Entradas etiquetadas como ‘paleontología’

Esto es lo que quedará de nuestro mundo cuando hayamos desaparecido

En 2007 el periodista y escritor Alan Weisman publicó The World Without Us (El mundo sin nosotros), un aclamado ensayo en el que imaginaba qué sería del mundo si los humanos desapareciéramos por completo de la noche a la mañana. Naturalmente, la premisa planteada por Weisman no era novedosa; ha sido propuesta incontables veces en la ciencia ficción, antes y después de su libro. Pero a diferencia de otras obras, Weisman trató de ir más allá de la mera fantasía para plantear escenarios creíbles, para lo cual contó con la asesoría de varios expertos en diversas ramas científicas.

Así, el autor describía cómo la vegetación comenzaba a colonizar las ciudades y las construcciones comenzaban a ceder y derrumbarse por la acción de los elementos, mientras los suelos cedían por la acción de las corrientes subterráneas. Cientos, miles y cientos de miles de años después del fin de la humanidad, nuestro legado permanecería en forma de cacharros de acero inoxidable, piezas de electrodomésticos, estatuas de bronce, construcciones como el Monte Rushmore de EEUU o el eurotúnel del Canal de la Mancha –inundado, pero aún ahí–, residuos radiactivos y, cómo no, plástico, mucho plástico.

El libro de Weisman sigue y seguirá incluso más vigente que el día de su publicación; no porque el fin súbito de la humanidad sea algo más probable hoy que entonces, sino porque en los últimos años ha cobrado fuerza entre los científicos la propuesta de declarar oficialmente el fin del Holoceno, el periodo geológico que comenzó al terminar la última glaciación hace unos 12.000 años, y dar la bienvenida al Antropoceno, la era del ser humano.

Las épocas geológicas son los capítulos de la historia de la Tierra que quedan grabados en los estratos de roca del suelo, cada uno con su composición particular. Geólogos, paleontólogos, paleobiólogos o paleoclimatólogos leen estas páginas de roca para comprender cómo era el mundo en cada periodo del pasado. Desde hace décadas, los científicos debaten cómo nuestra época dejará una huella definida en ese libro rocoso de la Tierra a través de nuestros residuos plásticos, las construcciones de hormigón, las pruebas nucleares, el boom poblacional o el cambio climático antropogénico.

En 2016, el Grupo de Trabajo del Antropoceno de la Comisión Internacional de Estratigrafía (CIE) decidió votar la declaración oficial de esta nueva época geológica, cuyo comienzo se situaría en torno a 1950, con los primeros ensayos nucleares. El pasado año este grupo aprobó la presentación de una propuesta formal que la CIE deberá votar en 2021.

Esa capa rocosa del Antropoceno será todo lo que quedará de nuestro mundo millones de años en el futuro, cuando el ser humano haya desaparecido. Quizá entonces alguien, si es que existe algún alguien que no seamos nosotros, excavará y analizará esos estratos en busca de los testimonios de nuestra época. Y entre los distintos artefactos y materiales, cuando los paleontólogos de ese lejano mañana estudien los fósiles del Antropoceno para entender cómo era entonces la vida terrestre, ¿qué encontrarán? Por supuesto, a nosotros. Pero también algo más:

Sobre todo, huesos de pollo.

Huesos de pollo. Imagen de pixabay.

Huesos de pollo. Imagen de pixabay.

Sí, los huesos de pollo se contarán entre los restos fósiles que mejor definirán nuestra época. Desde sus orígenes salvajes en Asia, este animal se ha convertido desde mediados del siglo XX en uno de los alimentos más consumidos del mundo: cada año se comen unos 60.000 millones de pollos en todo el planeta. La mayoría de sus restos acaban en vertederos; cuando estos se fosilicen, allí quedará para siempre la huella del ave más abundante de la era humana.

Junto a los pollos, también se encontrarán a mansalva fósiles de vacas, ovejas, cabras y cerdos. Esta es la conclusión de la paleobióloga Karen Koy y el paleontólogo Roy Plotnick, que acaban de publicar un estudio en la revista Anthropocene en el que han condensado la información de más de 200 trabajos previos para entender cómo será el registro fósil del Antropoceno.

Según Plotnick y Koy, entre tal avalancha de fósiles de humanos y sus animales –que incluyen también perros y gatos–, será difícil encontrar restos de alguna especie salvaje. Además, añaden los autores, los cementerios y vertederos ofrecerán mejores condiciones de conservación de los restos que los lugares de fosilización natural, por lo que a esos hipotéticos paleontólogos del futuro les costará mucho hacerse una idea de cómo era la biodiversidad salvaje de nuestra época. «La posibilidad de que un animal salvaje forme parte del registro fósil es muy pequeña», escriben. Una posible excepción, dicen, serían ciertos animales de caza como el ciervo.

¿Qué llegarán a saber de nosotros esos hipotéticos visitantes del futuro? Por desgracia y a no ser que encontremos un modo de preservar toda la información de nuestra civilización en un formato que resista el paso de los evos y que no necesite un soporte tecnológico para ser leída e interpretada, solo podremos pasar a la historia del universo, si llega a existir tal cosa, como los comedores de pollo.

El grave error de concepto sobre nosotros y los neandertales

En este blog es algo consuetudinario que nunca se entra en política, en el sentido de jalear o vilipendiar a uno de los bandos concretos solo por el hecho de ser uno de los bandos concretos; para eso ya están otros. Pero también es algo consuetudinario que aquí se abomina del hecho de estar gobernados por ignorantes, sobre todo en cuestiones relacionadas con la ciencia, y que aquí sí se atiza por igual a derecha e izquierda cuando quienes ostentan el poder o aspiran a ostentarlo demuestran su vasta, o basta, incultura científica.

Habrán imaginado que me refiero a las alusiones a los neandertales que circulan esta semana por los medios a propósito de las declaraciones de un candidato político, quien dijo –entre otras cosas– que los neandertales les cortaban la cabeza a los bebés recién nacidos. Este ejercicio de bocachancla ya ha levantado suficiente polvareda, pero aquí lo traigo por un motivo diferente que no solo afea al susodicho, sino también a quienes le han vituperado afirmando que el neandertal es él. Porque están igual de equivocados.

Al parecer, el candidato ha matizado sus palabras, pero hasta donde sé, sin referirse específicamente a los neandertales. Porque en cualquier caso, están extinguidos, así que esto no resta votos. Si se le hubiera escapado que los negros o los orientales cortan la cabeza a sus bebés recién nacidos, quién duda de que habría rectificado de inmediato. Y si piensan que con esto estoy comparando a los negros o los orientales con los neandertales, han acertado; estoy comparando a los negros y a los orientales con los neandertales, y también a los blancos. Porque todos tienen en común el hecho de ser igualmente humanos.

Pregunta de Trivial: ¿qué homininos tienen el récord del cerebro más grande de toda nuestra familia evolutiva? No, no somos nosotros, sino los neandertales.

Cráneo de Homo sapiens (izquierda) frente a otro de neandertal. Imagen de hairymuseummatt (original photo), DrMikeBaxter (derivative work) / Wikipedia.

Cráneo de Homo sapiens (izquierda) frente a otro de neandertal. Imagen de hairymuseummatt (original photo), DrMikeBaxter (derivative work) / Wikipedia.

Pero es cierto que dejar el dato ahí sería una pequeña trampa, dado que en los humanos nunca se ha demostrado una correlación clara y directa entre el tamaño del cerebro y eso que entendemos como inteligencia. Los neandertales probablemente tenían el cerebro más voluminoso que nosotros porque su corteza visual estaba más desarrollada.

Por lo demás, iría siendo hora ya de meternos de una vez en ese gran cerebro nuestro que los neandertales no eran esos cavernícolas gorileros encorvados y con el garrote sobre el hombro. Aunque los expertos aún se resisten a cerrar el debate sobre si ejercían el pensamiento simbólico y tenían lo que llamamos cultura o arte, eran humanos sofisticados; no tanto como nosotros actualmente, pero probablemente sí tanto como los humanos modernos de su misma época, o incluso más en ciertos aspectos. Neandertales y sapiens no eran tan diferentes por entonces, ni más ni menos bárbaros, violentos o primitivos.

A menudo se dice que si los neandertales hubieran sobrevivido, hoy compartiríamos la misma sociedad. Pero es probable que compartiéramos mucho más: dado que los cruces entre ellos y nosotros dejaron algo de sus genes en los nuestros, es probable que nos hubiéramos fusionado por completo en una sola especie. Pero perdieron en el juego de la supervivencia. Y como dice el Museo de Historia Natural de Londres, «es injusto para ellos que la palabra neandertal se utilice hoy como insulto».

Reconstrucciones de un Homo sapiens de hace unos 40.000 años (izquierda) y un neandertal (derecha), ambas en el Museo Neanderthal de Alemania. Imagen de The Nature Box / Wikipedia.

Reconstrucciones de un Homo sapiens de hace unos 40.000 años (izquierda) y un neandertal (derecha), ambas en el Museo Neanderthal de Alemania. Imagen de The Nature Box / Wikipedia.

De hecho y si hablamos del trato a los recién nacidos, eran humanos perfectamente modernos, Homo sapiens, quienes solían practicar lo que eufemísticamente se llamaba exposición, consistente en abandonar a su suerte a los bebés no deseados por el motivo que fuera; es decir, los tiraban. La teoría era que los recogieran otros, ya fueran seres reales o imaginarios, como divinidades o personajes mitológicos. La práctica era que morían de hambre, frío, sed o comidos por animales. Y esto se hacía en culturas consideradas las cunas de la civilización occidental, como la Roma y la Grecia clásicas.

Pero volviendo a los neandertales, en el fondo subyace un error de concepto que va más allá de los neandertales, y es el mito de que existe una escala evolutiva en los humanos. Ese famoso dibujo en el que se observa una fila de seres caminando, que van evolucionando desde un mono peludo y encorvado hasta un humano lampiño y erguido con una lanza, es un completo y absoluto error. O mejor dicho, tres errores: ni nosotros somos la culminación de nada, ni la evolución funciona mejorando o perfeccionando nada, ni existe ningún proceso temporal lineal.

Nosotros somos solo una especie más de la biosfera terrestre, una que hoy está pasando por aquí como han pasado antes otras muchas, y como pasarán otras muchas cuando hayamos desaparecido, quizá alguna que surgirá a partir de la nuestra. Tenemos ciertos rasgos y características propias, como cualquier especie; las aves vuelan, nosotros componemos música.

Pero estos rasgos no surgen porque la evolución desee mejorar sus creaciones, sino porque en un momento determinado del tiempo geológico esas características han permitido a esa especie adaptarse mejor a las condiciones de su entorno. La capacidad de componer música es probablemente solo un efecto colateral de un desarrollo cognitivo que permitió a nuestros ancestros perdurar y reproducirse mejor en el medio en que les tocó vivir.

Y por último, tampoco existe ninguna línea o escala evolutiva, incluso aunque a veces se utilicen estos conceptos como una simplificación con fines didácticos. Hoy la representación más utilizada de la familia evolutiva humana tiene forma de árbol con diversas ramificaciones, pero incluso esto es también una simplificación; faltan las especies que aún no hemos descubierto, pero sobre todo falta lo que ya conocemos y lo que todavía no sobre los entrecruzamientos entre especies coetáneas.

Los humanos modernos tuvieron descendencia con neandertales y denisovanos, y estos entre ellos, y los análisis genéticos que revelan estas hibridaciones entre especies han mostrado también que en este lío familiar participaron además otros tipos de humanos que todavía son un completo misterio para la ciencia. En resumen, los conceptos de línea evolutiva y árbol evolutivo hoy ya no tienen sentido; la realidad es más bien una red, la red social de la evolución humana.

Los dinosaurios de la saga jurásica: ¿distingues la realidad de la ficción?

Hay dos constantes que han acompañado siempre a la imagen popular de los dinosaurios. Primero, que fascinan a la gente; no tanto desde que el nombre de este grupo de reptiles fue acuñado en 1842, pero sí desde comienzos del siglo XX, cuando novelas como El mundo perdido de Arthur Conan Doyle –no la primera, pero sí la más exitosa– comenzaron a popularizarlos. Segundo, que casi siempre su retrato se desvía de la realidad, precisamente para exagerar todo aquello que fascina a la gente. Es como si los dinosaurios hubieran contratado a una agencia publicitaria: ¿es esto muy diferente del marketing?

Las novelas de Michael Crichton y la saga de películas que han inspirado no son una excepción; más bien son el caso típico. Pero esto no debe interpretarse como una crítica desdeñosa; al contrario, lo que los dinosaurios de Spielberg y sus sucesores han aportado al interés de los niños en la ciencia difícilmente se consigue en el colegio. Y Crichton tampoco era ningún papanatas, sino un bioantropólogo y médico que escribió buena ciencia ficción y que se documentaba conciencizudamente para sus novelas. Y aunque llegó a flirtear con las pseudociencias, su visión de la recreación de los dinosaurios por ingeniería genética estaba muy adelantada a su tiempo allá por 1990.

Imagen de Universal Pictures.

Imagen de Universal Pictures.

Es más: el traslado de los dinosaurios de Crichton al cine ha contado desde el inicio de la saga con la asesoría del paleontólogo Jack Horner, que dirige su propio proyecto de tuneado de pollos para asemejarlos a los dinos clásicos, y que por cierto hacía un cameo en Jurassic World, en la primera escena de Owen (Chris Pratt) con los velocirraptores.

Pero sea por licencias creativas, por errores no intencionados o por nuevos descubrimientos que refutan ideas anteriores –66 millones de años después, los dinosaurios continúan actualizándose–, lo cierto es que la saga cae en una serie de inexactitudes que al menos merece la pena conocer. Aquí están, en formato interactivo.

La historia humana se complica: a cambiar los libros de texto

Los libros de texto de ciencias deberían imprimirse a lápiz, para que el profesor pudiera indicar a los alumnos qué deberían borrar y qué deberían escribir sobre lo borrado. No, es broma, pero no lo es tanto. Lo cierto es que el conocimiento científico avanza todos los días, a veces matizando o incluso rectificando ideas básicas, y sería de esperar que cada año se revisaran las ediciones de los libros de texto para incluir lo nuevo.

Esto justificaría que los hermanos no puedan heredar los libros y que deban comprarse nuevos cada año. Pero lamentablemente, no parece que sea el caso. Ya conté aquí que al menos un libro de texto de primaria de una de las principales editoriales, aunque imagino que ocurrirá lo mismo con otros, emplea una clasificación de los seres vivos en cinco reinos que está obsoleta desde hace décadas.

Otra de esas ideas básicas es: ¿desde hace cuánto tiempo existe nuestra especie? Cuando yo era estudiante, aprendíamos que el Homo sapiens surgió hace unos 100.000 años en África. Después, nuevos descubrimientos en Etiopía duplicaron la historia de los humanos modernos: 200.000 años. Y cuando ya nos habíamos acostumbrado a esta cifra, se nos cae de nuevo.

Esta semana, dos estudios publicados en Nature (uno y dos) describen nuevos huesos humanos y restos de industria lítica hallados en un enclave conocido desde los años 60, Jebel Irhoud, un afloramiento rocoso unos 100 kilómetros al oeste de Marrakech que antiguamente formaba una cueva. Los huesos incluyen parte de un cráneo con ciertos rasgos arcaicos, como la forma de la caja encefálica, pero cuyos rostro y dientes son inequívocamente Homo sapiens.

Reconstrucción del cráneo de Homo sapiens de 300.000 años de edad hallado en Jebel Irhoud (Marruecos). Imagen de Philipp Gunz / MPI EVA.

Reconstrucción del cráneo de Homo sapiens de 300.000 años de edad hallado en Jebel Irhoud (Marruecos). Imagen de Philipp Gunz / MPI EVA.

La clave de los resultados está en la datación de los restos. La nuevas tecnologías de fechado por métodos físicos avanzados están permitiendo datar muestras allí donde la cronología de los estratos del terreno no es una referencia fiable. Hace unas semanas conté aquí cómo estas técnicas han revelado que el Homo naledi, una especie hallada en Suráfrica, vivió hasta hace algo más de 200.000 años, y que este posible solapamiento histórico de una especie humana primitiva con los sapiens en África era hasta entonces algo totalmente inesperado.

Ahora parece confirmarse que los sapiens y los naledi coincidieron en África: según las técnicas de datación utilizadas por los investigadores, los restos de Jebel Irhoud tienen una antigüedad de unos 300.000 años. Esta es la nueva cifra que desde ahora deberemos citar sobre la edad de nuestra especie.

Pero sus implicaciones van mucho más allá: no solo tendremos que acostumbrarnos a la nueva idea de que nuestros ancestros sapiens compartían el continente africano al menos con otra especie humana más, si no con varias; además, los restos de Marruecos, los más antiguos de Homo sapiens conocidos ahora, están muy lejos de África Oriental, que se consideraba la cuna de la humanidad. ¿Qué hacían aquellos sapiens precoces tan lejos de su presunta cuna?

Obviamente, la respuesta es que la idea de la cuna, otro de los pilares clásicos de la paleoantropología, también se tambalea. Según escriben los investigadores, encabezados por el Instituto de Antropología Evolutiva Max Planck de Alemania y el Instituto Nacional de Ciencias de la Arqueología y el Patrimonio de Marruecos, los resultados «muestran que los procesos evolutivos detrás de la aparición del Homo sapiens implicaron a todo el continente africano». «Estos datos sugieren un origen a mayor escala, potencialmente panafricano», concluyen.

Y eso, si es que nuestro origen africano no acaba también cayéndose. Hoy está generalmente aceptado que el Homo sapiens surgió en África (a diferencia del neandertal, de origen europeo), y nadie podrá defender algo diferente con pruebas en la mano mientras no se hallen claros restos de nuestra especie anteriores a los 300.000 años de antigüedad fuera de aquel continente.

Pero otra cosa es que sus ancestros también fueran africanos. Hasta ahora se asumía que era así; al menos hasta que el mes pasado dos controvertidos estudios (uno y dos) afirmaran que el hominino más antiguo conocido hasta hoy (los homininos incluyen a los humanos y sus parientes antiguos más próximos que no eran simios) es una especie llamada Graecopithecus freybergi, de más de siete millones de años de antigüedad y hallada en un lugar tan inesperado como Grecia.

En resumen, y si añadimos otros estudios que he comentado recientemente aquí, como el que atribuye al hobbit de Flores un origen africano y el que ha empujado la edad de los primeros restos humanos en América desde los 24.000 años a los 130.000, este está siendo un año especialmente intenso para la paleoantropología, con descubrimientos que están resquebrajando algunos de los muros que hasta ahora sostenían el edificio de la evolución humana.

Hace tiempo, un eminente genetista evolutivo se me quejaba de la aparente tendencia que tenemos los periodistas de ciencia a caer en ese tópico de «esto obligará a reescribir…». Pero qué le vamos a hacer: con cierta frecuencia, en ciencia hay que demoler lo resquebrajado para construir algo nuevo. Podemos llamarlo reconstruir, reconfigurar, reformular, o todos los res que a uno se le puedan ocurrir, pero en el fondo no dejan de ser lo mismo: reescribir. Y por eso, la ciencia hay que escribirla a lápiz.

Ciencia semanal: el «planeta corchopán» y el eslabón perdido de las ballenas

Repasamos algunas noticias científicas que ha dejado esta tercera semana de mayo.

Un planeta ligero como el corchopán

Incluso entre los científicos hay quienes tienen ojo para el marketing, y quienes no. Si este amplio equipo de investigadores de varios países, dirigido por la Universidad Lehigh (EEUU), se hubiese limitado a presentar su hallazgo como el tercer exoplaneta de menor densidad bien caracterizado hasta ahora, nadie les habría prestado atención.

Pero se les ocurrió publicitarlo comparando su densidad con la del poliexpán (más correctamente, poliestireno expandido; el corcho blanco de toda la vida, aunque personalmente me gusta más llamarlo corchopán en homenaje a los geniales Gomaespuma). Y ¡bang!: el estudio se ha comentado esta semana en todos los medios de ciencia, lo que me obliga a mencionarlo también aquí.

El planeta KELT-11b, a 320 años luz de nosotros, es un 40% mayor que Júpiter, pero pesa solo la quinta parte. Los científicos aún tratan de entender qué proceso lleva a algunos de estos gigantes gaseosos a inflarse como globos. La hipótesis de los autores del estudio es que se debe a la alta dosis de radiación que KELT-11b recibe de su estrella, a la que se encuentra muy próximo y que se está expandiendo al convertirse en una gigante roja.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

Ilustración del exoplaneta KELT-11b. Imagen de Walter Robinson/Lehigh University.

La ballena que perdió las patas

Aunque todos los descubrimientos de fósiles revelan datos valiosos para entender qué pasaba en nuestro planeta cuando aún no estábamos aquí, son especialmente preciados los que nos presentan una foto de la evolución en acción; lo que popularmente se conoce como eslabones perdidos, aunque esta expresión no gusta a muchos paleontólogos.

Este es el caso de Mystacodon selenensis, la ballena de hace 36,4 millones de años descrita esta semana por investigadores de Bélgica, Francia, Italia y Perú, y que es ahora la especie más próxima al momento en que los cetáceos se dividieron en dos grupos que perduran hasta hoy: los que tienen dientes (odontocetos), como el cachalote o la orca, y los que filtran su alimento del agua mediante esos filamentos llamados precisamente ballenas (misticetos).

Los científicos estiman que hace 55 millones de años un grupo de mamíferos comenzó a adaptarse a la vida acuática. Unos 14 millones de años después, sus patas delanteras se habían transformado en aletas, mientras las traseras se iban atrofiando. Hace 38 o 39 millones de años comenzaron a diferenciarse dos grupos que 15 millones de años después se definieron como hoy los conocemos, odontocetos y misticetos. Ambos fueron perdiendo las patas traseras al mismo tiempo.

La nueva especie, descubierta en la costa de Perú, se convierte ahora en la más próxima a ese momento en que las dos ramas se separaron, acercándose un par de millones de años más que la especie más antigua conocida hasta ahora. Esta ballena, del tamaño de un delfín, aún tenía patas traseras residuales. También conservaba los dientes, pero según los científicos estaba especializada en alimentarse sorbiendo pequeñas presas del fondo marino, abriendo el camino hacia la alimentación por filtración que se impondría en los misticetos hace unos 23 millones de años.

Ilustración de 'Mystacodon selenensis'. Imagen de Alberto Gennari.

Ilustración de ‘Mystacodon selenensis’. Imagen de Alberto Gennari.

El continente blanco se vuelve verde

A estas alturas los signos del cambio climático ya no deberían ser una sorpresa para nadie, pero cada nuevo estudio es una oportunidad para transmitirnos una llamada de urgencia ante lo que está ocurriendo. En otros lugares del mundo un paisaje que verdea es una buena noticia, pero no en la Antártida, donde la proliferación de musgo observada por investigadores británicos es un hecho preocupante, consecuencia de la desaparición progresiva de los hielos. Y si a esto añadimos que otras regiones del planeta se están calentando a un ritmo mucho más rápido que la Antártida, el panorama es aún más alarmante.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

Bancos de musgo en la Antártida. Imagen de Matt Amesbury.

El mordisco catastrófico del T-rex

Con la desaparición de los dinosaurios no aviares perdimos joyas de la naturaleza, pero el mundo sería un lugar mucho más complicado para nosotros si tuviéramos que compartirlo con el tiranosaurio rex. Un nuevo estudio de dos investigadores de EEUU pone cifras a lo incómodo que habría resultado el mordisco de un T-rex: el dinosaurio más mítico ejercía una presión con las mandíbulas de más de 3.600 kilos, más del doble que los cocodrilos, los actuales campeones del bocado. Esta presión transmitía a sus dientes una fuerza de casi 200.000 kilos por pulgada cuadrada. Con tales mordiscos el tiranosaurio era capaz de provocar en sus víctimas lo que los investigadores definen como una «catastrófica explosión de los huesos» para comerse la médula, como hoy hacen las hienas.

Imagen de Florida State University.

Imagen de Florida State University.

Los dinosaurios ya no son lo que eran

Si usted piensa en un tiranosaurio, es posible que le venga a la mente algo que no se diferencia demasiado de esta ilustración de 1925:

Cartel de la película 'The Lost World' (1925). Imagen de Wikipedia.

Cartel de la película ‘The Lost World’ (1925). Imagen de Wikipedia.

De acuerdo, irse hasta 1925 tal vez es como remontarse a la propia prehistoria. Pero ¿qué hay de, por ejemplo, 1977? Ya suena algo más cercano, ¿no? Por entonces, un tiranosaurio era esto:

Fotograma de la película 'El planeta de los dinosaurios' (1977). Imagen de Cineworld Pictures.

Fotograma de la película ‘El planeta de los dinosaurios’ (1977). Imagen de Cineworld Pictures.

Bien, es probable que el rigor científico no formara parte de las prioridades de los responsables de la película El planeta de los dinosaurios (1977), aunque la mayor parte del (bajo) presupuesto de aquella producción se gastó en los efectos especiales. Pero si el retrato de aquel tiranosaurio no es científicamente sólido, en cambio es indudable que calca la imagen popular clásica de aquellos monstruos del Mesozoico.

Gracias a la saga jurásica iniciada por Spielberg en 1993, seguramente la idea presente hoy en las mentes de muchos se parece más a esto:

Fotograma de la película 'Parque Jurásico' (1993). Imagen de Universal Pictures.

Fotograma de la película ‘Parque Jurásico’ (1993). Imagen de Universal Pictures.

Pero seguro que muy, muy pocos pensarán en un T-rex como… ¡esto!:

Reconstrucción actual (2016) de un T-rex. Imagen de Wikipedia.

Reconstrucción actual (2016) de un T-rex. Imagen de Wikipedia.

Bastante diferente, incluso de las últimas versiones del cine, ¿no? Y sin embargo, esta reconstrucción actualizada de 2016 es lo más cercano que hoy tenemos a lo que realmente debía de ser un tiranosaurio.

Lo cierto es que, de acuerdo a la paleontología actual, aquella especie de lagarto-cocodrilo erguido y más bien panzudo que siempre habíamos tenido en mente en realidad jamás existió; siempre ha sido un producto de nuestra imaginación. Y además de los cambios en la construcción corporal, la postura, los brazos y las plumas, hoy los científicos piensan que aquel amenazante morro rematado por un ribete de puntas de sierra es otro mito derribado: probablemente el T-rex tenía labios que le cubrían los dientes. Así que del lagarto-cocodrilo hemos pasado a esta especie de… ¿rata-ornitorrinco-liebre de la Patagonia?

Los estudios científicos del ayer son tan excitantes como los del mañana. Del mismo modo que la ciencia actual va abriendo brechas sorprendentes y casi insospechadas hacia lo que ha de venir, también va regresando hacia el conocimiento de lo que nunca llegamos a presenciar, y de lo que únicamente nos quedan dispersos retratos fragmentados. Hoy no solo es un gran momento para conocer el futuro, sino también el pasado.

Y es probable que aún mucho más de lo que hoy creemos conocer sobre la historia de nuestro planeta acabe quedando obsoleto. A medida que el pasado se nos revela nuevo y fresco, lo único verdaderamente fosilizado es el estereotipo en el que creíamos: aquel tiranosaurio del siglo pasado es el Tony Manero de la ciencia. Probablemente aquel T-rex clásico seguirá apareciendo en ilustraciones, juguetes, dibujos animados o cuentos para niños. Lo cual está bien, mientras tengamos presente que esa criatura es al tiranosaurio lo que Bob Esponja a las esponjas.

Ahora, otro más de los pilares fundamentales de la ciencia de los dinosaurios parece a punto de caer. Puede que para el ciudadano medio esto no resulte tan llamativo como lo del T-rex, y tampoco cambiará la manera en que veremos los dinosaurios retratados en el cine. Pero uno, por aquello de ganarse la vida con esto, siempre ha explicado a sus hijos que piensen en los dinosaurios como dos grandes equipos: ornitisquios y saurisquios.

Ambos se diferencian por la forma de la cadera: los ornitisquios tienen caderas de pájaro, mientras que los saurisquios las tienen como los lagartos. Los ornitisquios incluyen (no exclusivamente, pero para que los niños lo entiendan mejor) los dinosaurios tipo rinoceronte: triceratops, anquilosaurios, estegosaurios… Mientras que los saurisquios a su vez se dividen en dos grupos: los saurópodos, tipo diplodocus, y los terópodos, tipo tiranosaurio. Todo muy clarito, fácil de entender y recordar para los niños. Y así ha sido durante 130 años.

Hasta que ha llegado un equipo de investigadores de la Universidad de Cambridge y el Museo de Historia Natural de Londres para echárnoslo todo por tierra. En un estudio recién publicado en Nature, los científicos han emprendido un gran análisis comparativo de 450 rasgos anatómicos de 74 especies de dinosaurios, comprendiendo todos los grupos.

Y la conclusión revuelve las piezas de su sitio. Resulta que terópodos y ornitisquios comparten 21 rasgos anatómicos importantes, por lo que el tiranosaurio y el velocirraptor aparecen como parientes más próximos del triceratops y del estegosaurio que del diplodocus y el brontosaurio. Es decir, que los terópodos dicen adiós al equipo de los saurisquios y hola al de los ornitisquios para formar junto a ellos un nuevo grupo: los ornitoscélidos, una denominación inventada en el siglo XIX que cayó fuera de uso.

Claro que por el momento se trata solo de una propuesta; otros paleontólogos han elogiado el trabajo, pero han advertido que aún deberán obtenerse más confirmaciones independientes hasta que la hipótesis consiga una aceptación general.

Esta es la imagen del árbol evolutivo de los dinosaurios tal como se entendía hasta ahora, y la nueva versión propuesta por los autores del estudio:

Imagen de Dmitry Bogdanov, Torley, Durbed / CC.

Imagen de Dmitry Bogdanov, Torley, Durbed / CC.

Greg Graffin (Bad Religion), el pensador biológico

Basta una búsqueda en las bases de datos para encontrar su nombre en los agradecimientos de un buen número de tesis doctorales. Las de todos aquellos que se han criado, o incluso han investigado, escuchando temas como We’re Only Gonna Die, Generator, American Jesus, 21st Century Digital Boy, o cualquier otro de los 16 álbumes grabados por Bad Religion en sus 37 años de historia (o de los dos publicados por él en solitario, en una línea más folk). Pero que también han encontrado inspiración científica, y un contraejemplo del falso mito del científico como un sucker melindroso, en el líder del grupo: les presento al doctor

Greg Graffin

Greg Graffin. Imagen de su Twitter.

Greg Graffin. Imagen de su Twitter.

A los más jóvenes quizá les cueste creer que bajo esa calva expansiva, ese pelo encanecido, esas gafas de pasta y ese look de profe de mates se esconda una leyenda del punk que aún sigue en activo. Quienes aún no lo conozcan están a punto de descubrir a un personaje sorprendente. Para otros no necesitará presentación. Pero advierto: a pesar de mi admiración por el tipo, su banda y su música, este comentario contiene una crítica que detallaré más abajo.

Por avatares familiares, Gregory Walter Graffin III cambió los puentes de Madison de su Wisconsin natal por la costa de California, donde la pólvora del punk prendía en el segundo lustro de los 70. Como muchos otros a los 15 años, Graffin se unió a sus amigos del instituto para fundar una banda. Y a la hora de elegir un nombre, si a los adolescentes les gusta molestar a los adultos, y si una de las señas del punk es la provocación… Punks adolescentes, provocación al cudrado: Bad Religion, y un símbolo consistente en una señal de prohibido sobre una cruz, el Crossbuster.

Bad Religion tocando en 2013 en Finlandia. Imagen de Wikipedia.

Bad Religion tocando en 2013 en Finlandia. Imagen de Wikipedia.

Pero aunque haya a quienes la iconografía de Bad Religion les enganche al grupo, y a quienes en cambio les repela, lo cierto es que nadie se mantiene casi cuatro décadas en la música escondiéndose tras un logotipo. Aunque la simbología les abriera la puerta en sus comienzos hacia una cierta notoriedad local, si Bad Religion ha perdurado hasta hoy es gracias al talento que Graffin y sus compañeros han desplegado en la música y en los breves manifiestos con fundamento que embuten entre verso y verso.

Símbolo de Bad Religion. Imagen de Wikipedia.

Símbolo de Bad Religion. Imagen de Wikipedia.

De hecho, la religión ha sostenido un papel protagonista en las dos vertientes de la carrera de Graffin, la musical y la académica. Pero en un sentido bastante más complejo y reflexivo que el que podría entenderse de una simbología adolescente de la que el grupo no reniega, pero que sí matiza: el Crossbuster es más un símbolo general anti-establishment que específico antiteísta o anticristiano, decía la banda en el DVD en vivo Along the Way.

Entiéndase: Graffin es ateo. Pero más que declararse como tal, suele describirse como naturalista. Es decir, una definición que no se basa en una fe negativa –la convicción de que Dios no existe–, sino en un positivismo positivo –la evidencia de que las leyes naturales bastan para explicar el mundo de cabo a rabo–. Graffin considera que la religión no libera a las personas, sino que las aprisiona con dogmas que restringen su pensamiento; pero que ellas mismas deben llegar a esta conclusión a través del conocimiento, un proceso en el que los científicos deben desempeñar un papel clave. De hecho, y que entienda quien quiera entender, en alguna ocasión Graffin ha incluido en esta misma categoría de dogmatismos perniciosos a, por ejemplo, los nacionalismos.

Es por esto que, cuando Graffin se enfrentó a la tarea de echarse a la espalda una tesis doctoral, dejó atrás la antropología y la geología que había estudiado durante su carrera en la Universidad de California en Los Ángeles para trasladarse a la de Cornell en Nueva York y ponerse bajo la supervisión del prestigioso biólogo evolutivo Will Provine. Para su tesis, Graffin elaboró una encuesta que envió a un par de centenares de biólogos evolutivos de todo el mundo para conocer sus opiniones sobre la relación entre ciencia y religión, y sobre las ópticas respectivas de ambas en campos como la moral, el libre albedrío o la percepción de la realidad.

Los resultados sorprendieron a Graffin. De los 149 que respondieron a la encuesta, la inmensa mayoría dijo no creer en Dios, pero también la mayoría contemplaba una compatibilidad entre ciencia y religión que para el cantante de Bad Religion suponía «deshonestidad intelectual», ya que, decía, ambas ofrecen esquemas de explicación mutuamente excluyentes, sin posibilidad de un encuentro entre el naturalismo y el sobrenaturalismo. Y para Graffin, los biólogos evolutivos deberían liderar la transición intelectual entre ambos.

Pero lo mejor es que sea el propio Graffin quien resuma el contenido de su tesis, titulada Monism, Atheism, and the Naturalist World-view: Perspectives from Evolutionary Biology (Monismo, ateísmo y la visión naturalista del mundo: perspectivas desde la biología evolutiva), y leída finalmente en 2003 tras un lapso de varios años de dedicación a la música. Aquel mismo año el profesor de historia Preston Jones, de la Universidad John Brown, cristiano y seguidor de Bad Religion desde 1994, escribió un email a Graffin presentándose como un fan del «lado religioso». Para sorpresa de Jones, Graffin le respondió. Y así fue como definía su trabajo de doctorado en aquel correo:

Se refiere a la intersección entre biología evolutiva y teología, y las varias formas de compatibilidad. He descubierto que los biólogos evolutivos rebajan la religión en un grado significativo para hacerla compatible con la ciencia. Piensan que están haciendo un servicio a las personas religiosas al suscribirse a una forma de compatibilidad –es decir, manteniendo que la religión y la biología evolutiva son compatibles. Según la mayoría de los biólogos evolutivos, no hay conflicto entre evolución y religión en una condición importante: ¡que la religión es esencialmente ateísta! Sé que suena a locura, pero este es el resultado de mi disertación.

Jones respondió a su vez, y así comenzó un largo e interesante intercambio de correos y puntos de vista que posteriormente el profesor recogería en 2006 en un libro titulado Is Belief in God Good, Bad or Irrelevant? A Professor and a Punk Rocker Discuss Science, Religion, Naturalism & Christianity (¿Es la creencia en Dios buena, mala o irrelevante? Un profesor y un rocker punk discuten sobre ciencia, religión, naturalismo y cristianismo). Una lectura recomendable (y fácil) para todos aquellos con inquietud filosófica sobre el mundo que nos rodea y sus explicaciones.

Bad Religion en 2007. Imagen de Wikipedia.

Bad Religion en 2007. Imagen de Wikipedia.

La religión se entrelaza con la vida de Graffin de formas tan curiosas que desconcertarán a algunos. Su actual mujer, Allison Kleinheinz Graffin, es católica. Su viejo compañero y amigo Brett Gurewitz, guitarrista de Bad Religion y creador del Crossbuster (además de fundador del sello Epitaph Records), se confiesa «deísta provisional». En entrevistas recientes, Graffin ha dicho cosas como que «no tiene sentido denigrar a la gente que tiene esa visión del mundo de compatibilidad entre religión y evolución. Esta es la visión predominante de la mayoría de la gente cultivada del planeta, así que no hace ningún bien tratar de menospreciarlos». O como que no pretende «demoler la religión, sino identificar sus defectos fatales». Jones llegó a decir de él que es «una persona de fe» en una «búsqueda religiosa».

Incluso, y para los fans más aficionados al bizarre, existe un disco navideño lanzado por Bad Religion en 2013, titulado Christmas Songs y que contiene magníficas versiones punk de ocho villancicos tradicionales anglosajones. Pero mientras que otros grupos punk han grabado clásicos navideños rehaciendo las letras a su gusto, no así Bad Religion. Y no me negarán que tiene su gracia escuchar la voz de Greg Graffin (que comenzó su carrera en un coro de iglesia) cantando versos como «gloria a Dios, gloria en las alturas, vayamos a adorar a Cristo el Señor». Por cierto, la banda donó el 20% de los ingresos del disco a una organización de ayuda a las víctimas de abusos sexuales por sacerdotes.

Además de todo lo anterior, y de continuar manteniendo viva una de las bandas matriarcales del punk, actualmente Graffin imparte clases ocasionales en las Universidades de Cornell y de California en Los Ángeles. Ha reeditado su tesis y ha publicado un par de libros, Anarchy Evolution: Faith, Science, and Bad Religion in a World without God y Population Wars: A New Perspective on Competition and Coexistence. Sin embargo, parece tener una espina clavada; en una entrevista en Nature publicada en 2010, se quejaba de que su condición de músico famoso le perjudicaba a la hora de ganar el respeto de sus colegas científicos. «Se me critica más por mi ciencia por el hecho de que he tenido éxito en la música», decía.

Pero, y por fin toca la crítica de la que advertía arriba, en esto el doctor Graffin se equivoca. Libros publicados, comentados y leídos; artículos en revistas como Scientific American; entrevistas en Nature; premios; un ave fósil del Cretácico nombrada en su honor (Qiliania graffini); clases no en una, sino en dos universidades de prestigio, pero a voluntad, sin la tiranía de la dedicación plena que él no necesita… Nada de esto existiría de no ser porque G. W. Graffin es Greg Graffin. Porque le falta algo, una palabra mágica en ciencia:

Publicaciones.

Una carrera científica se construye larga y trabajosamente sobre la base de las publicaciones científicas. Los libros y todo lo demás viene después.

'Qilania graffini', ave del Cretácico nombrada en honor de Greg Graffin. Imagen de Zoological Journal of the Linnean Society.

‘Qiliania graffini’, ave del Cretácico nombrada en honor de Greg Graffin. Imagen de Zoological Journal of the Linnean Society.

Tomemos como ejemplo al supervisor de la tesis de Graffin. Will Provine, fallecido en 2015, era una eminencia con una valiosa lista de publicaciones. Entre sus méritos figura haber inspirado la idea que dio lugar a un concepto manejado por la biología evolutiva actual, el de autoestopismo genético, o genetic draft: la idea de que ciertas variantes génicas prosperan en una población no porque confieran ninguna ventaja, sino porque están físicamente ligadas en su cromosoma a otros genes que sí son beneficiosos. En otras palabras, que la unidad mínima de selección no es el gen.

Por más que he buscado, solo he podido encontrar un único estudio publicado por Graffin en 1992 en la revista Journal of Vertebrate Paleontology, de su época universitaria como paleobiólogo de campo. ¿Cómo espera Graffin que la comunidad científica le valore, cuando la comunidad científica no ha tenido la oportunidad de evaluar formalmente su trabajo como biólogo teórico? Él mismo hacía notar que «los científicos académicos no están generalmente interesados en los libros para el público». El canal de la ciencia es el sistema de revisión por pares de las revistas científicas. No es ni mucho menos perfecto. Pero parafraseando a Churchill, es el peor posible, exceptuando todos los demás.

Por muy Greg Graffin que sea uno, deberá enfrentarse a los muchos rechazos, frustraciones, correcciones, enmiendas y ocasionales alegrías finales del sistema de publicación científica. En la ciencia no hay atajos. En varias entrevistas, incluida una muy breve que tuve ocasión de hacerle yo mismo por email hace un par de años, Graffin ha equiparado ciencia y punk en que un nombre desconocido puede desafiar a la autoridad y desatar toda una revolución. Y es cierto, pero entre ambos mundos hay una diferencia esencial: en la música, un grupo de éxito puede publicar un mal disco. En la ciencia, ni un premio Nobel puede publicar un mal estudio (al menos en teoría). Pero Graffin es también famoso por su infatigable capacidad de trabajo. Así que esperemos seguir teniendo Doctor Graffin y Bad Religion por muchos años.

American Jesus from Bad Religion on Vimeo.

Lo siento, elefantes, tenéis que cambiar de nombre

No, no es que a partir de ahora vayamos a tener que llamarlos slon, como se nombran en varias lenguas eslavas, ni tembo o ndovu, como les dicen en swahili (por desgracia, mi swahili aún no llega para saber el motivo de la diferencia entre ambos nombres). Ni que tengamos que inventar una nueva palabra como megatrompero, por poner algo. La ciencia no se mete en el lenguaje común, sino solo en la denominación científica. Y aquí sí: si alguno de ustedes ha conocido al elefante africano de toda la vida como Loxodonta africana, vaya preparándose. Porque este nombre ya no sirve; hay que buscarle otro nuevo.

Recreación del 'Paleoloxodon antiquus'. Imagen de Wikipedia.

Recreación del ‘Paleoloxodon antiquus’. Imagen de Wikipedia.

Esta es la historia. Desde que se inventó la secuenciación de ADN, los taxónomos –los biólogos encargados de clasificar los seres vivos en categorías como órdenes, familias o géneros– pudieron comenzar a construir sus clasificaciones según criterios evolutivos. Hasta entonces, las especies se organizaban sobre todo según criterios morfológicos, de semejanza. Pero en ciertos casos hay rasgos que se parecen mucho en animales que realmente no tienen ningún parentesco cercano entre sí. Parece más lógico utilizar el grado de semejanza en sus secuencias de ADN, porque este criterio retrata mucho más fielmente cuán lejano o cercano es su antecesor común, y por tanto quiénes son hermanos, primos, parientes lejanos o muy, muy lejanos, como nosotros y las bacterias.

Claro que no todos los taxónomos se sumaron con entusiasmo al nuevo sistema. Un curioso ejemplo fue Vladimir Nabokov, más conocido como el autor de Lolita; pero como ya conté aquí, también un apasionado entomólogo especializado en mariposas. Con el advenimiento de las técnicas de ADN a comienzos de los años 70, Nabokov renegó de la posibilidad de utilizar este nuevo sistema para clasificar las mariposas, aferrándose a sus años de entrenamiento mirando genitales bajo el microscopio.

Pero la resistencia de Nabokov era inútil: el genoma de los seres vivos nos revela dónde encajan realmente en la complicada trama evolutiva de la naturaleza. El problema es que, a veces, llevando esta metodología al extremo podemos encontrar que llegamos a espinosos callejones sin salida. Un ejemplo curioso lo comentó hace unos años la bióloga evolutiva y escritora Carol Kaesuk Yoon, y es el caso de los peces.

La idea simplificada es esta: si una madre A tiene tres hijas B, C y D, y B y C llevan el apellido de A, no hay manera de justificar que D no lleve el mismo apellido. Aplicado a la taxonomía evolutiva, si de una línea se deriva un grupo, más tarde un segundo y después un tercero, y los dos primeros se clasifican en un taxón (categoría) con una denominación concreta, el tercero también debe integrarse ahí, dado que de hecho los representantes actuales del segundo y el tercero están hoy evolutivamente más próximos entre sí que los del primero y el segundo (la separación evolutiva de estas dos ramas es más antigua).

Esta idea es la que hoy clasifica como dinosaurios a las aves, y esto resulta muy aceptable. Pero cuando lo aplicamos a los peces, tenemos un problema. Si, como señalaba Kaesuk Yoon, la línea ancestral de los peces se ramificó para originar primero el linaje de los peces actuales (A), después el de los peces pulmonados (B), y por último el que después daría lugar a los mamíferos (C), resulta que B y C tienen que compartir una categoría taxonómica de la que A esté ausente. Pero la cosa es que A y B son peces. Lo que implica que nosotros también debemos serlo; o los peces pulmonados no son peces, o los humanos también somos peces. O nos cargamos los peces e inventamos otro nombre.

¿La solución? No teman, en este caso hay truco: en realidad, «peces» no es un taxón biológico, sino un nombre común. Y ya hemos dicho que la ciencia no entra en los nombres comunes. Pero recuérdenlo la próxima vez que hablen de ellos a la ligera como si nosotros no formáramos parte de su estirpe.

En cambio, el caso de los elefantes que traigo hoy sí es peliagudo. Esta semana se ha celebrado en Oxford el 7º Simposio Internacional de Arqueología Biomolecular. Y según informa Nature, en él se ha presentado el genoma del Paleoloxodon antiquus, un enorme elefante que vivió en Europa en el Pleistoceno y cuyos restos más recientes, de hace unos 70.000 años, se hallaron en Soria.

Hasta ahora, los elefantes vivos se clasificaban en tres especies. Conocemos el asiático (Elephas maximus) y el africano (Loxodonta africana). Pero en 2010 el análisis genético dejó claro que el elefante africano de bosque, que vive en las selvas del interior del continente y hasta entonces se tenía por una subespecie del de sabana (Loxodonta africana cyclotis), no era tal, sino que cumplía los criterios para clasificarse como una especie separada, Loxodonta cyclotis. Y por cierto, aprovecho la ocasión para recomendarles un magnífico libro sobre el elefante africano de bosque: Los silencios de África, de Peter Matthiessen.

Así, estaban dos primos cercanos, los africanos L. africana y L. cyclotis, y un pariente más lejano, el asiático E. maximus. Hasta que ha llegado el genoma del Paleoloxodon antiquus. Por el estudio de los fósiles (según los criterios morfológicos a los que se aferraba Nabokov), se suponía que esta era una rama más cercana al elefante asiático.

Nada de eso: el estudio genético revela que aquel monstruo de cuatro metros de altura estaba más estrechamente emparentado con el elefante africano de bosque que con ninguna otra especie actual. Incluso hoy, los cyclotis están genéticamente más próximos al elefante europeo del Pleistoceno que a sus parientes de la sabana.

Lo cual implica que el género Loxodonta, tal como hoy lo conocemos, ya no sirve. Ahora, los taxónomos tendrán que volver a la pizarra para asignar nuevos nombres. Y sí, para los que tengan hijos en la edad escolar adecuada para estudiar estas cosas, sepan que también habrá que cambiar los libros de texto. Es lo que tiene la ciencia, que avanza…

Cuando despertaron los mamíferos, ¿dónde estaban los dinosaurios?

Un divertido experimento mental aventura que, de no haber tenido lugar la extinción masiva de casi todos los grupos de dinosaurios hace 66 millones de años, el mundo habría continuado progresando con los reptiles como especies dominantes. Entre todos los dinosaurios, el paleontólogo canadiense Dale Russell eligió al troodón como ancestro de una línea que podía haber llevado al desarrollo de una especie inteligente, ya que este animal tenía una alta encefalización, dedos hábiles y visión binocular.

Recreación de un dinosauroide en el Museo de los Dinosaurios de Dorchester (Reino Unido). Imagen de Wikipedia.

Recreación de un dinosauroide en el Museo de los Dinosaurios de Dorchester (Reino Unido). Imagen de Wikipedia.

Así, hoy todos los humanos seríamos lo que ha venido en llamarse dinosauroides; o para entendernos, reptilianos. (Nota: pero no por ello seríamos menos humanos, ya que la etimología de humano no tiene nada que ver con los primates o los mamíferos en general; humano viene de humus, del suelo).

La hipótesis de Russell ha sido repetidamente criticada por antropocéntrica. Pero hay al menos otras dos objeciones. En primer lugar, asumir que era obligatoria la aparición de una especie suprema inteligente como culminación de la evolución es una línea de pensamiento biológicamente obsoleta.

Como ya expliqué aquí, esa necesidad de que en todo planeta habitado (si es que hay más) tenga que surgir lo que Carl Sagan llamaba “el equivalente funcional del ser humano” es lo que el científico planetario Charley Lineweaver ha denominado “la falacia del planeta de los simios”. Como argumentaba Lineweaver, ese experimento de evolución separada ya tuvo lugar aquí mismo, en la Tierra; y no surgieron humanos, sino canguros.

Además hay otro problema. Y es que no está nada claro que la evolución de los mamíferos necesitara realmente de la extinción de los dinosaurios. Tradicionalmente se asumía que así era: hasta el día D de hace 66 millones de años, cuando cayó aquel asteroide en Yucatán, los dinosaurios vivían pletóricos y felices a sus cosas, pero aquella roca lo cambió todo. Los mamíferos, hasta entonces unos seres pequeños, inmundos y rastreros que se escondían bajo el suelo, se encontraron de repente con todo un mundo virgen por conquistar.

Si embargo, no parece que fuera así. Como ya conté hace unos días, los dinosaurios sufrían una lenta decadencia desde millones de años antes del impacto. Las especies se destruían más deprisa de lo que aparecían otras nuevas, lo que es signo del declive de un taxón o grupo biológico. Si es que realmente fue el asteroide el que les dio el golpe de gracia, lo cierto es que su destino ya era incierto por entonces.

Pero es que la idea de los mamíferos acechando en las sombras a la espera de su momento de gloria tal vez sea errónea. En años recientes, el descubrimiento de nuevos fósiles de mamíferos del Mesozoico (la era de los dinosaurios) ha revelado que por entonces ya se estaban sentando las bases de lo que sería la posterior explosión biológica de este grupo. Mucho antes de la extinción de los dinosaurios, los mamíferos se estaban diversificando en grupos que colonizaban hábitats numerosos, y estaban adquiriendo especializaciones anatómicas muy variadas. Y lo cierto es que habían tenido tiempo de sobra para ello: los terápsidos, el grupo de reptiles que dio origen a los mamíferos, se remonta a hace más de 270 millones de años.

Un solenodonte de La Española. Imagen de Wikipedia.

Un solenodonte de La Española. Imagen de Wikipedia.

Algunas de aquellas especies de mamíferos han podido perdurar casi intactas hasta hoy. El pasado abril se publicó la secuencia del genoma mitocondrial (el que se transmite solo por línea materna) del solenodón, solenodonte o almiquí, un pequeño mamífero venenoso único en su familia que vive en las islas de Cuba y La Española (República Dominicana y Haití). La datación genética muestra que ya existía hace 78 millones de años, compartiendo este planeta con los dinosaurios, y que fue uno de los supervivientes al gran cataclismo.

Es más: la extinción K-Pg, la que puso fin al reinado de los dinosaurios, no fue menos letal para los mamíferos. Una revisión del registro fósil publicada en junio de este año descubre que el asteroide acabó con el 93% de las especies de mamíferos presentes entonces. Simplemente, los pocos supervivientes supieron adaptarse mejor que otros grupos a las nuevas condiciones, lo que explica su rápido e intenso rebote: solo 300.000 años después del asteroide, ya duplicaban la diversidad que tenían antes de la extinción.

En resumen, y por muy atractiva que nos resulte la hipótesis del dinosauroide, la realidad es que no sabemos cuáles habrían sido los caminos de la evolución si aquella roca hubiera pasado de largo. Pero a medida que el conocimiento aumenta y las herramientas informáticas progresan, cada vez es posible elaborar simulaciones evolutivas más complejas. Tal vez algún día tengamos una respuesta, aunque sea teórica.

Claro que todo lo anterior es, como ya he explicado, provisional. De hecho, otro estudio reciente publicado en la revista Systematic Biology ha reanalizado datos de secuencias de ADN de distintos grupos de mamíferos calibrándolos con el registro fósil para establecer su antigüedad, llegando a la conclusión de que la diversificación comenzó con el fin de los dinosaurios, y no antes. Pero el autor del estudio, Matthew Phillips, de la Universidad de Tecnología de Queensland (Australia), eligió un grupo concreto de fósiles para la calibración, así que otros deberán confirmar el resultado, o tal vez rebatirlo. Nadie dijo que fuera fácil saber lo que ocurrió cuando no estábamos allí para verlo.

Cuando despertamos, los dinosaurios ya no estaban allí

Ese es el problema: que cuando despertamos como especie, los dinosaurios ya habían desaparecido mucho tiempo atrás, a excepción de las aves. Lógico, pensarán algunos; de no haber sido por aquel asteroide que cayó hace 66 millones de años, nosotros no estaríamos aquí, y nuestro lugar lo ocuparía un dinosauroide inteligente, tal vez algo así como un Troodon sapiens muy parecido a los reptilianos de la serie V.

Pero ¿seguro?

¿Seguro que fue un asteroide?

¿Y seguro que no estaríamos aquí de no ser por aquella extinción masiva?

Representación de la muerte de dinosaurios por erupciones volcánicas. Imagen de Wikipedia.

Representación de la muerte de dinosaurios por erupciones volcánicas. Imagen de Wikipedia.

Averiguar lo ocurrido cuando no estábamos aquí para verlo es una de las tareas más complicadas de la ciencia. El de los dinosaurios no es el más peliagudo de estos casos de CSI planetario (este sería el origen de la vida en la Tierra) ni tampoco fue aquella la mayor extinción masiva de la historia, pero sí la que más cautiva la imaginación popular.

En cuanto a las dos preguntas, la segunda la dejaremos para otro día. Hoy quiero centrarme en la primera. Miren, reconozco que este asunto llega a ser un poco cansino. Si ustedes son aficionados a seguir las noticias sobre ciencia, en los últimos años habrán podido leer los siguientes titulares:

Un asteroide no mató a los dinosaurios (2009)

Una teoría grabada en piedra: un asteroide mató a los dinosaurios, después de todo (2010)

Nuevas dataciones ligan las erupciones volcánicas a la extinción de los dinosaurios (2014)

No, los volcanes no mataron a los dinosaurios (abril de 2016)

¿Qué mató realmente a los dinosaurios? (ambas cosas, asteroide y volcanes) (julio de 2016)

E incluso:

¿Fue el incendio de un vertido de petróleo lo que mató a los dinosaurios? (julio de 2016)

Pensarán ustedes que los científicos aún no tienen la menor idea sobre qué fue realmente lo que mató a los dinosaurios. Esto es cierto en el caso de algunos. Pero otros sí lo tienen perfectamente claro; solo que un bando y otro tienen muy claras explicaciones distintas.

Las dos teorías en conflicto (y lo de «conflicto» no es una exageración, como también repasé aquí) son el impacto de un asteroide o cometa hace 66 millones de años, y un episodio de vulcanismo masivo en la meseta del Decán (en la actual India) que duró 750.000 años. Los que defienden la primera opción aseguran que son mayoría, y probablemente es cierto. Pero cuando además afirman que los del bando contrario no tienen pruebas de lo que sustentan, están haciendo exactamente lo mismo que sus oponentes dicen de ellos.

Hace un par de meses escribí un reportaje sobre el estado actual de la cuestión, pero nada parece indicar que haya un consenso próximo. En líneas generales, podríamos decir que los partidarios del vulcanismo tienden a aceptar que ambas catástrofes tuvieron su parte de culpa, ya que el impacto del asteroide pudo provocar tal sacudida en el manto terrestre que intensificó las erupciones. En cambio, la postura predominante en el bando del asteroide es que los volcanes produjeron un bonito espectáculo de pirotecnia natural, pero nada más.

La última pieza hasta hoy de este complicado puzle ha llegado este mismo mes. Investigadores de las Universidades de Florida y Michigan (EEUU) han analizado el calentamiento del océano Antártico en un período de 3,5 millones de años antes y después de la llamada frontera K-Pg, el límite que marca la gran extinción en el registro geológico. Para ello han empleado una nueva técnica que analiza los isótopos de oxígeno de los fósiles de moluscos bivalvos atrapados en la roca.

La conclusión de los investigadores es que hubo dos picos de calentamiento diferentes, uno que se corresponde con las erupciones del Decán y otro que coincide con la caída del asteroide, y que ambos provocaron la extinción de especies distintas. En resumen, el estudio apoya la solución salomónica de que aquel fue un millón de años de increíble mala suerte.

Pero claro, el trabajo se refiere a las almejas, no a los dinosaurios. Aunque sus resultados pueden ser indicativos sobre las causas generales de la extinción masiva, no necesariamente son aplicables a un grupo concreto de reptiles terrestres.

Y en lo que se refiere a los dinosaurios, las cosas se han embrollado aún más con el hallazgo reciente de que la desaparición de estos animales no fue una operación relámpago, como debería haber sido si la única culpa recayera en el asteroide, sino que fue un declive lento a lo largo de millones de años.

En 2012, un estudio del Museo de Historia Natural de EEUU descubrió que algunos grupos de dinosaurios estaban sufriendo un lento declive en los últimos 12 millones de años antes de la gran extinción. Esta caída en cámara lenta afectaba a los grandes herbívoros, pero no a los pequeños, ni a los carnívoros como el T-rex. Pero tampoco a los herbívoros gigantescos como los saurópodos ni a todos los grupos por igual en diferentes regiones de la Tierra, lo que hacía sospechar algo, pero no aclaraba qué era ese algo.

En abril de este año, otro estudio insistía en la misma idea. En este caso, investigadores de las Universidades británicas de Bristol y Reading concluían que en los 50 millones de años anteriores al impacto hubo un declive que afectó a casi todos los grupos, pero más a los saurópodos. Los autores sugerían que esto los hizo más vulnerables a la extinción provocada por el asteroide. Pero ni una palabra concreta sobre las posibles causas de esta lenta decadencia.

Así que pregunté sobre ello al primer autor del estudio, Manabu Sakamoto. “No tenemos una idea clara de qué causó el declive gradual”, me dijo. “El Cretácico vio muchos cambios ambientales drásticos, incluyendo un cambio en el clima de un invernadero estable a un enfriamiento global, vulcanismo intenso, y ruptura de supercontinentes. Cualquier combinación de estos factores pudo contribuir a la desaparición de los dinosaurios”.

Por las mismas fechas se publicó otro estudio que parecía descartar el papel de los volcanes en la extinción, ya que según sus autores la alteración del CO2 atmosférico causada por las erupciones había sido neutralizada mucho antes de la caída del asteroide. Sus autores defienden el objeto espacial como única causa de la extinción, así que le pregunté a su autor principal, Michael Henehan, de la Universidad de Yale, cuál podía ser en su opinión la causa del declive descrito por Sakamoto y sus colaboradores.

Henehan subrayó que no pudieron ser los volcanes, ya que las erupciones comenzaron solo un millón de años antes de la extinción. “Estos patrones pueden ser más bien el resultado de la expansión de las plantas con flores por aquella época. Esto significaría nuevos tipos de vegetación a costa de los antiguos, y por tanto nuevos nichos ecológicos a rellenar por los herbívoros”.

Sin embargo, Henehan no parecía estar muy de acuerdo con que el declive dibujara un panorama más propenso a la extinción. Por ejemplo, apunta que los cocodrilos probablemente eran mucho menos diversos que los dinosaurios por entonces, y sin embargo pasaron el filtro de la extinción.

En resumen, entre asteroides, volcanes, enfriamientos, continentes que se rompen y plantas que aparecen y desaparecen, seguimos sin tener una idea demasiado clara sobre cuál fue exactamente el proceso que borró del mapa a todos los grandes dinosaurios, mientras que muchos otros contemporáneos suyos lograron sobrevivir y prosperar, incluidos nuestros antepasados directos.

Respecto a esto último, tradicionalmente se ha dicho que los mamíferos de entonces, pocos, pequeños y subterráneos, lograron sobreponerse a la catástrofe, salir a la superficie y encontrarse con todo un mundo por conquistar, ocupando los nichos que los dinosaurios habían dejado libres, proliferando, diversificándose y llegando a dominar la Tierra.

Pero ¿seguro?