BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘neurociencias’

Ciencia semanal: los ‘Homo erectus’ podrían haber tocado el piano

Una ronda rápida de las noticias científicas más destacadas de esta semana que termina.

Pensando como humanos desde hace 1,8 millones de años

¿Desde cuándo los humanos somos humanos? Si pudiéramos de repente introducirnos en la mente de un individuo perteneciente a una especie ancestral de la familia humana, como un australopiteco o un Homo erectus, ¿a partir de cuál de ellos nos reconoceríamos a nosotros mismos como humanos, con nuestra autoconsciencia y nuestra capacidad de raciocinio?

Esta es una de las preguntas más interesantes de la paleoantropología, y también de las más difíciles de responder. Ni siquiera podemos precisar del todo cómo siente y piensa hoy uno de nuestros parientes vivos más próximos, como el bonobo o el chimpancé; ¿cómo hacerlo para una especie que desapareció hace miles de años?

Las nuevas tecnologías y la creatividad de los científicos hoy están logrando adentrarse en terrenos que antes parecían impenetrables. En muchos casos la clave de estos avances está en la interdisciplinariedad, la comunicación entre especialistas de ramas científicas muy diversas, tanto que hasta hace unos años no podría imaginarse para qué los conocimientos de uno podrían servir al otro. Por ejemplo, y como he contado aquí en alguna ocasión, hoy los arqueólogos ya no solo emplean libros y herramientas de campo, sino que aprovechan la capacidad de herramientas físicas avanzadas como los aceleradores de partículas para desentrañar secretos de sus hallazgos que serían inaccesibles por otros medios.

La investigadora de la Universidad de Indiana (EEUU) Shelby Putt es neuroarqueóloga, una especialidad que habría parecido absurda hace unos años, ya que ni el pensamiento ni su sustrato biológico, las neuronas, dejan huellas en el registro fósil. Pero Putt ha ideado un precioso experimento para tratar de entender cómo nuestros parientes ancestrales se parecían a nosotros en sus capacidades mentales.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

Putt y sus colaboradores pusieron a un grupo de voluntarios a fabricar herramientas de piedra como lo hacían los antiguos homininos en dos etapas distintas de la evolución: según la industria olduvayense, que comenzó a utilizarse hace 2,6 millones de años, o la achelense, más avanzada, cuyos primeros restos se remontan a hace 1,8 millones de años con el Homo erectus, y que se han fabricado hasta hace unos 100.000 años. Mientras los voluntarios se dedicaban a esta artesanía prehistórica, se registraba su actividad cerebral mediante una técnica avanzada no invasiva llamada espectroscopía funcional de infrarrojo cercano.

Los resultados, publicados en Nature Human Behaviour, muestran que la fabricación de las herramientas olduvayenses, más primitivas, solo requiere la actividad de regiones cerebrales implicadas en la atención visual y el control motor. Por el contrario, las achelenses activan una parte del cerebro mucho mayor, incluyendo áreas de alto nivel intelectual implicadas en la planificación. “Sorprendentemente, estas partes del cerebro son las mismas implicadas en actividades modernas como tocar el piano”, dice Putt. El estudio concluye: “La fabricación de herramientas achelenses puede tener más vínculos evolutivos con interpretar a Mozart que con citar a Shakespeare”.

Los superbichos son anteriores a los dinosaurios

Las bacterias multirresistentes, inmunes a todos los antibióticos conocidos, son hoy una de las mayores preocupaciones de epidemiólogos y especialistas en salud pública. Conocidos coloquialmente como superbichos (superbugs en inglés), estos microbios suelen anidar en los hospitales y en numerosas ocasiones provocan la muerte de pacientes ingresados por otras causas. Algunos expertos llegan incluso a dibujar un futuro atemorizador, en el que nuestros antibióticos actuales serán del todo inservibles y regresaremos a la época en que no teníamos herramientas para combatir las infecciones bacterianas.

Un nuevo estudio dirigido por Michael Gilmore, de la Facultad de Medicina de Harvard (EEUU), y publicado en la revista Cell, ha rastreado los orígenes evolutivos de un tipo de superbichos, los enterococos. Los resultados son sorprendentes: el origen de estos seres se remonta a hace 450 millones de años, en una época anterior a los dinosaurios, cuando los primeros animales estaban saliendo del agua para colonizar el medio terrestre.

Imagen de Mark Witton.

Imagen de Mark Witton.

Según los investigadores, cuando aquellos animales comenzaron a abandonar el medio acuático, llevaron con ellos los ancestros de los enterococos, y aquel cambio de hábitat fue seleccionando los genes necesarios para hacerlos resistentes a la desecación, a la falta de nutrientes y a las sustancias antimicrobianas, en lo cual está el origen de su extraordinaria resistencia a todo tipo de agresiones del medio externo. Cuatrocientos cincuenta millones de años después, es evidente que su estrategia evolutiva ha sido todo un éxito para ellos, y una seria amenaza para nosotros.

Un médico pronosticó el ciberataque

El premio al profeta de la semana se lo lleva Krishna Chinthapalli, neurólogo del Hospital Nacional de Neurología y Neurocirugía de Londres. El pasado miércoles, Chinthapalli recordaba en la revista British Medical Journal un reciente ciberataque a un hospital de Los Ángeles en el que se utilizó un virus de ransomware, que obliga a los atacados a pagar un rescate para recuperar el control de sus sistemas informáticos. El neurólogo escribía: “Deberíamos estar preparados: casi con seguridad este año más hospitales sufrirán ataques de ransomware“. Solo dos días después, un ataque con el ransomware WannaCry secuestraba el sistema británico de salud pública, entre otras muchas instituciones de varios países.

La Nebulosa del Cangrejo, vista como nunca

Les dejo con esta nueva y espectacular imagen de la Nebulosa del Cangrejo, publicada esta semana. La nebulosa es el resto de la violenta explosión de una supernova que pudo verse en el cielo en el año 1054 de nuestra era. Esta nueva imagen se ha construido superponiendo capturas en todo el espectro de luz tomadas por cinco instrumentos astronómicos: ondas de radio en rojo por el VLA, infrarrojo en amarillo por el telescopio espacial Spitzer, luz visible en verde por el Hubble, ultravioleta en azul por el XMM-Newton y rayos X en morado por el Chandra.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Pasen y vean una ilusión óptica que les dejará boquiabiertos

Uno ha visto ya tantas ilusiones ópticas que se le llega a formar callo en el órgano de la sorpresa. Por supuesto que los engaños siguen cumpliendo su función, dado que el sistema ojo-cerebro está hecho para apreciar según qué cosas de forma diferente a como son en realidad (si es que existe la realidad tal como la conocemos, pero esta es otra historia).

Una captura de la nueva ilusión de Sugihara. Imagen de YouTube.

Una captura de la nueva ilusión de Sugihara. Imagen de YouTube.

Pero lo que consigue el japonés Kokichi Sugihara está a otro nivel. Les pongo en antecedentes. Sugihara es un ingeniero del Instituto Meiji para el Estudio Avanzado de las Ciencias Matemáticas de Japón. En 2010, su nombre ya sonó en los medios de ciencia cuando construyó un elaborado montaje que ilustraba y explicaba el fenómeno de las llamadas cuestas magnéticas o gravitatorias.

Hasta en un centenar de lugares del mundo se ha descrito un insólito fenómeno: los coches, o incluso una pelota, parecen rodar solos por la carretera, pero cuesta arriba. Hará un par de décadas, recuerdo que uno de esos programas de televisión dedicados a explotar la afición humana a inventar misterios sobrenaturales donde no los hay hizo buen caldo con una de esas presuntas cuestas magnéticas en una carretera cercana a Ronda, en Málaga.

En otros lugares han ido más lejos: la llamada Magnetic Hill de Canadá sirve para dar nombre a un distrito, e incluso construyeron una variante de la carretera para desarrollar el tramo original como atracción turística: quien quiera verlo, que pague. En varios de estos lugares dispersos por el mundo se han colocado carteles en los que se ofrecen supuestas explicaciones seudocientíficas del fenómeno, como anomalías gravitatorias o magnéticas.

Pero naturalmente, no hay nada de esto, sino solo un sistema visual humano fácil de engañar. Newton sigue funcionando en todo el universo y, que se sepa, Ronda y Canadá siguen formando parte del universo. Y en el universo las cosas ruedan cuesta abajo, no cuesta arriba. Para demostrarlo, Sugihara construyó no una cuesta magnética, sino cuatro, demostrando que se trata de una ilusión óptica, un insólito efecto de la perspectiva que resulta en una impresión contraria a la realidad: parece que la carretera sube, cuando en realidad baja.

Con este proyecto, Sugihara ganó en 2010 el concurso Best Illusion of the Year. Pero si esto les ha sorprendido, a ver qué les parece la nueva creación de Sugihara, que ha merecido (extrañamente) el segundo premio en la edición del concurso de 2016. No hay trucos de vídeo, y el espejo es solo un espejo normal. Obsérvenlo, y tengan cuidado de mantener la boca cerrada, que es época de moscas.

¿Qué diablos está pasando? Según se deduce de su web (que les recomiendo visitar; es como un parque de atracciones para los ojos), Sugihara lleva décadas trabajando en el diseño de ilusiones visuales mediante objetos “imposibles” y ambiguos, en los que la pérdida de la perspectiva tridimensional en el vídeo obliga a nuestro cerebro a interpretar una geometría diferente de la real.

En el caso del espejo, tenemos dos perspectivas planas diferentes del mismo objeto: la directa, desde nuestro ángulo de visión, y la opuesta, que el reflejo nos devuelve. En realidad los objetos del vídeo no son cilindros ni prismas cuadrados, sino más bien algo intermedio entre ambos, y desde ángulos contrarios el resultado es distinto. El secreto está en el diseño de los bordes, que nuestro cerebro quiere ver planos, cuando en realidad son ondulados. Y es esta diferente distancia de nuestro punto de vista a las zonas elevadas y deprimidas de los bordes la que construye la ilusión del cilindro o el prisma. Este vídeo lo explica:

Si tienen a mano una impresora 3D y quieren probarlo ustedes mismos, aquí podrán encontrar los archivos para fabricarse su propio cilindro ambiguo. Y de propina, les dejo la última ilusión publicada por Sugihara en su web, el techo del garaje ambiguo.

El olor del pasado nos ayuda a recordarlo

Cuando Proust escribió el famoso pasaje de la magdalena, el té y el torrente de recuerdos que inundaba la mente del narrador, estaba haciendo algo más que crear un recurso literario: el autor plasmaba una filosofía del tiempo y la memoria que tradicionalmente se ha vinculado con el pensamiento de su coetáneo y conocido Henri Bergson. El filósofo explicaba que la memoria de las experiencias pasadas, con toda su carga emocional, se recuperaba a través de los estímulos primarios de los sentidos. Como el sabor de la magdalena y el té.

Imagen de Dennis Wong / Flickr / Creative Commons.

Imagen de Dennis Wong / Flickr / Creative Commons.

El tiempo ha dado la razón a Bergson en algunos aspectos, aunque tal vez Proust debería haberse referido más bien al olor de la magdalena, y no a su sabor. El olfato y el gusto son dos sentidos que entran en juego al mismo tiempo cuando comemos o bebemos, pero es sobre todo el primero el más rico en matices. Solo percibimos cinco tipos de sabores (puede que seis), mientras que el repertorio olfativo es inmenso incluso para una especie de nariz torpe como los humanos. El número de olores diferentes que podemos detectar prácticamente no tiene límite, y ni siquiera tenemos nombres específicos para ellos: los llamamos por aquello que los produce.

Lo poco que todavía conocemos el olfato se revela en algo sorprendente que hemos sabido en los últimos años: los receptores de olor no solo están presentes en la nariz, sino también en otros órganos y tejidos como el tubo digestivo, músculo, corazón, páncreas, hígado, pulmón y piel. Incluso, al menos en los ratones, hay receptores de olor en los testículos. ¿Para qué? Aún no está muy claro. Pero lo que sí conocemos es la capacidad evocadora de los olores, como ya intuyó Bergson. Como al narrador de Proust, son capaces de traernos a la memoria recuerdos muy remotos junto con los sentimientos que los acompañan, y sin la interferencia de un relato verbal.

Esto último se apoya también en otro rasgo único del olfato: mientras que la información de los demás sentidos pasa por una especie de estación intermedia, el tálamo, antes de dirigirse hacia las sedes del cerebro donde se procesa, los olores entran directamente y sin escalas desde el epitelio de la nariz hacia su destino, el bulbo olfatorio. A nivel práctico, esto se traduce para nosotros en que el olfato tiene ese carácter intuitivo y primario, algo que se refleja también en el lenguaje: me da en la nariz…

La relación entre olfato y memoria ha sido explotada por los científicos para estudiar cómo se forman nuestros recuerdos, cómo se reactivan y cómo se almacenan a largo plazo. Hoy sabemos que las memorias se forman en el hipotálamo, y que durante el sueño se trasladan a la corteza cerebral donde se consolidan como recuerdos a largo plazo. Y los olores ayudan a esta consolidación, como demuestra un nuevo estudio de la Universidad de Montreal (Canadá).

Otras investigaciones han explorado el papel de los estímulos durante el sueño en la formación de la memoria. Aunque aquel mito del aprendizaje de conocimientos escuchando durante el sueño que planteaba Huxley en Un mundo feliz hoy no parece factible, sí es cierto que la reactivación de los recuerdos durante el sueño a través de ciertos estímulos puede ayudar a reforzar el aprendizaje en algunos casos.

Y en esto el olfato tiene una ventaja: “El tálamo sirve en parte como una puerta de acceso de información que se cierra parcialmente durante el sueño, para que podamos dormir sin interferencias de los estímulos que nos rodean”, me cuenta el primer autor del estudio, Samuel Laventure. Pero como ya hemos dicho, el olfato no pasa por el tálamo. “Esto sugiere que la estimulación olfativa durante el sueño puede ser particularmente eficaz en comparación con la auditiva”.

Los investigadores sometieron a un grupo de voluntarios al aprendizaje de ciertas tareas motoras al mismo tiempo que se les presentaba un estímulo olfativo, olor a rosas. A continuación comprobaron cómo los sujetos recordaban lo aprendido al día siguiente, después de una noche de sueño. Los resultados muestran que el aprendizaje se reforzaba cuando a los voluntarios se les presentaba durante el sueño el mismo olor a rosas que estaba presente durante el experimento. Se supone que la presentación del estímulo reactiva el recuerdo, ayudando en el proceso de consolidación de la memoria transitoria en el hipotálamo como memoria a largo plazo en el córtex.

Además, los investigadores comprobaron que esta estimulación olfativa durante el sueño funcionaba cuando se aplicaba en la fase 2 del sueño no-REM/MOR (NREM2), que se ha asociado previamente a esta consolidación de la memoria. Laventure precisa que “los procesos de consolidación de la memoria motora se producen en gran medida, pero no exclusivamente, durante el sueño NREM2”. El estudio, publicado en la revista PLOS Biology, muestra además que la estimulación olfativa deja en el encefalograma una firma típica de la consolidación de la memoria, un patrón de ondas cerebrales llamado husos del sueño (sleep spindles). “Solo la estimulación durante NREM2 produjo cambios significativos en los husos del sueño”, aclara el coautor del estudio.

El trabajo de Laventure y sus colaboradores se refiere solo a la memoria motora, no a la declarativa, la que asociamos con los recuerdos. Pero otros estudios sugieren que también es posible reactivar este tipo de memorias mediante estímulos recibidos durante el sueño, mientras el olfato permanece activo, siempre dispuesto a llevarnos de viaje al pasado en busca del tiempo perdido.

Tonterías que se dicen: la inteligencia se hereda de la madre

Desmontar un titular bonito nunca luce; es como recoger la casa después de una fiesta. El problema es que internet ofrece a cualquier aseveración acientífica o seudocientífica el título de verdad por un día, engordando por un mecanismo de reacción en cadena. Y como en los terremotos, luego quedan las réplicas, retroalimentadas por un mecanismo circular típico de las seudociencias.

Los que tenemos como profesión contar la ciencia tenemos dos maneras de tomarnos estos casos: una, en *modo ironía*; otra, en *modo gravedad*, como si se estuviera atacando algún principio sagrado, lo que nos convierte en antipáticos inquisidores modernos. No es agradable ni para uno mismo. El problema es que, con tan buenos y buenas periodistas de ciencia en paro (me consta), leer barbaridades escritas sin el menor criterio ni conocimiento sí agravia y ofende a quienes no reciben de los medios la confianza para poner ese buen criterio y conocimiento al servicio de la información y educación científica del público.

Imagen de J. Y.

Imagen de J. Y.

Esta entradilla viene a cuento de un artículo sobre el que me ha alertado mi amiga y vecina de blog Madre Reciente, publicado en la web guiainfantil.com y titulado “La inteligencia se hereda de las madres”. Después de leerlo casi he tenido que ser atendido de urgencias (modo ironía).

El artículo en cuestión sostiene que la madre, más que el padre, transmite a sus hijos los genes relacionados con el “cociente intelectual”, ya que “el gen de la inteligencia se encuentra en el cromosoma X” y “como la madre aporta dos cromosomas X (XX), tendría el doble de posibilidades de transmitirla”. Por el contrario, del padre se heredan las emociones. La inteligencia, prosigue el artículo, se hereda en un 60%, y luego lleva un impuesto de sucesiones del 40% (perdonen, se me escapa el modo ironía).

El artículo cuenta también un experimento con ratones afirmando que se crearon animales con “más genes paternos o maternos”, que estos últimos tenían el cerebro más grande, y que el cerebro tiene, como en la maravillosa película Del revés, dos islas, una de “la alimentación, la supervivencia y el sexo”, y otra de “el desarrollo del lenguaje, la inteligencia, el pensamiento y la planificación”. Y parece que las células, según tengan más genes paternos o maternos, van a una isla o a la otra.

Quiero aclarar que esto no pretende ser un ataque personal contra la autora del artículo, cuya competencia profesional no cuestiono en materias ajenas a la ciencia. Estoy seguro de que yo escribiría barbaridades del mismo calibre si tuviera que escribir un artículo sobre fútbol, tenis o Fórmula 1. Más bien la responsabilidad es del medio, de ese y de tantos otros, que prescinden de los especialistas pensando que todo el mundo puede escribir sobre ciencia simplemente copiando lo que dicen otras webs, fomentando esa reacción en cadena de la que hablaba. También soy periodista y conozco la presión a la que estamos sometidos, pero nunca debemos permitir que esta presión llegue a quebrantar la ética periodística que esconde un titular.

Como decía Bilbo Bolsón, ¿por dónde empezar? ¡Ah, sí! Comencemos por la premisa inicial, la que según el artículo la ciencia “afirma y confirma”: que el “gen de la inteligencia” se encuentra en el cromosoma X, como al parecer “demostró” el científico estadounidense Robert Lehrke.

¿Quién era Robert Lehrke? Apenas se encuentra información sobre Robert Gordon Lehrke, psicólogo clínico del Hospital Estatal de Brainerd, en Minnesota, que en 1968 leyó su tesis doctoral titulada Sex-linked mental retardation and verbal disability (Retraso mental ligado al sexo y discapacidad verbal). Su área de especialización fue lo que entonces se llamaba “retraso mental”. Más allá de su tesis doctoral, que luego se editó en formato de libro, Lehrke apenas dejó un par de estudios publicados, dado que no era un investigador, sino un facultativo. Uno de ellos, un estudio teórico, apareció en 1972 en la revista American Journal of Mental Deficiency, bajo el título “Theory of X-linkage of major intellectual traits” (teoría de vínculo al cromosoma X de rasgos intelectuales principales).

Dado que se trataba solo de una hipótesis sin ninguna demostración, el artículo de Lehrke fue publicado junto con comentarios de otros tres expertos, a los que el propio psicólogo también respondía. Su propuesta resumía el trabajo de su tesis. Trabajando con pacientes con discapacidad mental, había observado un mayor número de hombres que de mujeres en esta población. Examinando un caso descrito en 1943 por Martin y Bell de una familia en la que la discapacidad mental afectaba solo a los hombres, y añadiendo sus propias observaciones, Lehrke propuso que el cromosoma X contenía uno o varios genes cuyas mutaciones producían “retraso mental”.

Y de hecho, en esto Lehrke estaba en lo cierto. En esto (y solo en esto, como voy a explicar) su intuición fue visionaria, ya que posteriormente se han identificado hasta 70 síndromes de discapacidad mental ligados al cromosoma X, según una revisión de 2005. Uno de los más conocidos es el Síndrome X Frágil, la segunda causa genética más frecuente de discapacidad mental después del Síndrome de Down, y la enfermedad del caso de Martin y Bell.

Pero en referencia al artículo citado y a otros que probablemente le han servido de inspiración, lo curioso es que sus autores se pasmarían si supieran qué era en realidad lo que Lehrke defendía, porque era justo lo contrario de lo que suponen. Por plantear un símil bastante bestia, lo reconozco, pero también muy intuitivo, sería como si una persona judía se basara en la ciencia nazi para justificar que ellos son diferentes. Lo explico.

La única que parece escribir sobre el trabajo de Lehrke habiéndolo leído antes es Anne Fausto-Sterling, bióloga y genetista estadounidense que ha dedicado su larga y premiada carrera a las cuestiones de género, sobre todo a derribar las falacias presuntamente científicas sobre los roles de ambos sexos. En su libro Myths of Gender: Biological Theories about Women and Men (Los mitos de género: teorías biológicas sobre las mujeres y los hombres), Fausto-Sterling atacaba el machismo de la teoría de Lehrke cuando este afirmaba que, del mismo modo que había más hombres con discapacidad mental, también había mayor proporción de genios, ya que en las mujeres la inteligencia se promediaba entre ambas copias de su cromosoma X, dando como resultado un nivel intelectual medio inferior. No se pierdan lo que Lehrke escribía:

Es altamente probable que factores genéticos básicos, y no el chovinismo masculino, expliquen al menos en parte las diferencias en el número de hombres y mujeres en los puestos que requieren los más altos niveles de capacidad intelectual.

Resumo: Lehrke pensaba que había una razón genética para que las mujeres, según él, estén menos capacitadas de cara al desempeño de trabajos intelectuales. Así, la reformulación correcta del titular del trabajo de Lehrke sería que los hombres heredan la inteligencia de sus madres, y las mujeres heredan la falta de ella.

Pero naturalmente, Lehrke estaba completamente equivocado, como bien se encarga Fausto-Sterling de argumentar aportando datos de la ciencia actual. El problema de Lehrke (aparte de la inevitable sospecha de que trataba de sostener un prejuicio propio) era que extendió sus conclusiones mucho más allá de lo que sus observaciones le permitían. Una cosa es que el cromosoma X contenga ciertos genes cuyas alteraciones provoquen discapacidad mental. Pero de ahí a pensar que ciertas variantes de esos mismos genes le hagan a uno más listo no solo es aventurado, sino que es erróneo. Imaginen un gen críticamente implicado en el desarrollo del ojo. Sus mutaciones podrían resultar en malformaciones, pero esto no significa que algunas formas de ese gen puedan producir ojos más perfectos, más grandes o en mayor número. Simplemente, si el gen funciona como debe, se producen ojos.

El motivo por el que hay más discapacidades mentales en los hombres es el mismo por el que hay más de cualquier otro trastorno ligado al cromosoma X: las mujeres tienen un backup, un segundo cromosoma X que suple las funciones si hay genes alterados. No es que, como dice el artículo, “como la madre aporta dos cromosomas X (XX), tendría el doble de posibilidades de transmitir” nada; no hay una lotería con un bombo en el que se meten dos bolas de un cromosoma para ver si así toca más fácilmente. La madre aporta (siempre) un (y solo un) cromosoma X; en el caso de las niñas, el padre aporta otro. Pero los hombres no tenemos ese backup, por lo que muchas enfermedades genéticas ligadas al X, como la hemofilia, se manifiestan en hombres, mientras que las mujeres son solo portadoras asintomáticas.

Pero además, no existe el gen de la inteligencia, ni varios. Como tampoco hay un gen de la simpatía o del gusto por la danza clásica. Solo unos pocos rasgos parecen (cada vez menos según avanza la investigación genética) ligados a un solo gen. El resto, sobre todo rasgos complejos como la (si es que alguien es capaz de definirla) inteligencia, dependen de muchísimos genes con una interdependencia enormemente compleja. Un gen no produce pelo rubio, orejas grandes o nariz respingona; los genes solo producen proteínas. Y estas participan en multitud de procesos del organismo que interactúan entre sí a través de redes inmensamente complicadas de cascadas bioquímicas, moduladas además por la influencia del entorno en el sentido más amplio, y que resultan en lo que conocemos como fenotipos.

En cuanto al asunto de los porcentajes, a lo largo del siglo XX se desató en la comunidad científica un debate heredado desde el darwinismo llamado Nature versus Nurture, o innato contra adquirido, destinado a determinar cuál era la parte de un rasgo complejo, como las conductas, atribuible a la genética, y cuánto era causado por el ambiente. Este debate se considera hoy abandonado porque la naturaleza de esos rasgos es demasiado compleja incluso individualmente, y más aún con la irrupción de la epigenética que determina la función génica según modificaciones químicas del ADN no codificadas en la secuencia. Hoy se considera que el debate no tiene sentido porque es seudocientífico, es decir, no hay una respuesta demostrable (o más bien falsable); cualquier afirmación que encuentren por ahí sobre porcentajes genéticos y ambientales pertenece al territorio de la autoayuda y la charlatanería, pero no al de la ciencia.

Frenología. Imagen de Wikipedia.

Frenología. Imagen de Wikipedia.

Me quedaría comentar el relato que hace el artículo del experimento de los ratones, pero creo que ya me he extendido demasiado por hoy y que el asunto ha quedado suficientemente claro. Baste decir que, ¡por favor!, la película Del revés, aunque magnífica, era solo eso, dibujos animados; en realidad la tristeza no es un muñequito azul con jersey de cuello vuelto. El cerebro no tiene islas. No hay un trozo de cerebro que podamos poner encima de la mesa y decir: ahí está el sexo, o la soledad. Ojalá: si una persona sufriera un traumatismo encefálico grave, como un disparo en la cabeza, el médico podría decir a los familiares del paciente: “Ha tenido suerte porque solo le ha afectado a la región de la planificación; no podrá volver a hacer planes en el resto de su vida, pero por lo demás estará estupendamente”.

Y naturalmente, tampoco el tamaño del cerebro tiene absolutamente nada que ver con la inteligencia. Tamaño y áreas discretas fueron las bases de una teoría del siglo XIX llamada frenología que fue desacreditada en el XX. Ironías del destino, tras la muerte de su impulsor principal, el alemán Franz Joseph Gall, el análisis de su cerebro reveló que su tamaño era inferior a la media, como también era más pequeño de lo normal el de Albert Einstein.

En resumen, la inteligencia se hereda en parte de la madre, en parte del padre, en parte se ve afectada por innumerables factores ambientales, y en parte se desarrolla con esfuerzo y ejercicio mental, aunque nadie puede ni podrá jamás determinar en qué partes; ni en general, ni individualmente. Y en cuanto al artículo, y recordando aquel curso de ética periodística que hace unos años impartía Juanjo de la Iglesia en el Caiga quien caiga, el titular adecuado habría sido “las discapacidades mentales están más frecuentemente ligadas al cromosoma X”. Claro que este titular no solo es algo ya conocido desde hace casi medio siglo, sino que tampoco tendría tantos retuits.

Más razones para sospechar que el alzhéimer es un peaje evolutivo

No se puede ser bueno en todo; quien mucho abarca, poco aprieta, y no se puede estar en misa y repicando. Son expresiones populares y refranes que condensan lo que en su aplicación a la biología se conoce como trade-offs evolutivos (peajes, en mi traducción libre), y que expliqué ayer. Para ahorrarles el clic, resumo que desde tiempos de Darwin se sabe que las adaptaciones ventajosas al entorno a menudo tienen un precio, en forma de otras desventajas asociadas que pueden ser más o menos perjudiciales según el caso, pero de modo que el balance final compensa. El repertorio de adaptaciones de los seres vivos al medio en el que viven es como una sábana demasiado pequeña; si se tira de ella para cubrir una parte del cuerpo, otra tirita de frío.

En el caso de los humanos, es natural que existan estos trade-offs. Los peajes aparecen con frecuencia en casos de hiperespecialización. Y para hiperespecializados, nosotros: los Homo sapiens somos un ejemplo extremo del problema de tener todos los huevos en la misma cesta. De las millones de especies que habitan este planeta, actualmente solo una, nosotros, ha discurrido por el camino evolutivo de desarrollar la capacidad intelectual que nos permite hacer cosas como escribir este artículo o leerlo. De hecho, quienes más cerca estuvieron también de ello, como los neandertales, sufrieron el destino de la extinción.

Ilustraciones como esta, aunque muy populares, transmiten una visión errónea de la evolución humana. Imagen de Wikipedia.

Ilustraciones como esta, aunque muy populares, transmiten una visión errónea de la evolución humana. Imagen de Wikipedia.

Este camino no es una vía hacia ninguna clase de perfección, sino simplemente una opción evolutiva más, que en el caso del ser humano le ha resultado ventajosa; pero la típica estampa de los homininos primitivos caminando en fila detrás de un humano moderno ha transmitido la falsa impresión popular de que la evolución es lineal y que nuestros ancestros eran personas a medio hacer cuyo propósito era servir de modelos intermedios, como en una serie de fotos de un edificio en construcción. La biología no funciona así: en cada momento de la historia, cada una de las especies antecesoras del Homo sapiens estaba bien adaptada a sus circunstancias, como demuestra su éxito evolutivo. Chimpancés, gorilas y orangutanes no están a medio evolucionar, como falsamente sugieren las mil y una películas de El planeta de los simios; de hecho, son inmejorablemente aptos para sobrevivir en su entorno, y hay estudios que sugieren que los chimpancés están realmente más evolucionados que nosotros, ya que su selección natural ha sido más intensa.

Entre los trade-offs estudiados en los humanos hay algunos relacionados con la reproducción. Por ejemplo, los altos niveles de testosterona en los hombres son beneficiosos durante la juventud, pero exponen a mayor riesgo de cáncer de próstata en la vejez. También se cree que la existencia de una reserva de ovocitos en el ovario femenino para toda la vida fértil tiene la ventaja de generar ciclos regulares, lo que facilita la regulación de la reproducción; el inconveniente aparece cuando se agota esta reserva, con la menopausia y sus síntomas.

Pero como es natural, gran parte de los trade-offs propuestos para los humanos afectan a nuestro rasgo más sobresaliente, el cerebro. En 2011, un estudio reveló que la típica reducción del volumen cerebral que aparece en los humanos con la llegada de la vejez no existe ni siquiera en nuestros parientes más próximos, los chimpancés, y que parece estar relacionada con nuestra mayor longevidad. Los investigadores planteaban la posibilidad de que se trate de un trade-off evolutivo cuya contrapartida es la propensión a desarrollar enfermedades neurodegenerativas propias de la edad, como el alzhéimer.

Tomografía de positrones de un cerebro humano con enfermedad de Alzhéimer. Imagen de NIH.

Tomografía de positrones de un cerebro humano con enfermedad de Alzhéimer. Imagen de NIH.

También en 2011, una revisión sobre el enfoque evolutivo del alzhéimer repasaba varias propuestas relativas a cómo los sofisticados procesos destinados a construir y estabilizar nuestra estructura cerebral, manteniendo una plasticidad necesaria durante la larga maduración humana, pueden tener un coste bioenergético en forma de lesiones a edades avanzadas. Algunos investigadores sugieren que el riesgo de padecer alzhéimer a los 85 años es del 50%, y que si llegáramos a cumplir los 130 todos los humanos lo padeceríamos.

Los autores de la revisión, Daniel Glass (Universidad Estatal de Nueva York) y Steven Arnold (Universidad de Pensilvania), destacaban un dato curioso: de los tres alelos (versiones de un gen) de la apolipoproteína E (APOE) que se relacionan diferencialmente con el riesgo de padecer alzhéimer, el que se asocia con un mayor riesgo, APOE ε4, es la forma ancestral que aparece en nuestros parientes y ancestros evolutivos. La forma neutral y la ventajosa (ε3 y ε2 respectivamente) han aparecido exclusivamente en los humanos. ¿Por qué el alelo ε4 sencillamente no ha desaparecido? Una respuesta evidente sería que no afecta a esa “reproducción del más apto” en la que ayer dejábamos la expresión de Darwin. Pero parece que hay algo más; el gen APOE está implicado en muchos procesos, y algunos estudios sugieren que el alelo ε4 confiere otras ventajas, como protección frente al riesgo cardiovascular en respuesta a estrés mental (el típico infarto por susto), frente al daño hepático inducido por virus, y frente al riesgo de abortos espontáneos. De nuevo, un caso de la pleiotropía antagónica que definíamos ayer; es decir, más trade-offs.

Así, el estudio que comenté anteriormente no es el primero que propone la posibilidad de que el alzhéimer sea un trade-off evolutivo que impondría una restricción esencial a la prolongación de nuestra longevidad. En este nuevo trabajo, los investigadores revelan que dos de los genes que muestran señales de selección positiva en humanos son SPON1, que participa en la construcción del andamiaje de los axones y se une a la proteína precursora amiloide impidiendo su ruptura, y MAPT, responsable de la proteína tau que estabiliza la estructura en la que se apoyan las neuronas. Curiosamente, ambas son responsables de nuestra avanzada estructura cerebral, y sus hipotéticos fallos de funcionamiento producirían precisamente dos de los síntomas típicos del alzhéimer, la acumulación de beta amiloide y las madejas de proteína tau. A la vista de estos resultados, la sospecha de que el alzhéimer es el resultado de un trade-off evolutivo parece casi inmediata.

La conclusión es que tal vez esto no nos deja demasiada esperanza a la hora de luchar contra algo que los clínicos ven solo como una enfermedad (y desde el punto de vista patológico no cabe duda de que lo es), pero que para muchos biólogos es además algo más profundo y complejo, el doloroso peaje evolutivo de una larga vida. Como decíamos arriba, los humanos actuales no somos una forma perfecta de nada, sino otra especie más en su incesante camino evolutivo. Y en este breve instante de la historia de la vida en la Tierra que es la civilización, los humanos padecemos alzhéimer.

Si acaso, nuestros descendientes lejanos podrían tener algo más de suerte: dado que actualmente el alelo de APOE más prevalente en la población es el neutral ε3 –el 95% de los humanos tiene al menos una copia–, y que tal vez esto sea simplemente un efecto de la deriva genética (fenómeno que, a diferencia de la selección natural, conserva y extiende en las poblaciones versiones de los genes que no son beneficiosas ni perjudiciales, sino simplemente neutras), según Glass y Arnold sería de esperar que en el futuro el alelo dañino ε4 desapareciera de las poblaciones humanas. Así, al menos el alzhéimer no sería una funesta inevitabilidad para los futuros humanos que sobrepasarán con creces el siglo de vida.

El autismo, ¿una insospechada conexión entre el intestino y el cerebro?

La semana pasada comentaba aquí un campo científico emergente que está ganando momento y sentando un nuevo paradigma: la capacidad de la microbiota intestinal humana, las bacterias que viven en nuestras tripas, para influir sobre el funcionamiento de nuestro cerebro. El puente que establece este eje intestino-cerebro aún necesita de mucha investigación para ofrecernos una imagen nítida, pero lo más plausible es que se trate de mecanismos neuroendocrinos.

Bacterias intestinales (E. coli) ampliadas 10.000 veces. Imagen de microscopía electrónica de USDA / Wikipedia.

Bacterias intestinales (E. coli) ampliadas 10.000 veces. Imagen de microscopía electrónica de USDA / Wikipedia.

Entre los desórdenes neurológicos que podrían esconder una relación insospechada con las bacterias intestinales, los expertos han propuesto la depresión, la ansiedad, el dolor crónico y los trastornos del espectro autista. En este último caso, ciertos experimentos han encontrado vínculos causales demostrados que apoyan la credibilidad de otros estudios epidemiológicos. Como insisto siempre, la asociación estadística de datos puede conducirnos a desastrosos errores si las correlaciones no vienen con unos buenos cimientos experimentales, como está sucediendo últimamente con recomendaciones dietéticas que se tambalean cuando las pruebas no las sostienen.

Ahora, un nuevo estudio aporta un cable más a este puente que parece tenderse entre el autismo y la microbiota. Pero no es un estudio muy al uso, como tampoco su autor es un científico al uso. John Rodakis estudió biología molecular, una formación que unió a su MBA en la Escuela de Negocios de Harvard para dedicarse a la inversión de capital riesgo en empresas tecnológicas y biomédicas, un terreno en el que parece moverse con enorme éxito. Hay otro dato fundamental en su biografía: Rodakis es padre de un niño con autismo.

Como otros padres en parecida situación económica y personal, Rodakis ha emprendido un mecenazgo para dedicar una parte de su fortuna a la investigación sobre el trastorno que afecta a su hijo. Pero con una diferencia que claramente denota su formación científica: en lugar de sumar su esfuerzo a la corriente, como suele ser habitual, su fundación N Of One “se centra en la investigación emergente sobre el autismo que no está recibiendo financiación adecuada en relación a su mérito científico, en especial la investigación que trata las observaciones de padres y médicos como pistas potenciales sobre cómo funciona el autismo”, en palabras de la propia institución.

Salvando casos particulares que incluso han merecido llevarse al cine (El aceite de la vida o Medidas extraordinarias), el mecenazgo en la investigación –de mayor tradición anglosajona– no suele fijarse en enfoques científicos alternativos, sino que habitualmente favorece a los investigadores líderes que representan el llamado mainstream (o corriente principal), o bien atiende sectores desasistidos por su impacto minoritario en la población general –como el de las enfermedades raras– pero sin abrir necesariamente abordajes nuevos. Como biólogo de formación, Rodakis tiene probablemente el criterio para apreciar que la posible conexión intestino-cerebro no es un fenómeno paranormal, sino que tiene un fundamento científico. Pero no es esta la única razón por la que está tanto preparado para evaluar este enfoque como interesado en financiarlo. Además, es su propia experiencia personal la que le guía.

Todo comenzó el día de Acción de Gracias de 2012, una festividad tradicional en EE. UU. Rodakis visitaba a unos parientes con su mujer y sus hijos cuando advirtió que los dos niños habían contraído amigdalitis, las típicas anginas. En el centro de urgencias, el médico de guardia les prescribió amoxicilina, un antibiótico comodín. La sorpresa llegó cuando el fármaco no solo curó la infección de los niños, sino que uno de ellos, diagnosticado con autismo moderado a grave, pareció mejorar de sus síntomas con el tratamiento.

“Comenzó a establecer contacto visual, que antes evitaba; su habla, que estaba seriamente retrasada, empezó a mejorar marcadamente; era menos rígido en su insistencia de costumbres y rutinas”, escribe Rodakis en su estudio, publicado en la revista Microbial Ecology in Health and Disease y de libre acceso. El autor añade que el niño se mostraba más activo y que incluso comenzó a montar en un triciclo que sus padres le habían regalado seis meses antes y al que hasta entonces no había prestado atención.

Lazo de la campaña de concienciación sobre el autismo y el asperger. Imagen de Wikipedia.

Lazo de la campaña de concienciación sobre el autismo y el asperger. Imagen de Wikipedia.

Los progresos del niño también sorprendieron a los médicos, que no estaban informados de la circunstancia del antibiótico. Para sistematizar y confrontar los datos, Rodakis utilizó un software con el que registraba y evaluaba 20 parámetros del autismo. “Confío en que las mejoras que vimos eran reales, significativas y sin precedentes”, resume. “Animaría a cualquier padre/madre que crea que está observando un fenómeno similar a que tome notas detalladas y cuidadosas y a que obtenga tanta documentación en vídeo como le sea posible, porque esa información puede ser útil en el futuro”, añade.

A continuación, Rodakis investigó si había más casos descritos como el suyo, y descubrió que otros padres compartían sus observaciones (aunque en ciertos casos, por el contrario, los antibióticos parecían agravar los síntomas). Encontró también un único estudio previo, publicado en 2000 a partir de un ensayo realizado en un hospital de Chicago, en el que otro antibiótico –vancomicina– también mejoró los síntomas de autismo. Por último, el autor indagó en el campo emergente de la conexión intestino-cerebro y encontró que otros estudios sugerían una relación entre la microbiota intestinal y algunas condiciones cognitivas y funcionales del cerebro, entre ellas el autismo.

Con todo ello Rodakis, que como inversor profesional parece ser un tipo de soluciones concretas, tomó varias medidas. Primera, crear su fundación N of One, una expresión empleada en inglés para designar un ensayo clínico con un solo paciente. Segunda, reunir un equipo científico multidisciplinar para investigar la conexión microbiota-autismo desde distintos enfoques. Tercera, organizar y patrocinar el Primer Simposio Internacional del Microbioma en la Salud y la Enfermedad con Especial Atención al Autismo, que se celebró en junio de 2014 en Arkansas. Y cuarta, reunir las presentaciones del simposio y un artículo relatando su propio caso en un número especial sobre microbioma y autismo de la revista Microbial Ecology in Health and Disease. Se trata de una publicación revisada por pares, aunque minoritaria y con un índice de impacto histórico muy bajo; pero por su planteamiento y desarrollo formal, quizá el artículo de Rodakis no habría encajado en muchas de las revistas más habituales.

Naturalmente, Rodakis admite que aún es pronto para definir el peso real del microbioma en el desarrollo y evolución del autismo, y que este vínculo no será aplicable a todos los casos. Tratándose de un amplio espectro de trastornos, tal vez apuntar a una única causa común sería como intentar hacer lo mismo con el cáncer. Al autismo se le atribuye un componente genético; la última prueba ha llegado también esta semana en la revista Nature, en la forma de un gen llamado CTNND2 que parece estar involucrado en casos de autismo familiar. Además, los estudios neurológicos han mostrado que existe una huella del autismo en el cableado neuronal, sugiriendo que cualquier tratamiento farmacológico siempre estaría limitado por factores estructurales.

Tampoco Rodakis pretende que los antibióticos sean una opción terapéutica aceptable, ni siquiera para los casos susceptibles. Pero como buen biólogo, sabe que el hecho de comprobar un efecto importa más que el hecho de que el efecto sea favorable o contraproducente: si hay un efecto, es que existe una interacción, y esta siempre puede manipularse para orientarla hacia el resultado deseado. Ahora, argumenta Rodakis, se trata de emplear los antibióticos como herramientas de investigación para ayudar a definir el mecanismo de esa interacción. Y una vez comprendido este mecanismo, si es que existe y si es que llega a comprenderse, tal vez se abra un nuevo campo de batalla en el tratamiento y la prevención del autismo.

La conexión cerebro-tripas, un nuevo paradigma científico

Contrariamente a lo que suelen creer quienes prefieren vivir al margen de la ciencia –lo cual es tan respetable como vivir al margen del arte, la literatura, el aeromodelismo, la política o el fútbol (de hecho, un servidor prefiere vivir al margen de los dos últimos)–, el conocimiento científico no es una torre de marfil intocable habitada por intelectuales prepotentes que miran con displicencia el hormiguero de ignorantes que discurre bajo sus pies. Pero para qué tratar de convencer a nadie de esto. El caso es que, a pesar de las resistencias al cambio de todo establishment, la ciencia continúa abierta a nuevos paradigmas que revuelvan las tripas de su actual organismo más o menos razonablemente estable. Mucho más abierta que el arte, la literatura, la política o el fútbol. Sobre el aeromodelismo, no podría decir.

El caso es que los vendedores de alimentos probióticos llevan años tratando de vendernos la idea de que el bienestar de las tripas repercute en una saludable higiene mental. Y durante años, la ciencia formal ha ignorado estas proclamas, que con mucha frecuencia desprenden un tufillo holístico a cantos de ballenas. Y sin embargo, las cosas están cambiando. En los últimos años se ha venido acumulando un cierto volumen de estudios que establecen una conexión insospechada entre los sistemas digestivo y nervioso central. Insospechada hasta cierto punto, porque lo cierto es que haber conexiones, haylas. Primero, obviamente hay un vínculo estructural, el nervio vago. Segundo, el sistema inmunitario hace masa en torno al tubo digestivo; y aunque el sistema nervioso central tiene su propia alambrada de protección (la llamada barrera hematoencefálica), está muy bien vigilado y protegido por la defensa innata. Y tercero, algunas bacterias de la flora intestinal producen compuestos con efecto neurotransmisor.

El nervio vago, en una ilustración de la clásica Anatomía de Gray. Imagen de Wikipedia.

El nervio vago, en una ilustración de la clásica Anatomía de Gray. Imagen de Wikipedia.

Este último, el de las bacterias, es el aspecto crítico que traigo aquí hoy. La insospechada conexión radica en la posibilidad de que la flora intestinal desempeñe un papel en las funciones cognitivas y conductuales del sistema nervioso central. Es decir, que los bichos de nuestro intestino pueden mandar sobre nuestro cerebro. Y esto es algo que nadie habría creído hace unos años. Pero como digo, al revisar la literatura científica ya va siendo imposible ignorar tal posibilidad. Hoy mismo me he topado con un nuevo estudio en la revista eLife en el que se establece una asociación entre la relación social de los babuinos y su microbiota intestinal. Aunque en el estudio no se sugiere que sean las bacterias las que modulan las redes sociales, sino que es el contacto entre individuos el que perfila sus poblaciones microbianas, estudios como este tienen ahora un nuevo enfoque que se resume en estas palabras, pertenecientes a una revisión sobre el eje intestino-cerebro publicada en 2013 en la revista Protein Cell:

La comunicación entre el intestino y el cerebro, conocida como eje intestino-cerebro, está tan bien establecida que el estado funcional del intestino siempre se relaciona con la condición del cerebro. Las investigaciones sobre el eje intestino-cerebro se han centrado tradicionalmente en cómo el estado psicológico afecta la función del tracto gastrointestinal. Sin embargo, pruebas recientes sugieren que la microbiota del intestino se comunica con el cerebro a través del eje intestino-cerebro para modular el desarrollo cerebral y los fenotipos de comportamiento.

En otras palabras: lo que ocurre en nuestras tripas puede condicionar lo que sucede en nuestro cerebro, más allá de que un ataque de ardor nos ponga de mala leche. En este caso, quienes manejan los mandos son las bacterias de nuestro intestino. El pasado noviembre, la revista Nature cubría este tema en su sección de noticias, destacando que en 2014 el Instituto Nacional de Salud Mental de EE. UU. financió con un millón de dólares un nuevo programa dedicado a investigar la conexión microbioma-cerebro, y que esta novísima área de investigación fue objeto de un simposio dentro del congreso anual de la Sociedad de Neurociencias de aquel país.

En el congreso, varios investigadores presentaron las pruebas disponibles de que la microbiota o población microbiana intestinal puede influir en determinadas condiciones neurológicas, posiblemente a través de mecanismos neuroendocrinos. A mis humildes ojos, esto es casi lo más parecido a un nuevo paradigma que hemos vivido desde hace años en biología. El hecho de que el ecosistema microbiano de nuestro intestino no solo influya en nuestra salud física, sino también mental, puede abrir un enorme campo de investigación en torno a hipótesis que solo hace unos años habrían parecido descabelladas; porque cuando hablamos de comportamiento podemos referirnos, como señalan los investigadores en una revisión en la revista The Journal of Neuroscience que resume lo presentado en el congreso, a trastornos como “desórdenes del espectro autista, ansiedad, depresión y dolor crónico”.

Mucho cuidado. La ventaja de una nueva vía de investigación es que todas las posibilidades están abiertas, pero también que aún es casi todo lo que se desconoce. Sería una lamentable consecuencia que algún paso en falso creara expectativas sobre nuevas vías de tratamiento o paliación de tastornos graves o que hoy resultan incurables. Pero tampoco se puede soslayar lo que muestran los resultados experimentales ya publicados. En 2013, un equipo de investigadores del Instituto Tecnológico de California y la Facultad de Medicina Baylor de Houston, dirigido por el microbiólogo Sarkis Mazmanian, publicó un estudio en la revista Cell mostrando que un modelo de ratón con ciertos síntomas de autismo asociados a trastornos gastrointestinales presentaba niveles deficientes de una bacteria de la flora llamada Bacteroides fragilis, y que los síntomas de los ratones mejoraban al repoblar sus intestinos con este microbio. La posible conexión es una molécula llamada 4-etilfenilsulfato, un metabolito bacteriano que aparecía elevado en los ratones afectados y cuya inyección en ratones normales provocaba los mismos síntomas. A todo esto hay que añadir que Cell es la primera revista del mundo en bioquímica y biología molecular.

No es el único estudio que sugiere una conexión entre la microbiota y los trastornos del autismo. También en 2013, una investigación publicada en la revista PLOS ONE descubría una reducción de las bacterias fermentadoras en el tubo digestivo de un grupo de 20 niños con trastornos del espectro autista y síntomas gastrointestinales, descartando la posibilidad de que fuera un efecto debido a la dieta. Y en los próximos días contaré un nuevo estudio que aporta más indicios en la misma dirección.

Repito e insisto: al tratarse de un nuevo campo de investigación, los resultados deben tomarse con extrema cautela, y nadie se atrevería a aventurar que de todo esto pueda derivarse algún tratamiento clínico de utilidad. Aún estamos en la caverna de Platón, y las cadenas acaban de caerse.

Más viajes alucinantes: 300.000 habitantes moleculares en la conexión de una neurona

Si pudiéramos dividir un milímetro en mil partes iguales, en cada una de estas secciones cabría uno, o quizá varios empalmes entre neuronas. Sin embargo, al contrario que en los cables eléctricos, en las fibras nerviosas no existe contacto directo entre los dos extremos, sino que entre ellos queda un diminuto hueco, tan fino como dividir 50 veces esa milésima de milímetro. Pero aunque la brecha sea diminuta, para el impulso eléctrico es un abismo. En el extremo de la neurona, la electricidad se transforma en una señal química que se vierte a ese espacio minúsculo y lleva el mensaje hasta el otro extremo, donde vuelve a convertirse en potencial eléctrico que continúa su camino a lo largo de la siguiente fibra. Esto es una sinapsis. El lugar donde se produce se llama terminal o botón sináptico; y si lo aislamos del resto de la neurona, tenemos un sinaptosoma.

Recientemente comenté aquí dos vídeos (uno y dos) que recreaban el paisaje interior de la célula y que mostraban la inmensa y estupefaciente complejidad de esa microscópica maravilla repetida en nuestro organismo quizá unos 37 billones de veces. Uno de esos dos vídeos mostraba el funcionamiento de una sinapsis, pero no dejaba de recurrir a una cierta simplificación idealizada para hacer más manejable el resultado final. Ahora, un equipo de investigadores de la Universidad de Gotinga y el Instituto Max Planck, en Alemania, ha emprendido el trabajo exhaustivo de modelar en tres dimensiones un sinaptosoma de rata combinando múltiples técnicas de imagen y análisis molecular. El resultado es la recreación de un apabullante planeta celular en el que viven unas 300.000 proteínas, cada una con su localización y estructura reales, como en esas épicas batallas creadas por CGI (imágenes generadas por ordenador) con miles de personajes individuales que hemos podido contemplar en la saga de El señor de los anillos de Peter Jackson.

El estudiante de doctorado Benjamin Wilhelm y sus colaboradores, bajo la dirección del neurocientífico Silvio Rizzoli, se han centrado en el proceso de reciclaje de las vesículas de neurotransmisores. La transmisión de la señal química a través de la sinapsis se produce gracias al vertido al exterior de moléculas como el glutamato, la dopamina, la serotonina, la epinefrina o la histamina, todos ellos neurotransmisores. Dentro de la célula, esos componentes viajan envueltos en bolsitas que se fusionan con la membrana externa de la neurona para volcar su contenido al exterior. Después, en un ejemplo de buen aprovechamiento de los recursos celulares, las vesículas vuelven a crearse a partir de la membrana de la neurona, reciclando algunos de los neurotransmisores.

El trabajo de los investigadores, publicado ayer en la revista Science, incluye un vídeo que presenta el sinaptosoma con una resolución a nivel atómico nunca antes vista, y en el que algunos elementos se van añadiendo y ocultando para facilitar su comprensión. He aquí el resultado, y procuren no parpadear, porque se perderán algo:

¿Por qué soñamos? ¿Podemos controlarlo?

Sigmund Freud fue un curioso ejemplo de hombre de ciencia que inventó lo que él mismo necesitaba: psicoanálisis. Sin entrar en discusiones sobre si esta práctica terapéutica es tal o pseudociencia, como alegaba Karl Popper, conozco a alguno que otro que leyó La interpretación de los sueños en busca de fórmulas al estilo “soñar con ornitorrincos = aumento de sueldo” para encontrarse de repente extraviado sin remedio en un inmenso y farragoso bosque de penes y vulvas habitado por personajes sexualmente aturullados. Para Freud, los sueños eran realizaciones disfrazadas de deseos reprimidos por la consciencia, pero sus deseos solían estar localizados de cintura para abajo.

'El sueño de la razón produce monstruos', grabado de Francisco de Goya.

‘El sueño de la razón produce monstruos’, grabado de Francisco de Goya.

La contribución de Freud apostó por el concepto del sueño como un fenómeno esencialmente psíquico, en oposición a los autores médicos de su época que defendían una visión orgánica, en la que los sueños eran algo “comparable a la serie de sonidos que los dedos de un individuo profano en música arrancan al piano al recorrer al azar su teclado”, en palabras del propio Freud. Sin embargo, hoy parece impensable tratar de comprender el fenómeno de los sueños desde un seco enfoque psicológico sin empaparlo en la neurofisiología. Conociendo lo complejo de nuestra actividad neuronal y que mucha parte de ella forma el backstage de nuestra interacción con el mundo, lo difícil sería pensar que el torrente eléctrico que nos cruza el cerebro durante el sueño no se plasmara de alguna manera a través de imágenes, pensamientos o emociones. Pero ¿realmente los sueños tienen algún propósito o significado, o son simples traducciones sin sentido del ralentí cerebral, como quien utiliza el código Morse para descifrar el picoteo de un pájaro carpintero? ¿Por qué a veces el contacto con una persona en sueños nos suscita un grado de emoción más intenso que su conocimiento real? ¿Por qué nos aterran ciertas experiencias oníricas que resultan insustanciales cuando las reflexionamos despiertos? Y por último, ¿podemos tomar el control de nuestros sueños?

Por desgracia, y así como los científicos han revelado recientemente razones esclarecedoras sobre nuestra necesidad de dormir, la ciencia de los sueños continúa siendo una ciénaga tan penumbrosa como el propio mundo onírico. Sobre la función del sueño se ha propuesto que ayuda a consolidar la memoria, a conectar pensamientos e incluso a vaciar la papelera de reciclaje, como en un ordenador. En 1977, los psiquiatras Allan Hobson y Robert McCarley propusieron la teoría de activación-síntesis que se decantaba por el modelo neurofisiológico, explicando los sueños como la manera del cerebro de interpretar señales de las áreas emocionales que se activan durante la fase REM (siglas en inglés de Movimiento Ocular Rápido, la etapa onírica más productiva del ciclo del sueño). Sin embargo, modelos más recientes sugieren que las ensoñaciones y el sueño REM se localizan en regiones diferentes del cerebro. Pero lo más interesante de la teoría de Hobson es su propuesta de que el sueño produce una recombinación aleatoria de elementos cognitivos, algo así como barajar las cartas de nuestra información cerebral, lo que puede estimular la creatividad generando nuevas ideas. Muchas obras de la literatura son hijas de los sueños: personajes como el doctor Jekyll y su álter ego Hyde, Frankenstein y Drácula nacieron en las ensoñaciones de sus autores antes de cobrar vida en el papel.

Grabado de Theodore Von Holst para la edición de 1831 de 'Frankenstein', de Mary Shelley.

Grabado de Theodore Von Holst para la edición de 1831 de ‘Frankenstein’, de Mary Shelley.

Una teoría en la línea de lo propuesto por Hobson es la de la psicóloga experimental de la Universidad Goethe de Fráncfort (Alemania) Ursula Voss. “Mi teoría personal, pero (aún) no científicamente demostrada, es muy simple: nuestros sueños son subproductos de una actualización cerebral nocturna, en un momento en que la entrada de información del entorno se reduce al mínimo”, explica Voss a Ciencias Mixtas. “Creo (pero no sé realmente si es cierto) que, durante el sueño REM, formamos asociaciones entre información vieja y nueva, lo ligamos a las emociones, y lo almacenamos en imágenes visuales. Así que, para mí, el sueño, cuando lo recordamos, es algo así como emoción comprendida. No contiene un mensaje, pero nos ayuda a la introspección”, agrega la psicóloga.

En colaboración con Hobson, Voss dirige una fascinante línea de investigación sobre los sueños que en ciertos aspectos recuerda a la película Origen (Inception, 2010), de Christopher Nolan. En concreto, la psicóloga investiga los llamados sueños lúcidos, aquellos en los que el durmiente es consciente de estar soñando y puede llegar a controlar sus vivencias oníricas. “Sabemos que la ocurrencia espontánea del sueño lúcido es especialmente frecuente en la pubertad, una época en la que experimentamos las fases finales de la mielinización [integración en el sistema cerebral] del lóbulo frontal”, apunta Voss. “Es un proceso similar a la actualización del hardware de un ordenador”. La científica piensa que esta especie de estado híbrido entre sueño y vigilia es una confusión accidental entre distintos estados de consciencia. Y lo más pasmoso es que puede provocarse.

Anteriormente, los experimentos de Voss y su equipo han demostrado que este extraño estado de lucidez puede entrenarse por autosugestión. El procedimiento recuerda a la película, cuyos personajes se introducían en los sueños llevando un objeto que les servía como pista para distinguir si se encontraban en el mundo onírico o en el real. El protagonista, interpretado por Leonardo DiCaprio, utilizaba una peonza que en el sueño giraba constantemente sin detenerse jamás. “Primero debes aprender a recordar tus sueños”, dice Voss. “Entonces debes buscar cosas que puedan ser identificadas como no reales más fácilmente que otras; por ejemplo, una voluntaria sabía que estaba soñando cuando su perro muerto aparecía en el sueño. La siguiente vez que sueñes con esa persona, animal u objeto, trata de utilizarlo como pista para preguntarte a ti mismo: ¿es esto real? Otra voluntaria siempre soñaba que entraba en una casa sin suelo, donde temía caer en un gran vacío. Aprendió a mirar hacia la derecha y, en el momento en que lograba hacerlo, la trama del sueño cambiaba, lo que para ella era una señal que le hacía percatarse de que estaba soñando”.

Los anteriores experimentos de Voss han logrado vincular estos sueños lúcidos a una frecuencia concreta de la actividad eléctrica cerebral. “Nuestro punto de partida fue el hallazgo de que el sueño lúcido, cuando ocurre naturalmente, viene acompañado por un aumento de la actividad de 40 hercios, correspondiente a la banda gamma de baja frecuencia”, apunta Voss. Sin embargo, esta observación no permitía discernir si dicha actividad era una causa o un efecto del sueño lúcido. “Era interesante, pero no satisfactorio, ya que no podíamos afirmar nada sobre la causalidad. ¿La actividad gamma baja es necesaria para alcanzar una consciencia de alto rango? ¿El sueño lúcido provoca la actividad gamma?”

En la película 'Origen' ('Inception'), Dom Cobb (Leonardo DiCaprio) utiliza un tótem, una peonza, para distinguir entre los sueños (donde la peonza nunca se detiene) y el mundo real. Warner Bros. Pictures.

En la película ‘Origen’ (‘Inception’), Dom Cobb (Leonardo DiCaprio) utiliza un tótem, una peonza, para distinguir entre los sueños (donde la peonza nunca se detiene) y el mundo real. Warner Bros. Pictures.

Para distinguir entre ambas posibilidades, Voss y su equipo sometieron a un grupo de 27 voluntarios, que nunca habían experimentado sueños lúcidos, a una estimulación eléctrica de 40 hercios en el lóbulo frontal del cerebro durante 30 segundos en la fase REM. “Examinamos la cuestión induciendo una corriente gamma, o bien una corriente no gamma o un placebo sin corriente”, señala la investigadora. Los resultados del estudio, publicado este mes en la revista Nature Neuroscience, revelan que los sujetos sometidos a estimulación gamma sincronizaron su actividad cerebral con esta frecuencia y experimentaron sueños lúcidos en el 77% de los casos. Los investigadores detectaron cinco rasgos del sueño lúcido: consciencia de que se está soñando mientras el sueño continúa, control sobre la trama del sueño, sentido de realismo, acceso a la memoria, y disociación, o la posibilidad de observar el sueño como un espectador contempla una película; este último fue el rasgo más frecuente. “Nuestra hipótesis es que la estimulación gamma de banda baja promueve la sincronización neuronal en esta banda de frecuencia, lo que prepara el escenario para la lucidez en los sueños”, concluyen los científicos en su estudio.

Los resultados de Voss y su equipo han captado una gran atención mediática, porque es una tentación fantasear con los posibles usos recreativos de este hallazgo: hacer realidad los propios sueños. Como mínimo, la posibilidad de asistir como espectadores a la proyección privada de películas mentales cuya trama decidiéramos nosotros mismos es algo que dejaría lo que ahora llaman “televisión a la carta” como una antigualla obsoleta. Tan inevitable es interpelar a Voss sobre estas fantasías como preguntar a un político acusado de corrupción si planea dimitir. Pero tan previsible es la respuesta de un científico ante semejante pregunta como la del político: evasivas. “No quiero especular con esto”, responde la investigadora. “Aunque me lo han preguntado mucho”, añade.

Si aplicaciones como estas fueran posibles algún día, la naturaleza y el origen de los sueños quedarían relegados a un segundo plano frente a la jugosa posibilidad de controlarlos. Respecto a lo primero, la ciencia continuará trabajando, porque la propia Voss acaba confesando que, en el fondo, seguimos sin saber por qué soñamos. Por qué el resto de mamíferos también sueñan. Por qué es incluso posible que las aves y los reptiles sueñen. “¡Si tan solo pudiéramos saber por qué…!”, suspira Voss. La realidad es que nos sigue faltando una respuesta que ya echó de menos el príncipe Segismundo en la obra de Calderón: “y en el mundo en conclusión, todos sueñan lo que son, aunque ninguno lo entiende”.

Ya sabemos por qué dormimos, pero ¿por qué bostezamos?

No es que el hecho de bostezar sea clave en nuestras vidas (¿o sí?). Ni que su conocimiento sea un hito científico de primera magnitud (¿o sí?). Pero siendo poco probable que todos los lectores de estas líneas lleguen a experimentar un encuentro cara a cara con el bosón de Higgs, en cambio es seguro que todos bostezan regularmente. Lo que quizá no sepan es que bostezar, algo que todos hacemos de media unas ocho veces al día y unas 240.000 veces a lo largo de nuestra existencia, no es solo una declaración de amor a la cama. Según presentó el investigador holandés Wolter Seuntjens en la Primera Conferencia Internacional del Bostezo (sí, en serio), celebrada en París en 2010, bostezar puede ser también un signo de excitación sexual. La mala noticia es que, dice Seuntjens, es imposible distinguir el motivo real por el que esa persona sentada al otro lado de las velas en una primera cita está bostezando.

Seuntjens es también el fundador de la chasmología, una disciplina tan extremadamente rara que, al menos a día de hoy, Google solo encuentra una entrada en castellano (esta será la segunda). Prueben a encontrar otro término existente capaz de ser tan ignorado en internet; hasta supercalifragilísticoexpialidoso registra 15.300 resultados. Así pues, la ciencia del bostezo no interesa a nadie. ¿O sí? Para ser un gesto tan irrelevante, los científicos han propuesto hasta 20 hipótesis distintas recogidas por el antropólogo evolutivo de la Universidad de Emory (EE. UU.) E. O. Smith. La más conocida de ellas probablemente sea que el bostezo nos insufla oxígeno en la sangre, lo que a su vez nos ayuda a mantenernos despiertos. Y sin embargo, esta teoría carece de todo respaldo experimental. Sencillamente, hasta donde se sabe, es falsa.

Los bebés comienzan a bostezar durante la gestación. Daniel James.

Los bebés comienzan a bostezar durante la gestación. Daniel James via Flickr (Creative Commons).

Quizá sabemos por qué bostezamos en muchas ocasiones: porque otros lo hacen. El bostezo no solamente es un comportamiento que los mamíferos compartimos entre nosotros y (como mínimo) con reptiles, anfibios, aves y peces, sino que además es contagioso, incluso con la capacidad, en ciertos casos, de saltar de una especie a otra. Pero si bostezar es la expresión de un vínculo de empatía, ¿cuál es su significado evolutivo? ¿Mantener en alerta a la manada, como también se ha propuesto? El humilde e intrascendente bostezo pone en un apuro la capacidad de la ciencia para hackear las explicaciones de la naturaleza, del mismo modo que el verdadero talento de un cantante se prueba cuando alguien le pide que entone a capela el Cumpleaños feliz en una fiesta familiar.

Por suerte, parece que recientemente la ciencia ha podido salir airosa del embarazoso reto de explicar el bostezo. En 2007, el psicólogo de la Universidad Estatal de Nueva York Andrew Gallup hizo un curioso experimento: sentó a un grupo de voluntarios frente a una pantalla en la que se mostraba un vídeo de gente bostezando. Algunos de los sujetos debían al mismo tiempo sostener una bolsa caliente contra su frente, mientras que otros hacían lo mismo con una compresa fría. Los resultados, publicados en la revista Evolutionary Psychology, mostraron que los primeros sufrían un nivel de contagio del 41%, mientras que en los segundos se desplomaba a solo un 9%.

Los resultados de Gallup, con ser significativos, podrían ser simplemente anecdóticos mientras no se liguen a un mecanismo fisiológico demostrable por otras vías. En 2010, otro estudio en el que participó el propio Gallup demostró que la temperatura del cerebro de las ratas aumentaba en 0,11 grados justo antes del bostezo, al que seguía un enfriamiento similar. Con estos datos, Gallup elaboró una hipótesis: el bostezo es un mecanismo de refrigeración cerebral, no muy diferente de la función del radiador en el motor de un coche. Cuando sube el termómetro del cerebro, este nos ordena que bostecemos. La inhalación lleva aire fresco a nuestras cavidades oral y nasal, irrigadas por numerosos vasos sanguíneos que al estrujarse con el gesto brusco de abrir las mandíbulas inyectan un mayor caudal de sangre en la caja craneal. Esa sangre se ha templado en contacto con el aire inhalado, lo que enfría el cerebro.

La hipótesis de Gallup, llamada de la ventana térmica, predice que el bostezo debería aumentar cuando lo hace la temperatura ambiente, pero reducirse cuando esta se eleva por encima de un límite, ya que bostezar en este caso tendría el efecto contrario y sería más aconsejable entonces recurrir a otros sistemas alternativos de regulación, como el enfriamiento corporal por la evaporación del sudor. Ambas predicciones han sido contrastadas, según describe Gallup en una revisión sobre la teoría termorreguladora del bostezo publicada el año pasado en la revista Frontiers in Neuroscience. La última prueba a favor de la teoría de Gallup acaba de publicarse ahora en la revista Physiology & Behaviour. En el nuevo estudio, el psicólogo y un equipo de colaboradores de la Universidad de Viena han comprobado si los vieneses bostezan más en verano o en invierno. Los resultados muestran que los gélidos inviernos de la capital austríaca reducen el bostezo al mínimo, mientras que en verano ocurre lo contrario. Por si fuera poco, los datos son opuestos a lo previamente comprobado por Gallup en el clima árido de Tucson, Arizona, con veranos a 37 grados e inviernos en torno a los 22.

Sin embargo, la hipótesis aún necesita atar cabos importantes: ¿por qué antes y después del sueño? ¿Por qué se contagia? Si se trata de un mecanismo ligado a la regulación térmica, una capacidad de los que nos llamamos animales de sangre caliente (homeotermos), como mamíferos y aves, ¿por qué entonces los de sangre fría o poiquilotermos, como reptiles, anfibios y peces, también bostezan?

La primera pregunta ya es una prueba superada: la temperatura del cerebro aumenta con los ritmos circadianos (el reloj biológico) hacia el atardecer y disminuye al mínimo durante el sueño. Cuando despertamos, se enciende la calefacción de nuestro cerebro, y el bostezo ayuda entonces a la regulación fina del termostato. En cuanto a la segunda, la solución es posiblemente más compleja. La función del bostezo en la empatía social es generalmente aceptada, y su origen evolutivo propuesto es, como mencionaba arriba, una coordinación grupal para la vigilancia. Gallup propone que el efecto negativo de la hipertermia sobre las funciones cognitivas podría explicar por qué es evolutivamente ventajoso para la manada que un gesto destinado a incrementar la preparación del cerebro para la respuesta a un ataque se propague rápidamente entre los individuos; algo así como un policía desenfundando su arma cuando ve que un compañero ha hecho lo mismo.

Así, parece que el bostezo no es algo tan banal e irrelevante, sino que se trata de un problema científico que involucra fisiología, psicología y biología evolutiva. Pero ¿qué hay de los reptiles, anfibios y peces? Este es todavía un caso pendiente, más aún por el hecho de que estos grupos animales son evolutivamente anteriores a mamíferos y aves, por lo que no pueden simplemente haber heredado este comportamiento. A este respecto, Gallup contraataca apoyándose precisamente en lo que define a los poiquilotermos, su carencia de mecanismos internos para regular su temperatura corporal, lo que les haría necesitar aún más un gesto como el bostezo. “Bostezar es un mecanismo conductual de enfriamiento, y los poiquilotermos son particularmente dependientes del enfriamiento conductual”, escribe Gallup.

Sin embargo, esta última es todavía una hipótesis en cuarentena, aunque el psicólogo destaca un detalle curioso que distingue el bostezo en estos animales: no se contagia. Para el investigador, negar la función termorreguladora en un grupo animal más moderno (mamíferos o aves) por el hecho de que grupos animales más antiguos carezcan de ella “sería similar a pensar que, dado que los poiquilotermos no se contagian el bostezo, no deberíamos tampoco esperar el contagio en los homeotermos”. “La evolución es un proceso acumulativo, que tiene efectos aditivos sobre los rasgos a lo largo del tiempo”, razona.

El autor de este artículo ha bostezado cuatro veces durante su redacción. No por aburrimiento. Tampoco por lo otro. Ni hay nadie más alrededor. Quizá es solo falta de sueño. Por favor, si hacen lo mismo al leerlo, no me lo digan…