Entradas etiquetadas como ‘memoria’

Así se forja un Ig Nobel: las ovejas reconocen a Obama y Emma Watson

Hace cosa de un par de meses contaba aquí el palmarés de este año de los premios Ig Nobel, entregados cada año por la web Improbable Research a investigaciones publicadas que «primero hacen reír y luego hacen pensar».

Acaba de publicarse un estudio que está pidiendo a gritos un premio en una próxima edición: las ovejas aprenden rápidamente a identificar a personajes como Barack Obama o la actriz Emma Watson (Hermione en Harry Potter), con un grado de acierto que se queda ligeramente por debajo del de nosotros los humanos. Que, dicho sea de paso, y con la excepción de los pastores, difícilmente somos capaces de diferenciar a una oveja de otra oveja.

Tres investigadoras del Departamento de Fisiología, Desarrollo y Neurociencias de la Universidad de Cambridge (Reino Unido) entrenaron a un grupo de ovejas de la raza galesa de montaña para reconocer fotos de Obama, Watson, el también actor Jake Gyllenhaal y la presentadora británica Fiona Bruce. En el dispositivo utilizado por las científicas, en primer lugar se mostraba a las ovejas una pantalla con la foto del personaje, junto a otra pantalla en negro. Cada vez que el animal escogía la imagen, recibía comida como recompensa.

Después del aprendizaje, las ovejas regresaban al recinto a hacer el test. En este caso se les volvían a presentar los rostros de los mismos personajes, pero en la otra pantalla se mostraba la cara de otra persona del mismo género y etnia. En el 80% de las ocasiones, las ovejas elegían la foto del personaje famoso. Ensayos similares realizados en humanos con imágenes de caras desconocidas –las ovejas no leen el New York Times ni van al cine– han dado tasas de reconocimiento del 90%.

Experimento de reconocimiento facial. Imagen de Knolle et al., Royal Society Open Science.

Experimento de reconocimiento facial. Imagen de Knolle et al., Royal Society Open Science.

Pero esperen, que aún hay más. Para comprobar si las ovejas en realidad reconocían a las personas o simplemente habían aprendido a distinguir una imagen concreta, a continuación las investigadoras repitieron la prueba, pero en este caso cambiando las fotos presentadas a los animales durante el entrenamiento por otras de los mismos personajes con la cara girada en un ángulo. Incluso en este caso, acertaron en el 66% de las ocasiones. En humanos, la tasa de acierto en esta prueba es del 76%, solo diez puntos por encima de las ovejas. Cuando las investigadoras hicieron el ensayo de reconocimiento con fotos de los cuidadores de las ovejas en el recinto de la Universidad, los animales acertaban en 7 de cada 10 ocasiones sin ningún entrenamiento previo.

Vean un resumen del experimento en este vídeo:

Por algún motivo, los humanos tendemos a pensar en las ovejas como animales estultos o simplones. Probablemente sea por nuestros criterios antropocéntricos: los animales que más se nos parecen tienden a percibirse como más a nuestra altura, y esos ojos de algunos herbívoros con sus pupilas horizontales nos resultan extraños y poco familiares. Confieso que creo haber empleado alguna vez la metáfora de la mirada ovina para describir a una persona con un aspecto poco avispado. Sin embargo, varias investigaciones anteriores han revelado que las ovejas son notablemente listas a la hora de reconocer no solo a sus semejantes, sino también caras humanas y objetos.

El nuevo estudio muestra por primera vez que también son capaces de interpretar los rasgos de un rostro humano cuando se presenta en una perspectiva diferente a la que han aprendido; esta capacidad de extrapolar una imagen de dos dimensiones a tres «anteriormente solo se había demostrado en los humanos», escriben la neurocientífica Jennifer Morton y sus colaboradoras en su estudio, publicado en la revista Royal Society Open Science. Las autoras concluyen que la capacidad de las ovejas de reconocer caras es comparable a la de los humanos y otros primates.

Pero más allá de lo anecdótico, el estudio tiene un propósito relevante no solo en el campo del comportamiento animal. Morton y su grupo se dedican a estudiar la enfermedad de Huntington, un mal neurodegenerativo que va socavando las capacidades mentales de quienes lo sufren. Morton emplea las ovejas como modelo para estudiar esta dolencia. De hecho, algunos de los animales de este peculiar rebaño universitario llevan una mutación que produce la enfermedad, y la investigadora espera poder estudiar el deterioro cognitivo con el fin de mejorar los tratamientos. Primero reír, luego pensar; por favor, marchando un Ig Nobel.

El moho es capaz de aprender y recordar

Decía Einstein que quien disfruta desfilando al son de la música no necesita un cerebro, ya que le basta con una médula espinal. Como ignoro en qué contexto lo dijo, no sé hasta qué punto pretendía o no resultar ofensivo ni hacia quiénes en concreto, pero lo cierto es que la afirmación es tan lúcida como merece, viniendo de quien viene: no todas las funciones que dependen del sistema nervioso están controladas por el cerebro. Y en efecto, para algunas de ellas basta con una médula espinal; por ejemplo, el patrón rítmico de la marcha.

Pero incluso más acá de las neuronas hay todo un mundo molecular capaz de desarrollar funciones básicas que tradicionalmente hemos entendido como típicas de algo parecido a un cerebro y, por tanto, exclusivas de los organismos que lo tienen. El descubrimiento de las capacidades cognitivas de las plantas, incluyendo la memoria, como conté aquí unos días atrás, está llevando a muchos científicos a abrir el concepto de inteligencia a otras formas de vida que no tienen neuronas, pero que llevan a cabo algunos de los cometidos de estas utilizando otros tipos de células. Si, como afirma una teoría, la memoria a largo plazo pudiera residir en los priones, proteínas infecciosas que saltaron a la infamia por culpa del mal de las vacas locas, todos los organismos que los poseen podrían expresar alguna forma evolutiva de memoria.

Y no solo: en 2008, un sorprendente experimento mostró que las bacterias son capaces de imitar a aquellos famosos perros de Pavlov que comenzaban a salivar al presentarles el estímulo que habían aprendido a asociar con la comida. Tradicionalmente se habla del sonido de una campana, aunque parece que esto podría formar parte de la leyenda popular.

La bacteria Escherichia coli, el ratón microbiano de los laboratorios, altera su metabolismo cuando se encuentra dentro del tubo digestivo para adaptarse a la ausencia de oxígeno. La falta de aire en esta situación viene acompañada por otra condición ambiental, una temperatura mayor que la del exterior. Tres investigadores de la Universidad de Princeton (EEUU) demostraron que es posible enseñar a las bacterias a prepararse para la vida sin oxígeno. Una vez entrenadas de esta manera, bastaba con subir la temperatura de los cultivos de 25 a 37 ºC para que cambiaran su metabolismo anticipando la falta de aire.

Hay una diferencia importante con los perros de Pavlov. Estos fijan lo aprendido mediante el refuerzo de conexiones neuronales, del mismo modo que hacemos nosotros para almacenar un recuerdo. En cambio, las bacterias aprenden a lo largo de muchas generaciones, siguiendo un camino evolutivo que las lleva a desarrollar una respuesta. Pero el concepto no es tan diferente: las bacterias aprenden retocando y reforzando conexiones entre distintos genes de su cromosoma. Y una vez que han adquirido esta capacidad, entran en modo anaerobio con solo simular la entrada en la boca aumentando la temperatura; ya saben lo que viene después.

¿Qué diablos es eso? El moho mucilaginoso 'Physarum polycephalum'. Imagen de Wikipedia.

¿Qué diablos es eso? El moho mucilaginoso ‘Physarum polycephalum’. Imagen de Wikipedia.

La última sorpresa sobre las capacidades de aprendizaje y memoria en organismos sin cerebro nos llega ahora por parte de un moho. Physarum polycephalum es lo más parecido a un vómito que podemos encontrar sin serlo. Pertenece a los mohos mucilaginosos o mucosos, un nombre con el que se conoce a varios grupos de organismos que antes solían clasificarse como hongos y que hoy se encuadran en el reino Protista, el de los protozoos.

Si algo tienen en común los mohos mucilaginosos es lo que podría decir cualquiera que se topara con uno de ellos: ¿qué diablos es eso? Para los aficionados al terror de serie B, un famoso pariente de ficción sería el protagonista de la película The Blob. Uno de los más conocidos y estudiados en el laboratorio es Physarum polycephalum, una masa amarillenta que suele crecer en la materia vegetal en descomposición, en zonas húmedas y sombreadas.

Physarum polycephalum es un microbio, algo parecido a una ameba, aunque enormemente peculiar. Tiene un ciclo de vida complejo, y durante una parte de él forma inmensas células con muchos núcleos y un solo cuerpo. Pero uno de los campos de investigación sobre este blob no estudia su fisiología puramente mecánica, sino lo que es capaz de hacer. Y en esto deja atrás al clásico circo de pulgas.

En 2010, a un equipo de investigadores japoneses se le ocurrió la delirante idea de construir una réplica de Tokio y sus alrededores, poniendo comida para Physarum en las 36 poblaciones circundantes para estudiar cómo este organismo conectaba los distintos núcleos. El resultado fue que el blob reprodujo con bastante fidelidad la red ferroviaria de Tokio, optimizada durante años por ingenieros. Y aún hay más: experimentos similares pusieron al blob a rediseñar las redes de autopistas de Inglaterra y de la Península Ibérica. En este último caso, los resultados fueron curiosos: Physarum reprodujo siete de las once principales vías romanas que existían en la península en el año 125.

El más difícil todavía nos llega ahora por parte de investigadores franceses y belgas. Los científicos situaron a la masa amarilla ante un desafío: cruzar un puente de agar (una especie de gelatina utilizada en los cultivos) para alcanzar la comida. Esto no representaba ningún problema para Physarum, a no ser que los investigadores envenenaran el camino con dosis molestas, pero no letales, de quinina o cafeína, que no le gustan nada. Al principio se mostraba reacio a cruzar, pero pronto aprendía que no había ningún peligro y atravesaba el puente casi con la misma facilidad que los controles.

Después de esta habituación, los investigadores retiraron los estímulos negativos, la quinina y la cafeína, durante dos días, para que olvidaran. Y así ocurría con la quinina: cuando después de los dos días de recuperación se les presentaba de nuevo esta sustancia, se comportaban como en la primera ocasión. Sin embargo, no era así en el caso de la cafeína; el blob que ya había sorteado antes esta amenaza aún recordaba que podía cruzar sin peligro, y lo hacía más rápidamente que otros no habituados antes a este obstáculo.

Sobre los mecanismos celulares que dirigen este aprendizaje, de momento los científicos solo pueden especular; no era el objetivo de este trabajo. Pero según escriben en su estudio, publicado en la revista Proceedings of the Royal Society B, hay una conclusión que nos empuja una vez más a abandonar nuestro concepto neurocéntrico de la inteligencia: «Muchos de los procesos que podríamos considerar rasgos fundamentales del cerebro, como la integración sensorial, la toma de decisiones y, ahora, el aprendizaje, se han demostrado todos ellos en estos organismos no neurales».

Hipótesis: las plantas recuerdan el invierno gracias a los priones

Estamos aprendiendo a mirar a las plantas de otra manera. En ciencia nos gusta volver la vista atrás hacia los clásicos para descubrir que algunos genios de la antigüedad ya habían intuido lo que hoy estamos redescubriendo. Pero en este caso hay que quitarle la razón a Aristóteles cuando diferenciaba a los animales de las plantas por el hecho de que estas últimas carecen de percepción.

Una flor de 'Arabidopsis thaliana'. Imagen de Wikipedia.

Una flor de ‘Arabidopsis thaliana’. Imagen de Wikipedia.

Las plantas tienen un complejo sistema de cognición que solo hemos empezado a conocer en los últimos años. Poseen más sentidos que nosotros, procesan la información recibida, se comunican con sus semejantes y con otras especies, y en función de todo ello toman decisiones. Son inteligentes, y los científicos que trabajan en el nuevo y revolucionario campo que denominan neurobiología vegetal aconsejan abandonar nuestros conceptos neurocéntricos cuando nos referimos a una cualidad muy extendida en el mundo vivo llamada inteligencia. Las plantas no tienen mente, como también carecen de otros de nuestros sistemas, pero esto no implica que no puedan hacer muchas de las mismas cosas que nosotros hacemos empleando soluciones evolutivas diferentes.

Entre estas nuevas y sorprendentes capacidades de los vegetales descubiertas en los últimos años está la memoria. Las plantas recuerdan condiciones climáticas pasadas y ataques de herbívoros, y sus respuestas actuales vienen condicionadas por esos hechos del pasado. Pero ¿cómo lo logran? Como ya expliqué ayer, aún ni siquiera sabemos con toda claridad cómo nosotros somos capaces de mantener una memoria a largo plazo. Como decía un estudio que cité ayer sobre los mecanismos de la memoria en la mosca Drosophila, «una vieja incógnita en el estudio de la memoria a largo plazo es cómo el rastro de un recuerdo persiste durante años cuando las proteínas que iniciaron el proceso se reciclan y desaparecen en cuestión de días».

Y como expuse ayer, una nueva hipótesis propone que en esto tienen algo que ver los priones, proteínas que conocemos como agentes patógenos en el mal de las vacas locas y su variante humana, pero que como moléculas capaces de perpetuarse tienen el don de la eterna juventud. Ayer mencioné como ejemplo las moscas y la liebre de mar Aplysia. Pero este último caso no se estudió directamente en el molusco, sino que se extrajo su proteína y se analizó en la levadura.

¿Por qué en la levadura? Estos hongos unicelulares son muy utilizados como organismos de laboratorio porque sus células se parecen a las nuestras y es muy fácil cultivarlos. Pero es que además, las levaduras también tienen priones. De hecho, fue con un prión de levadura como se demostró por primera vez que estas proteínas se comportan como agentes infecciosos sin ningún tipo de material genético, algo que parecía imposible.

En las levaduras fue también donde empezó a demostrarse que los priones no son siempre tan malvados como el de las vacas locas. De hecho, los priones de las levaduras se descubrieron como factores heredables que no pasan por el genoma y que confieren ciertas ventajas frente a condiciones ambientales adversas. Durante años se pensó que esto era un raro efecto en las levaduras cultivadas en laboratorio, pero en 2012 la investigadora del Instituto Whitehead de Cambridge (EEUU) Susan Lindquist demostró que las levaduras en la naturaleza utilizan los priones como mecanismo habitual de herencia de ventajas adaptativas.

Lindquist es pionera en la investigación de los priones y en su posible función en la memoria. Suyo es el descubrimiento de que este es un mecanismo de herencia en levaduras, y fue también coautora del trabajo que demostró el carácter priónico de la proteína de la liebre de mar implicada en la memoria. Tal como hizo al probar la proteína del molusco marino en las levaduras, recientemente se ha fijado en otro gran dominio de los seres vivos en el que aún se desconoce por completo la posible existencia de priones. Y así regresamos a las plantas.

¿Tienen priones las plantas? Y si es así, ¿con qué fin? Para responder a estas preguntas, Lindquist y sus colaboradores repasaron las secuencias ya conocidas de multitud de proteínas de la planta Arabidopsis, el ratón vegetal de los laboratorios. De todas ellas, se quedaron con 474 que parecían contener secuencias típicas de los priones. De estas, a su vez, eligieron tres que en la planta participan en el mecanismo de floración, un proceso regulado por factores internos y externos.

Levaduras cultivadas en el experimento de Lindquist. El tono más claro (4) indica mayor actividad priónica. Imagen de PNAS.

Levaduras cultivadas en el experimento de Lindquist. El tono más claro (4) indica mayor actividad priónica. Imagen de PNAS.

Y con estas tres proteínas, ¡a las levaduras! Lindquist y su equipo insertaron las proteínas en el hongo y a continuación estudiaron cómo se comportaban. El resultado del estudio, publicado en PNAS, es que al menos una proteína llamada Luminidependens (LD) cumple a la perfección el perfil de un prión, con toda la pinta de poseer una función biológica concreta en las plantas. Esto da respuesta a la primera pregunta: sí, las plantas tienen priones. En esto tampoco son diferentes de otros organismos estudiados, incluidos nosotros.

La respuesta a la segunda pregunta aún es una incógnita. La levadura permite determinar si una proteína extraña a ella es un prión, aunque no sirve para estudiar su función natural; esto habrá que determinarlo en la misma planta. Pero Lindquist eligió proteínas implicadas en la floración por un motivo: su hipótesis es que los priones también actúan como memoria molecular en las plantas. El fin del invierno dispara la señal de la floración, pero las plantas son capaces de distinguir entre la estación prolongada y una sola noche de frío ocasional durante la primavera; de alguna manera, conservan una memoria a largo plazo del invierno una vez que ha terminado.

Y esta memoria a largo plazo de las plantas, sospecha Lindquist, podría residir en los priones, del mismo modo que estas proteínas parecen intervenir en el mantenimiento de nuestros recuerdos. En su estudio, la investigadora y sus colaboradores escriben: «Aún deberá determinarse si la proteína LD experimenta un cambio conformacional priónico y biológicamente significativo que desempeñe un papel en la decisión de la floración en las plantas». Seguro que este trabajo ya está en marcha. Y si llega a demostrarse que los priones actúan como mecanismo universal de memoria, no solo se rifará un Nobel, sino que habrá una razón más para mirar a las plantas de otra manera. Aristóteles no daría crédito.

¿Y si nuestros recuerdos fueran priones (como los de las vacas locas)?

¿Cómo es posible que recordemos algo ocurrido hace diez, veinte, treinta, cuarenta años? A veces lo más simple para nuestra experiencia diaria es lo más complicado de explicar desde el punto de vista biológico: ¿qué rastro tangible queda hoy en nuestro organismo de aquel episodio de cuando teníamos seis años?

El conocimiento de hoy dicta que los recuerdos a largo plazo se almacenan gracias a cambios en el sistema neuronal con capacidad de perpetuarse, como nuevas proteínas y conexiones sinápticas. Pero ¿cómo se mantienen activas estas conexiones durante años, cuando el estímulo que las provocó lleva largo tiempo desaparecido? La memoria a largo plazo es una especie de fantasma molecular cuya capacidad de persistencia aún esconde muchos secretos.

Eso, una vaca. Imagen de dominio público / Pixabay.

Eso, una vaca. Imagen de dominio público / Pixabay.

En los últimos años está tomando forma una teoría arriesgada, como todo lo nuevo, pero brillante y plausible, como todo lo nuevo que acaba triunfando. Según esta idea, la memoria puede persistir a largo plazo gracias a los priones. Recordemos la famosa encefalopatía espongiforme bovina, el «mal de las vacas locas» que se transmitía a los humanos a través del consumo de tejidos animales contaminados. Las responsables de esta enfermedad son unas proteínas peculiares que actúan como los zombis de la cultura popular, destruyendo, sembrando el caos y convirtiendo a otros en lo mismo que ellos.

En el caso de los priones, se trata de proteínas peligrosamente mal conformadas que además son capaces de transmitir esta configuración errónea a otras. El resultado es que actúan como agentes infecciosos, extendiendo sus efectos patológicos a otras zonas sanas. Estos efectos normalmente consisten en pegarse unas a otras formando bloques que inutilizan las células y las destruyen. Los humanos tenemos una forma propia de encefalopatía similar a la que provocaba el consumo de animales enfermos, la Enfermedad de Creutzfeldt-Jakob. En las tribus caníbales de Papúa Nueva Guinea se documentó otra forma similar llamada kuru. Las ovejas tienen su propia versión, el scrapie o tembladera.

Como ya conté aquí, los priones son una especie de Cuarto Milenio de la biología. Durante años los biólogos se frotaban los ojos de incredulidad ante la hipótesis de que existían agentes infecciosos capaces de propagarse y transmitirse de persona a persona (o más genéricamente, de animal a animal) sin ningún tipo de material genético, compuestos solo por proteínas que proceden de nuestros propios genes, y que por algún motivo y mecanismo pueden volverse locas y llegar a matarnos. Pura ciencia ficción de serie B. Pero lo bueno o malo de la ciencia, según para quién, es que tampoco se calla cuando lo que tiene que decirnos no va a gustarnos nada. Y aunque los priones fueran en sus inicios una especie de herejía biológica, ahí están.

No solo están, sino que posiblemente en el futuro adquieran mayor protagonismo en campos hasta ahora insospechados. Últimamente vienen acumulándose indicios de que los priones podrían estar implicados en otras enfermedades neurodegenerativas como el alzhéimer (con lo que esto conlleva de que puedan transmitirse). Pero los priones aún tienen mucho por revelar, y casi en el primer puesto figura una pregunta: ¿qué hemos hecho nosotros (biológicamente hablando) para merecer esto (un peligro mortal oculto en nuestros propios genes)? ¿Qué sentido evolutivo tiene su existencia? ¿Lo tiene?

Una posibilidad es que los priones no solo existan para amargarnos la vida, sino que originalmente hayan sobrevivido a los hachazos de la evolución porque en realidad aportan otras funciones beneficiosas, y que hasta ahora solo hayamos conocido lo peor de ellos, su faceta destructora. Pero ¿qué funciones beneficiosas?

Y así volvemos a la memoria. Si se trata de conservar un recuerdo a largo plazo que no puede guardarse en la caja fuerte del material genético, ¿qué mejor que encargárselo a una proteína capaz de perpetuarse? Así es como está naciendo la idea de que los priones puedan ser una especie de guardianes de la memoria.

En 2003, tres investigadores en EEUU descubrieron que al transferir a las levaduras una proteína neuronal de la liebre de mar Aplysia llamada CEPB, dicha molécula se comportaba como un prión, pero en este caso la forma mala era la buena; es decir, la conformación capaz de perpetuarse era precisamente la que le permitía realizar su función. Los tres científicos lanzaron esa arriesgada y brillante hipótesis: «Proponemos que la conversión de CPEB a un estado de prión en las sinapsis estimuladas ayuda a mantener los cambios sinápticos a largo plazo asociados al almacenamiento de memoria».

Otros estudios han venido a darles la razón. En 2012, investigadores del Instituto Stowers de Kansas City (EEUU) revelaron que Orb2, un tipo de proteína CPEB propio de la mosca Drosophila, se acumula en las sinapsis neuronales y ayuda a mantenerlas activas. Cuando se suprime la función de Orb2, las moscas pierden la memoria a largo plazo.

Y sobra decirlo, las proteínas CEPB están presentes en muchos otros organismos, incluidos nosotros. Todavía no sabemos hasta qué punto ese recuerdo del colegio puede depender de un ente biológico que hasta hace poco conocíamos solo por el brote de una oscura y amenazadora enfermedad a comienzos de este siglo, y que pasó además a la historia de las hemerotecas por las poco afortunadas declaraciones de una ministra de Sanidad. Pero sí sabemos que, en las levaduras, los priones conservan una memoria molecular que permite a estos hongos unicelulares sobrevivir a condiciones ambientales adversas.

Ahora sabemos algo más, y no menos sorprendente. Mañana contaré un nuevo estudio que nos descubre cómo los priones también podrían servir para conservar la memoria en seres a los que, para empezar, muchos ni siquiera les sospecharían la cualidad de tener recuerdos.

El olor del pasado nos ayuda a recordarlo

Cuando Proust escribió el famoso pasaje de la magdalena, el té y el torrente de recuerdos que inundaba la mente del narrador, estaba haciendo algo más que crear un recurso literario: el autor plasmaba una filosofía del tiempo y la memoria que tradicionalmente se ha vinculado con el pensamiento de su coetáneo y conocido Henri Bergson. El filósofo explicaba que la memoria de las experiencias pasadas, con toda su carga emocional, se recuperaba a través de los estímulos primarios de los sentidos. Como el sabor de la magdalena y el té.

Imagen de Dennis Wong / Flickr / Creative Commons.

Imagen de Dennis Wong / Flickr / Creative Commons.

El tiempo ha dado la razón a Bergson en algunos aspectos, aunque tal vez Proust debería haberse referido más bien al olor de la magdalena, y no a su sabor. El olfato y el gusto son dos sentidos que entran en juego al mismo tiempo cuando comemos o bebemos, pero es sobre todo el primero el más rico en matices. Solo percibimos cinco tipos de sabores (puede que seis), mientras que el repertorio olfativo es inmenso incluso para una especie de nariz torpe como los humanos. El número de olores diferentes que podemos detectar prácticamente no tiene límite, y ni siquiera tenemos nombres específicos para ellos: los llamamos por aquello que los produce.

Lo poco que todavía conocemos el olfato se revela en algo sorprendente que hemos sabido en los últimos años: los receptores de olor no solo están presentes en la nariz, sino también en otros órganos y tejidos como el tubo digestivo, músculo, corazón, páncreas, hígado, pulmón y piel. Incluso, al menos en los ratones, hay receptores de olor en los testículos. ¿Para qué? Aún no está muy claro. Pero lo que sí conocemos es la capacidad evocadora de los olores, como ya intuyó Bergson. Como al narrador de Proust, son capaces de traernos a la memoria recuerdos muy remotos junto con los sentimientos que los acompañan, y sin la interferencia de un relato verbal.

Esto último se apoya también en otro rasgo único del olfato: mientras que la información de los demás sentidos pasa por una especie de estación intermedia, el tálamo, antes de dirigirse hacia las sedes del cerebro donde se procesa, los olores entran directamente y sin escalas desde el epitelio de la nariz hacia su destino, el bulbo olfatorio. A nivel práctico, esto se traduce para nosotros en que el olfato tiene ese carácter intuitivo y primario, algo que se refleja también en el lenguaje: me da en la nariz…

La relación entre olfato y memoria ha sido explotada por los científicos para estudiar cómo se forman nuestros recuerdos, cómo se reactivan y cómo se almacenan a largo plazo. Hoy sabemos que las memorias se forman en el hipotálamo, y que durante el sueño se trasladan a la corteza cerebral donde se consolidan como recuerdos a largo plazo. Y los olores ayudan a esta consolidación, como demuestra un nuevo estudio de la Universidad de Montreal (Canadá).

Otras investigaciones han explorado el papel de los estímulos durante el sueño en la formación de la memoria. Aunque aquel mito del aprendizaje de conocimientos escuchando durante el sueño que planteaba Huxley en Un mundo feliz hoy no parece factible, sí es cierto que la reactivación de los recuerdos durante el sueño a través de ciertos estímulos puede ayudar a reforzar el aprendizaje en algunos casos.

Y en esto el olfato tiene una ventaja: «El tálamo sirve en parte como una puerta de acceso de información que se cierra parcialmente durante el sueño, para que podamos dormir sin interferencias de los estímulos que nos rodean», me cuenta el primer autor del estudio, Samuel Laventure. Pero como ya hemos dicho, el olfato no pasa por el tálamo. «Esto sugiere que la estimulación olfativa durante el sueño puede ser particularmente eficaz en comparación con la auditiva».

Los investigadores sometieron a un grupo de voluntarios al aprendizaje de ciertas tareas motoras al mismo tiempo que se les presentaba un estímulo olfativo, olor a rosas. A continuación comprobaron cómo los sujetos recordaban lo aprendido al día siguiente, después de una noche de sueño. Los resultados muestran que el aprendizaje se reforzaba cuando a los voluntarios se les presentaba durante el sueño el mismo olor a rosas que estaba presente durante el experimento. Se supone que la presentación del estímulo reactiva el recuerdo, ayudando en el proceso de consolidación de la memoria transitoria en el hipotálamo como memoria a largo plazo en el córtex.

Además, los investigadores comprobaron que esta estimulación olfativa durante el sueño funcionaba cuando se aplicaba en la fase 2 del sueño no-REM/MOR (NREM2), que se ha asociado previamente a esta consolidación de la memoria. Laventure precisa que «los procesos de consolidación de la memoria motora se producen en gran medida, pero no exclusivamente, durante el sueño NREM2». El estudio, publicado en la revista PLOS Biology, muestra además que la estimulación olfativa deja en el encefalograma una firma típica de la consolidación de la memoria, un patrón de ondas cerebrales llamado husos del sueño (sleep spindles). «Solo la estimulación durante NREM2 produjo cambios significativos en los husos del sueño», aclara el coautor del estudio.

El trabajo de Laventure y sus colaboradores se refiere solo a la memoria motora, no a la declarativa, la que asociamos con los recuerdos. Pero otros estudios sugieren que también es posible reactivar este tipo de memorias mediante estímulos recibidos durante el sueño, mientras el olfato permanece activo, siempre dispuesto a llevarnos de viaje al pasado en busca del tiempo perdido.