tratando de desviar la conversación –Podéis calcularlo muy fácilmente con la segunda ecuación, sustituyendo z por 10.

Los niños se pusieron a calcular lo que Mati había propuesto.

gauss2_20

–Hemos gastado 2 € en pan, Mati –anunció Ven.

–Y como en total hemos gastado 16 € –añadió su hermano –, hemos gastado 4 € en manzanas.

–¡Muy bien, chicos! –exclamó Mati con alegría –. Ya os dije que el método de Gauss también servía para 3 ecuaciones, y para 4, para 5…

–¡¡Gaussito es el mejor!! –gritó Ven tomando a su mascota en brazos.

–Lo es –apostilló el gafotas –, pero vamos ya a casa que quiero mi bocata de queso.

Las sumas del Príncipe

El Príncipe fue un prodigio no solo para las matemáticas, sino también para otras disciplinas, pero las lenguas de forma muy especial. A pesar de ser el Príncipe, nació en una familia muy humilde, pero supo aprovechar las oportunidades que se le brindaron. Contó con el mecenazgo del duque de Brunswick, lo que le permitió estudiar bachillerato, tiempo en el que se estableció una curiosa relación con su profesor de matemáticas, Martin Bartels. Efectivamente, pronto su profesor comprendió que sería más provechoso para ambos estudiar juntos  y así se adentraron en las obras de autores como Euler, Newton o Lagrange. Leyendo a dichos monstruos, el Príncipe se dio cuenta del poco rigor que muchas veces caracterizaban sus obras y se propuso no caer en dicho error, dicha determinación ha marcado de manera fundamental la matemática desde su tiempo.

Pero no se trata aquí de contar la vida de Carl Friedrich Gauss, también conocido como el Príncipe de las matemáticas, sino de a través de una anécdota de su vida ( aunque parece que más que una anécdota es una leyenda) tratar de introducir un método de demostración que muchas veces es despreciado por los propios matemáticos profesionales.

Pero mejor vamos por partes, como Dexter… Para el público profano conviene decir que ya desde la época de Euclides hasta nuestros días las matemáticas han establecido un procedimiento de trabajo que se ha mostrado sumamente eficaz y que ha permitido mandar el hombre a la Luna y que yo pueda estar escribiendo esto en mi casa y que le llegue al lector en cualquier parte del mundo donde se encuentre (por citar solo dos ejemplos). Dicho procedimiento consiste en partir de unos principios fácilmente asumibles por todos (axiomas) y a partir de ellos enunciar y demostrar teoremas que servirán para enunciar y demostrar otros teoremas. Lo curioso es que desde la época de Euclides hasta la juventud de Gauss (finales del siglo XVII) el concepto de rigor en la demostración no había evolucionado casi nada. Hoy en día ese rigor es una de las bases de las matemáticas, en gran parte gracias a nuestro Príncipe. Es algo que a los profanos les cuesta mucho asumir, que las demostraciones han de hacerse con un rigor  que permite establecer unas bases sólidas de la disciplina y así poder utilizar con toda seguridad los teoremas de otros para seguir avanzando en el conocimiento matemático.

Pero de nuevo me despisto: ¡la anécdota, tengo que contar la anécdota!  Se dice que estando Gauss en la escuela elemental (entre los siete y los nueve años), su profesor mandó a los alumnos sumar todos los números del 1 al 100. Supongo que el profesor tenía algunas tareas que hacer y por eso ordenó a sus alumnos esa labor tan rutinaria y pesada. El problema para el bueno de Büttner (ese era su profesor) fue que al cabo de segundos el pequeño Gauss proclamó: «Ligget se’» (ya está). Pasada la hora, cuando el resto de sus compañeros fueron completando la suma, se comprobó que la solución de nuestro Príncipe era de las únicas acertadas.

¿Cómo llegó Gauss a esa solución?

Parece claro que dedujo de alguna forma u otra la fórmula de la progresión aritmética (una sucesión de números está en progresión aritmética si cada número se obtiene del anterior sumándole una cantidad fija, en el caso de los números del 1 al 100 cada término se obtiene sumando 1 al número anterior). Así parece que el pequeño Gauss en vez de sumar los números en orden, esto es: 1+2+3+… se le ocurrió agruparlos el primero con el último (1+100), el segundo con el penúltimo (2+99) y así sucesivamente (3+98, 4+97, 5+96… ) y vio que todas esas parejas sumaban lo mismo: 101. Así que no tenía más que multiplicar 101 por el número de parejas que se obtenía (50) para conseguir el resultado 5050. Mati lo contó con más detalle en esta mateaventura.

Pero me gustaría mostrar otra forma de llegar a la misma conclusión con una sola imagen. Para simplificar, supongamos que queremos sumar los naturales 1+2+3+4+5+6+7+8+9+10 (el razonamiento es el mismo para 100 o 1.000 números, pero me cansaría de pintar tantos puntitos), esta suma es el número de puntos rojos en la siguiente figura:

Efectivamente, en la última fila (fila en matemáticas es horizontal, vertical es columna) hay un punto rojo, en la anterior dos, etc. Pero, ¿cuántos puntos hay en total? Puesto que es un rectángulo 10×11, tenemos 110 puntos y, de ellos, la mitad son rojos, esto es: 55, por lo tanto, la suma 1+2+3+4+5+6+7+8+9+10 es igual a 55.

Si queremos sumar los mil primeros números dibujaríamos un rectángulo 1000×1001 con la mitad de los puntos rojos y la mitad grises, por tanto la suma de los mil primeros naturales es 1001000/2=500500.

Pues sí, otro ejemplo más de que una imagen puede demostrar lo mismo que mil o más palabras 🙂