Entradas etiquetadas como ‘lloviu’

El virus de la cueva asturiana de Lloviu, pariente del ébola, «una enfermedad emergente preocupante»

Los visitantes habituales de este blog sabrán que aquí he seguido muy de cerca todo el desarrollo de la historia del virus de Lloviu, un pariente muy próximo del ébola (familia de los filovirus) que se describió por primera vez en 2011, encontrado en 2002 en cadáveres de murciélagos en la cueva asturiana que ha dado nombre al virus (en respuesta a la pregunta inmediata, sí, hoy se prefiere no asociar nombres de virus a lugares, pero esta norma es de 2015). Y quienes hayan seguido los capítulos anteriores tendrán una idea general sobre lo que se sabe de este virus, que es poco. Sí, podría infectar a humanos. No, no se sabe si podría ser grave. Ni siquiera se sabe realmente si fue el virus el que causó la muerte de los murciélagos en los que se encontró.

En todos estos años los nuevos estudios sobre el virus de Lloviu o LLOV han ido llegando con cuentagotas, porque aunque ya se conocía su secuencia genética, obtenida por investigadores del Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII) y descrita en aquel estudio de 2011, no se había conseguido aún aislar el virus. Esto limitaba a los investigadores a trabajar con virus pseudotipados, es decir, virus diferentes al LLOV a los que se les trasplantan partes de este (que se obtienen a partir de su secuencia genética, ya conocida) para ver cómo se comportan en cultivos celulares o en experimentos con animales.

La razón de que haya costado años aislar el LLOV se debe a que para hacer esto se necesitan dos cosas: muestras que contengan el virus y células en las que cultivarlo. El nuevo coronavirus SARS-CoV-2 se logró aislar en cuestión de semanas gracias a que, por desgracia, había muestras de sobra, y también líneas celulares humanas en las que cultivarlo. Pero durante años las únicas muestras del LLOV fueron las recogidas inicialmente por el ISCIII, y en 2016 se habían acabado; por entonces la investigadora del ISCIII Anabel Negredo, que encabezó el estudio de identificación del virus, me dijo que les quedaban solo unas pocas muestras con baja carga viral. Pero es que, además, cuando se descubrió el LLOV aún no había líneas celulares de murciélago en las que intentar cultivar el virus.

La primera línea celular de Miniopterus schreibersii, el murciélago de cueva en el que se halló el virus, se obtuvo en Japón en 2014, precisamente para poder cultivar el LLOV. Pero los investigadores japoneses no tenían el virus. Por suerte, como ya conté aquí entonces, en 2016 el LLOV reapareció sorpresivamente en Hungría; investigadores del Laboratorio Nacional de Virología de la Universidad de Pécs de aquel país, dirigidos por el virólogo Gábor Kemenesi, encontraron allí murciélagos muertos de la misma especie, y en las muestras de aquellos cadáveres pudieron pescar un genoma que era precisamente el del LLOV. Pero por entonces Kemenesi y sus colaboradores no tenían las células de los japoneses. Intentaron cultivar el virus en células de mono, pero sin éxito.

Un murciélago Miniopterus schreibersii muerto en la mina de Hungría donde reapareció el virus. Imagen de Görföl et al, Ecohealth 2022.

Un murciélago Miniopterus schreibersii muerto en la mina de Hungría donde reapareció el virus. Imagen de Görföl et al, Ecohealth 2022.

Por fin, de la unión de las muestras de Hungría y las células de Japón, el pasado agosto Kemenesi y sus colaboradores lograron aislar el virus.

(Y por cierto, cabe mencionar esto: un virus descubierto en España por investigadores españoles se caracterizó inicialmente en EEUU, se ha aislado por primera vez en Hungría y, como ahora contaré, se ha reconstruido también en EEUU. Nada de esto podría haberse hecho en España porque para manipular un pariente próximo del ébola de propiedades desconocidas se requiere un laboratorio del máximo nivel de contención biológica, NCB-4 o P-4, según los criterios de la Organización Mundial de la Salud para trabajar con patógenos humanos. Y aquí no tenemos de eso porque hay quienes dicen que no lo necesitamos. Pero, hey, tenemos más bares que nadie).

Disponer del virus aislado y cultivable es un enorme avance, ya que permite estudiar qué les hace a las células y a los animales. Y el estudio de Kemenesi y sus colaboradores aporta varios datos interesantes. Se confirma que el LLOV no necesariamente mata a los murciélagos; el virus se encontró en animales muertos, pero también en otros vivos sin ningún síntoma. De hecho, la muestra de la que se cultivó el virus era de un murciélago asintomático, pero positivo al virus por PCR. Estos resultados concuerdan con un estudio publicado por el ISCIII en 2019 y según el cual un tercio de los murciélagos sanos testados tenían anticuerpos contra el virus, signo de una infección pasada que no los había matado.

Los investigadores han comprobado también que el virus es capaz de infectar células humanas y de mono en cultivo. Esto no es una sorpresa, ya que los experimentos con virus pseudotipados lo sugerían, pero sí es una confirmación.

Por último, también han encontrado el virus en parásitos de los murciélagos, concretamente en una garrapata y en varios amiguitos como el de la siguiente foto, chupasangres llamados moscas de los murciélagos (Nycteribiidae) que, aunque lo parezca, no es una araña, sino un insecto díptero como las moscas normales pero sin alas ni ojos. El hallazgo del LLOV en parásitos es una primicia no vista antes en los filovirus, aunque los autores recuerdan que otros virus de esta familia se han hallado en regiones tropicales, y la dinámica de un filovirus en una zona templada podría ser diferente. Pero no está claro si los parásitos podrían ser vectores del virus. Solo se han hallado en murciélagos positivos por PCR, lo que indica que ingirieron el virus con la sangre.

Una mosca de los murciélagos de la familia Nycteribiidae. Imagen de Gilles San Martin from Namur, Belgium / Wikipedia.

Una mosca de los murciélagos de la familia Nycteribiidae. Imagen de Gilles San Martin from Namur, Belgium / Wikipedia.

En resumen, los murciélagos pueden ser un reservorio natural del LLOV, ya que no necesariamente los mata. El virus podría transmitirse de estos animales a los humanos, y este contagio podría producirse de forma directa o quizá accidentalmente a través de parásitos. Pero todo esto aún no nos dice nada respecto a si el LLOV podría ser peligroso para los humanos.

Respecto a esto último, tenemos otra posible pista. Investigadores de la Universidad de Boston dirigidos por Elke Mühlberger, que han colaborado también en el estudio húngaro, han reconstruido el virus a partir de su secuencia; es lo que se llama un virus recombinante. Para completar los extremos del genoma del LLOV, que todavía no se habían secuenciado, lo han hecho con los fragmentos homólogos del ébola y del marburgo, otro virus de la familia. Así, el virus obtenido no es exactamente un lloviu al 100%, pero sí muy parecido.

Los investigadores han comprobado que este lloviu recombinante es capaz de infectar células humanas que también se infectan con el ébola, incluyendo macrófagos (un tipo de glóbulos blancos de la sangre que actúan como basureros del organismo, devorando células enfermas, microbios, restos celulares, etcétera), células hepáticas y pulmonares. Esto último es una mala noticia, ya que la infección pulmonar podría llevar a un contagio respiratorio (algo no demostrado para el ébola en humanos, pero sí en otros primates).

Otra mala noticia es que ciertos anticuerpos terapéuticos que se utilizan contra el ébola no sirven contra el lloviu. Pero a cambio hay buenas noticias: el LLOV sí responde a los antivirales que actúan también contra el ébola. Y sobre todo, y mientras que el ébola provoca en los macrófagos una respuesta inflamatoria que es típica de la enfermedad provocada por este virus, en cambio el LLOV no induce esta inflamación. Lo cual es buena señal. Y aunque no basta para aventurar que el LLOV podría ser inofensivo para nosotros, los investigadores observan que en este sentido se comporta de forma similar al reston, otro pariente del ébola que no es peligroso para nosotros, «lo que potencialmente apunta a que el LLOV no sea patogénico en los humanos«, escriben los autores, «teniendo la capacidad de infectar a los humanos pero sin provocar enfermedad«.

Por cierto, otra novedad que aporta el estudio de Mühlberger son las primeras fotos del lloviu por microscopía electrónica, aunque como ya he dicho en este caso no es un virus nativo sino recombinante. Pero la típica forma filamentosa que da nombre a los filovirus nos trae siniestros recuerdos del ébola:

Imágenes de microscopía electrónica del virus de Lloviu recombinante. Imagen de Hume et al, PLoS Pathogens 2022.

Imágenes de microscopía electrónica del virus de Lloviu recombinante. Imagen de Hume et al, PLoS Pathogens 2022.

También este mes y en vista de los últimos estudios, Kemenesi y sus colaboradores han publicado una carta en la revista Ecohealth en la que advierten de que «el virus de Lloviu en Europa es una enfermedad emergente preocupante«. Los investigadores advierten sobre el riesgo que supone el virus sobre todo para las poblaciones de murciélagos europeos, pero añaden además que «el potencial zoonótico del virus se ha confirmado» y que este tipo de virus «supone un riesgo directo de infecciones humanas«. Finalmente, y además de insistir en la necesidad de más investigaciones, piden que se cierre el acceso a las cuevas donde aniden estos murciélagos y que se traten estos lugares como potenciales focos de infecciones peligrosas. Sería de esperar que la COVID-19 nos hubiera enseñado algunas lecciones.

MÁS NOTICIAS DE CIENCIA EN 20MINUTOS:

¿Y si el virus de Lloviu no mató a los murciélagos?

En mi entrada anterior resumí la historia del virus de Lloviu, ese pariente próximo del ébola que se describió en 2011 en cadáveres de murciélagos de una cueva asturiana, aunque aún no se conoce dónde pudo originarse –tal vez en Francia, han propuesto los científicos–. Como ya conté, ocho años después aún son muchas las preguntas pendientes sobre este virus; la de interés más general, si supone una amenaza para nosotros.

Pero antes de continuar, uno debe reconocer sus propios errores u omisiones. En mis artículos anteriores sobre el virus he mencionado a Anabel Negredo y Antonio Tenorio, investigadores del Centro Nacional de Microbiología del Instituto de Salud Carlos III (CNM-ISCIII) que han llevado gran parte del protagonismo en la detección del virus. Pero pasé por alto otra referencia esencial de esta historia, o más bien su raíz: el proyecto VIROBAT.

O, mejor dicho, proyectos, ya que son cuatro los que hasta ahora se han encadenado desde 2007 bajo la dirección del virólogo Juan Emilio Echevarría, responsable del Laboratorio de Rabia del CNM-ISCIII. VIROBAT es un programa multidisciplinar de identificación de virus en murciélagos ibéricos que ha implicado a diversos laboratorios en sus distintas líneas. El propio laboratorio de Echevarría identificó en 2013 el lyssavirus de Lleida, una variante de la rabia, mientras que la línea que llevó a la detección del lloviu gracias a las muestras de VIROBAT fue desarrollada en el Laboratorio de Arbovirus y Enfermedades Víricas Importadas del CNM-ISCIII, dirigido entonces por Tenorio y posteriormente por Mari Paz Sánchez-Seco. No solo debemos reconocer públicamente el trabajo científico que se hace en este país, sino también los nombres de quienes lo hacen posible.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

Un murciélago de cueva Miniopterus schreibersii, la especie en la que se encontró el virus de Lloviu. Imagen de Steve Bourne / Wikipedia.

El penúltimo trabajo sobre el lloviu hasta la fecha nos llega también del ISCIII, en colaboración con los investigadores estadounidenses que participaron en la identificación inicial del virus. Y sus conclusiones son interesantes, aunque aún continúan dejando preguntas en el aire que deberán esperar a nuevos estudios.

Como expliqué anteriormente, varios de los filovirus –la familia del ébola y el lloviu– que son letales para los humanos se han encontrado en murciélagos vivos y sin síntomas de enfermedad, lo que ha permitido despejar una incógnita clave sobre estos virus: su reservorio, o los animales que mantienen los virus en circulación y de los que ocasionalmente surgen los brotes que afectan a nuestra especie.

En cambio, el lloviu se encontró en murciélagos muertos. Lo cual no implica necesariamente que el virus matara a estos animales, algo de lo que no existen pruebas. Pero si fuera así y el lloviu fuese letal para los murciélagos, este virus se convertiría en una rareza dentro de su familia, y su reservorio debería buscarse entonces en otras especies, tal vez insectos o garrapatas. Aclarar estas dudas seguiría sin aportar nada sobre los posibles efectos del lloviu en los humanos, pero sería un paso relevante para ir desvelando el ciclo vital del virus (si “vital” puede aplicarse a algo que muchos científicos no consideran realmente un ser vivo).

Para explorar estos interrogantes, en los últimos años los investigadores han tratado de encontrar rastros de la presencia del virus tanto en murciélagos vivos como en otras especies que están en contacto con ellos, desde los insectos hasta nosotros mismos. Sin embargo, el virus no ha vuelto a detectarse de forma directa en otros animales, ni vivos ni muertos, salvo en una única ocasión: en 2016 se localizó en cadáveres de murciélagos hallados en el otro extremo de Europa, en Hungría.

Pero existe otra posibilidad, y es la detección del rastro que el virus haya podido dejar en el sistema inmunitario de los animales que en algún momento han estado infectados. Utilizando esta vía, un nuevo estudio en la revista Viruses, encabezado por Eva Ramírez de Arellano y dirigido por Negredo, ofrece una respuesta: el virus está circulando en los murciélagos de cueva, pero no en otras especies de murciélagos ni en los humanos.

Los científicos han analizado la sangre de hasta 60 ejemplares vivos de la especie Miniopterus schrebersii, el murciélago de cueva en el que se encontró el virus. Para aumentar la probabilidad de que estos animales hubieran estado expuestos al virus, los ejemplares fueron recogidos en 2015 en las mismas cuevas de Asturias y Cantabria donde se descubrió el lloviu. Al mismo tiempo, han examinado la sangre de un grupo de personas que también han estado en contacto con estos murciélagos, se supone que científicos dedicados al estudio de estos animales. Como control negativo, se han añadido muestras de murciélagos de otra especie diferente capturados en Huelva, lejos del brote original de lloviu.

Los resultados muestran que uno de cada tres murciélagos de cueva analizados, el 36,5%, lleva anticuerpos contra el lloviu, lo que confirma que estos animales contrajeron la infección en algún momento y, sin embargo, continúan vivos. Por el contrario, esta respuesta inmunitaria contra el virus no se ha encontrado en los humanos ni en los murciélagos de Huelva.

Estos datos indican que el brote original del lloviu no fue una rareza, sino que el virus está circulando de forma habitual entre los murciélagos de cueva. Sin embargo, no puede afirmarse que la presencia de los anticuerpos en animales vivos demuestre la no letalidad del virus para los murciélagos; del mismo modo que las personas que han contraído el ébola y han vivido para contarlo llevan anticuerpos en su sangre, podría ser que los murciélagos analizados sean los afortunados supervivientes de una epidemia mortal de lloviu.

Así, los investigadores escriben en su estudio que los resultados “disocian la circulación del lloviu como la causa de las muertes previamente reportadas”, pero es ahí hasta donde pueden llegar con los datos actuales. No obstante, encuentran un sospechoso parecido entre la proporción de animales seropositivos en su población y los niveles en las especies de murciélagos que sirven como reservorios del ébola y el marburgo, por lo que dejan entrever la idea de que quizá la dinámica del lloviu sea similar a la de estos virus; es decir, que infecte a los murciélagos sin matarlos.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Reconstrucción del virus del ébola. Imagen de Wikipedia.

Por último, el hecho de que no se hayan encontrado anticuerpos contra el lloviu en las personas que están en contacto con los murciélagos nos ha dejado sin la respuesta a la principal pregunta sobre este virus. En 1989 se detectó en Reston, Virginia (EEUU), una enfermedad mortal que afectaba a unos monos importados de Filipinas. Los investigadores descubrieron que el culpable era un filovirus muy similar al ébola, pero pronto se descubrió que era inofensivo para los humanos. Se encontraron anticuerpos en algunas personas que habían manejado los animales y que obviamente habían contraído el virus sin padecer síntomas.

Si el nuevo estudio sobre el lloviu hubiera detectado anticuerpos en algunas de las personas analizadas, probablemente podría concluirse que es un caso similar al virus de Reston: un patógeno para otras especies que no entraña riesgo para los humanos. Pero dado que no ha sido así, aún seguimos a oscuras sobre la peligrosidad del virus. Estudios anteriores sugieren que aparentemente el lloviu sería capaz de infectar células humanas por un mecanismo similar al ébola, por lo que hasta ahora no hay motivos para pensar que pueda ser un virus de contagio más difícil que su primo africano.

A falta de aislar el virus para poder trabajar directamente con él y responder a las preguntas pendientes, por el momento la única vía posible es fabricar sus trocitos a partir de su secuencia genética y estudiar qué hacen y cómo funcionan en sistemas in vitro. Decía más arriba que el nuevo estudio del ISCIII es el penúltimo, no el último; en días recientes se ha publicado además otro trabajo que ahonda un poco más en este prisma molecular del virus de Lloviu, y que aporta también una novedad sugerente. Próximamente, en este mismo canal.

Virus de Lloviu, el ‘primo europeo’ del ébola: aún más preguntas que respuestas

En 2002 comenzó una auténtica saga científica que todavía hoy tiene más preguntas que respuestas. El 17 de junio de aquel año, el biólogo Isidoro Fombellida informaba a sus compañeros de la Sociedad Española para la Conservación y el Estudio de los Murciélagos (Secemu) del hallazgo de numerosos cadáveres de estos animales en una cueva de Cantabria. De inmediato, a este primer informe se unían otros similares de Asturias, Portugal y Francia, en lo que parecía una enigmática y devastadora epidemia que afectaba específicamente a la especie Miniopterus schreibersii, el murciélago de cueva.

Unos meses después, en enero de 2003, el suceso quedaba reflejado en la revista Quercus. Los autores de aquel artículo, los miembros de la Secemu Juan Quetglas. Félix González y Óscar de Paz, contaban que la reunión entre los expertos y las autoridades estatales había resuelto dejar el caso en manos del laboratorio de referencia en enfermedades animales transmisibles a los humanos, el Centro Nacional de Microbiología del Instituto de Salud Carlos III (CNM-ISCIII), en Majadahonda.

En un primer momento los científicos del CNM-ISCIII sospecharon de un brote de rabia, pero los resultados de los análisis fueron negativos. Sin otra pista que olfatear, la misteriosa enfermedad de los murciélagos quedó en suspenso.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un par de años después, el 30 de noviembre de 2005, la revista Nature publicaba un breve estudio dando cuenta de importantes novedades sobre un temible virus, el ébola. Por entonces este patógeno aún era casi un desconocido para el público. Desde 1976 se habían sucedido los brotes con terribles consecuencias para los afectados, pero muchos lo consideraban un problema africano. Por suerte, no todos: gracias a que el gobierno canadiense trabajaba en ello en 2003, cuando casi nadie más lo hacía, hoy tenemos una vacuna que ya se ha administrado a más de 90.000 personas, y sin la cual el brote iniciado en agosto de 2018 en la República Democrática del Congo, aún activo, podría haber sido mucho peor. Las vacunas no se crean de la noche a la mañana cuando el público las pide.

Uno de los interrogantes sobre el ébola era su reservorio animal, es decir, la especie en la que se oculta sin provocar graves síntomas cuando no está matando simios o humanos. Conocer el reservorio de los virus es clave de cara a su control, y en el caso del ébola aún era un misterio.

En Gabón y la República del Congo, un equipo internacional de científicos emprendió la laboriosa y arriesgada tarea de situar trampas en las zonas donde habían aparecido cadáveres de simios infectados por el ébola, con el fin de recoger los animales que podían actuar como reservorio y analizar la presencia del virus. Después de examinar más de 1.000 pequeños vertebrados, los científicos localizaron el reservorio del ébola en tres especies de mamíferos de la fruta, aportando un paso de gigante para poner cerco al virus letal.

Partícula del virus del Ébola fotografiada al microscopio electrónico y coloreada artificialmente. Imagen de NIH / dominio público.

Partícula del virus del Ébola fotografiada al microscopio electrónico y coloreada artificialmente. Imagen de NIH / dominio público.

Entre quienes leyeron aquel estudio se encontraba Antonio Tenorio, por entonces director del Laboratorio de Arbovirus y Enfermedades Víricas Importadas del CNM-ISCIII, donde se habían analizado los cadáveres de los murciélagos hallados en Cantabria y Asturias. Al desvelarse que estos mamíferos podían transmitir más enfermedades de las que hasta entonces se creía, Tenorio tuvo la idea de rescatar las muestras de aquellos animales y escrutarlas en busca de un posible material genético vírico que se pareciera a algo de lo ya conocido.

Pero Tenorio y su principal colaboradora, Anabel Negredo, jamás habrían sospechado lo que iban a encontrar en aquellos murciélagos: ébola. O eso parecía entonces: al comparar las secuencias parciales obtenidas con las bases de datos online de genomas virales, el resultado fue que eran idénticas a la del siniestro virus en un 75%; bastaba un 50% de semejanza genética para que un virus se considerara ébola. Sin embargo, aún era preciso secuenciar en su totalidad el virus de los murciélagos para establecer cuál era su grado de parecido general con el africano.

Aquello era mucho más que una alarmante rareza; era una auténtica bomba. Ni en Europa ni en ningún otro lugar fuera de África y Filipinas se había detectado en la naturaleza nada parecido al ébola (algunos virus de esta familia se descubrieron en Europa y EEUU, pero procedían de monos importados). Y sin embargo, aquel era también el momento en que el laboratorio español debía perder la exclusividad de su descubrimiento. El hallazgo de los científicos del CNM-ISCIII había dado un nuevo cariz a su investigación, pero ni su laboratorio ni ningún otro en este país estaba acreditado con el nivel de seguridad biológica 4, imprescindible para trabajar con patógenos tan peligrosos como el ébola. Así pues, Tenorio y Negredo se veían obligados a compartir su descubrimiento con otro centro en el extranjero que dispusiera de las instalaciones necesarias.

Gracias a la colaboración de los investigadores Ian Lipkin y Gustavo Palacios, entonces en la Escuela Mailman de Salud Pública de la Universidad de Columbia (EEUU), fue posible secuenciar casi en su totalidad el genoma de algo que finalmente resultaba ser diferente del ébola en solo una pizca más del 50%, lo suficiente para darle una identidad propia. Siguiendo la norma habitual en virología, el nuevo virus debía recibir el nombre del lugar donde fue descubierto; los cadáveres de murciélagos utilizados procedían de la cueva del Lloviu, en Asturias.

Por fin en octubre de 2011 un estudio encabezado por Negredo y Palacios como coautores principales, y codirigido por Lipkin y Tenorio, presentaba en sociedad el virus de Lloviu o LLOV, el primer filovirus –la familia del ébola– supuestamente originado fuera de África y Asia, el único en el nuevo género de los Cuevavirus, y más parecido al ébola que sus primos el marburgo y el ravn.

Desde entonces, tanto los descubridores originales del lloviu como otros investigadores han continuado avanzando hacia la conquista de los secretos de este intrigante patógeno, como he venido narrando en este blog con cada nuevo estudio que se publica. Pero la pregunta más acuciante aún sigue pendiente de respuesta: ¿es el lloviu una amenaza para los humanos?

La dificultad para responder a esta y otras innumerables preguntas sobre el lloviu estriba en que el camino de estas investigaciones es enormemente anfractuoso. Para estudiar un virus es indispensable poder manejarlo, pero los científicos estadounidenses no lograron aislarlo, y apenas queda algo de las muestras originales. Hace ahora un año, científicos húngaros describieron la reaparición del lloviu en el otro extremo de Europa, en cadáveres de murciélagos hallados en cavernas de Hungría en 2016. Pero una vez más, el virus asturiano se resistió a su aislamiento.

Así las cosas, los investigadores deben limitarse a reconstruir sus piezas moleculares a partir de la secuencia genómica conocida para después disfrazar con ellas a otros virus disponibles, como el ébola o incluso el VIH. El problema es que estos métodos no suelen ser suficientes para resolver incógnitas como la posible peligrosidad del virus para nuestra especie; no basta con fijarse en qué grado de parecido tienen esas diversas partes para predecir cómo se comportará un filovirus en los humanos o en otros animales. Para entender lo difícil que resulta responder a esta pregunta, conviene detenerse un momento en el complicado rompecabezas de los filovirus.

En los últimos años, esta familia se ha ampliado ya a seis géneros: a los Ebolavirus (ébola, sudán, taï forest, bundibugyo y reston), Marburgvirus (marburgo y ravn) y Cuevavirus (lloviu) han venido a añadirse los Striavirus (xilang) y Thamnovirus (huangjiao), que parecen infectar a los peces, y los Dianlovirus, representados hasta ahora solo por el virus de Mengla, descubierto en murciélagos chinos. Por otra parte, a los cinco Ebolavirus mencionados se ha sumado uno nuevo, el virus de Bombali, hallado en murciélagos de Sierra Leona.

Árbol evolutivo (filogenético) de la familia de los filovirus. Imagen de ICTV.

Árbol evolutivo (filogenético) de la familia de los filovirus. Imagen de ICTV.

Naturalmente, los distintos grupos representan un mayor o menor parecido genético: dos Ebolavirus se parecen más entre sí que un Ebolavirus y un Marburgvirus. Pero en cambio, estos grados de similitud no se aplican a los efectos o las enfermedades que provocan. Por ejemplo, los Ebolavirus son potencialmente letales para humanos y monos, pero no todos: el reston parece inofensivo para nosotros, no así para otros primates ni para los cerdos. Por otro lado, los Marburgvirus, más diferentes del ébola que el reston, son incluso más mortales para nosotros y los monos que el propio ébola.

En lo que respecta a los murciélagos, distintas especies parecen servir de reservorios tanto para los Ebolavirus como para los Marburgvirus. Los recientemente descubiertos mengla y bombali se han detectado en murciélagos vivos, lo que sugiere que estos virus pueden tener también su reservorio en estos animales. De modo que esto parecería una norma general para los filovirus… si no fuera porque el lloviu se encontró en murciélagos muertos, tanto en Asturias como en Hungría.

Pero ¿significa esto que el lloviu mata a los murciélagos, y que los animales hallados en las diferentes cuevas europeas murieron a causa del virus? ¿Significa que el lloviu es una rareza dentro de su familia al no utilizar estos animales como reservorio? ¿Significa que su reservorio debe buscarse en otras especies como los insectos o las garrapatas, una hipótesis que han manejado los investigadores del CNM-ISCIII? Y sobre todo, ¿qué significa todo esto de cara a los posibles efectos del lloviu en humanos?

Más preguntas que respuestas. El próximo día comentaré un par de nuevos estudios que no llegan a esclarecer las muchas incógnitas pendientes, pero que al menos apuntan nuevos datos sobre este virus aún tan desconocido, pero tan cercano a nosotros.

El virus asturiano de Lloviu reaparece en Hungría 14 años después

En 2013, investigadores húngaros encontraron medio millar de murciélagos muertos en las montañas de Bükk, una sección de los Cárpatos al noreste del país donde se conocen más de 1.000 cavernas. Los animales eran murciélagos de cueva Miniopterus schreibersii, una especie distribuida sobre todo por el centro-sur de Europa, Oriente Próximo y norte de África, y que suele concentrarse en colonias de miles de individuos en cavidades naturales o artificiales.

En aquella ocasión los investigadores no lograron determinar qué había matado a aquellos animales debido al mal estado de los restos, pero observaron que tenían sangre coagulada en la nariz, como si hubieran sufrido una hemorragia respiratoria. Como resultado de la vigilancia en la zona, en 2016 y 2017 se hallaron nuevos cadáveres con iguales síntomas. Uno de los ejemplares recogidos en 2016 aún estaba lo suficientemente intacto como para analizar sus tejidos en busca de una posible causa de la muerte.

Colonia de murciélagos de cueva ('Miniopterus schreibersii'), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Colonia de murciélagos de cueva (‘Miniopterus schreibersii’), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Los investigadores llevaron aquel y otros murciélagos al laboratorio de nivel de bioseguridad 4 (sí, en Hungría tienen lo que nosotros no tenemos) del Centro de Investigación de Szentágothai, en la Universidad de Pécs, y allí sometieron los restos a una prueba destinada a pescar genomas de posibles virus. En el animal menos dañado estaba la respuesta: allí encontraron un genoma igual en un 98% al del virus de Lloviu, lo más parecido al ébola que se conoce, identificado en 2011 en España y EEUU a partir de murciélagos muertos hallados unos años antes en la cueva asturiana del Lloviu (y cuya historia resumí ayer). Teniendo en cuenta el grado de variación de los virus, un 98% equivale a decir prácticamente idéntico: es el mismo virus, que ha reaparecido 14 años después en el otro extremo de Europa.

Según el estudio, dirigido por los virólogos Ferenc Jakab y Gábor Kemenesi, y publicado en la revista del grupo Nature Emerging Microbes & Infections, los investigadores han detectado el virus en los pulmones y en el bazo del animal, pero no en otros órganos como el riñón, el cerebro o el hígado, ni en una garrapata que encontraron en el cuerpo del murciélago. Aún no pueden saber con certeza en qué tejidos del murciélago se instala preferentemente el lloviu ni si fue la causa de la muerte de los animales, pero su detección en los pulmones y los síntomas de hemorragia respiratoria son indicios que apoyan lo que ya se sospechaba sobre el virus asturiano.

Por desgracia y a pesar de disponer de un laboratorio adecuado para trabajar con el virus, los científicos húngaros tampoco han logrado aislarlo. Los intentos de infectar un cultivo celular para crecerlo y recolectarlo han sido infructuosos, por lo que el lloviu continúa en la naturaleza sin dejarse atrapar para un estudio a fondo, más allá de los experimentos que han reconstruido algunas de sus piezas moleculares.

Respecto a cómo ha llegado el lloviu desde España hasta Hungría, los investigadores tampoco pueden arriesgar ninguna explicación. «Esta incidencia suscita la pregunta de si ha sido una segunda introducción del lloviu en Europa [no puede descartarse que proceda de otro continente, aunque por el momento no se ha hallado en otros lugares] o una circulación silenciosa que ha tenido lugar entre los murciélagos europeos», escriben en el estudio.

Cadáveres de murciélagos de cueva con signos de hemorragia respiratoria en Hungría, en febrero de 2016. En el ejemplar de la izquierda, el más intacto, se detectó el virus de Lloviu. Imagen de S. Boldogh / Kemenesi et al, Emerg Microbes Infect 2018.

Cadáveres de murciélagos de cueva con signos de hemorragia respiratoria en Hungría, en febrero de 2016. En el ejemplar de la izquierda, el más intacto, se detectó el virus de Lloviu. Imagen de S. Boldogh / Kemenesi et al, Emerg Microbes Infect 2018.

Pero como es obvio, es muy plausible es que el virus se haya expandido por Europa. Los murciélagos de cueva son animales migratorios. Según escribe el ecólogo de la Universidad de Murcia Fulgencio Lisón en la Enciclopedia Virtual de los Vertebrados Españoles del CSIC, se han registrado migraciones de 800 kilómetros en España, y estos animales son capaces incluso de cruzar el mar para volar entre Mallorca y Menorca.

Aún se ignora por completo si el lloviu puede representar una amenaza para el ser humano, pero el nuevo estudio alerta de la necesidad de mantener una adecuada vigilancia de los ecosistemas para detectar posibles riesgos de enfermedades emergentes que pudieran afectar a animales o humanos. El año pasado, un estudio descubría que al menos tres grupos distintos de filovirus, incluyendo el ébola, están circulando entre los murciélagos de la fruta en China, muy lejos de los remotos rincones africanos en los que normalmente se les supone. Antes de que un nuevo brote vuelva a desatar la histeria que ocasionó el ébola en 2014, y como suelen decir los expertos, el trabajo más importante es el que se lleva a cabo cuando (aún) no hay epidemia.

Un nuevo hardware para estudiar el virus de Lloviu, primo asturiano del ébola

En 2011 un equipo de investigadores de España y EEUU identificaba el primer virus de la familia del ébola hallado en Europa, detectado en cadáveres de murciélagos recogidos nueve años antes en la cueva asturiana del Lloviu. Siete años después, el bautizado como virus de Lloviu, o LLOV, aún no ha podido ser aislado en el laboratorio. Apenas quedan muestras originales del virus. No sabemos si fue el verdadero responsable de la muerte de los animales. Pero sobre todo, no sabemos hasta qué punto podría ser peligroso para los humanos; aunque todas las pruebas experimentales apuntan que se parece mucho, muchísimo, al ébola.

Nos encontramos en mitad de una apasionante historia científica que desde este blog vengo siguiendo y narrando desde 2014, cada vez que surge alguna de las muy esporádicas y aún fragmentarias novedades sobre el lloviu. Resumiendo lo ocurrido hasta ahora, el virus fue identificado en los murciélagos pescando su genoma en los tejidos de los animales muertos. El análisis de dicho genoma reveló que se trataba de un nuevo filovirus, la familia que hasta entonces comprendía siete virus: ébola, reston, bundibugyo, sudán, taï forest, marbugo y ravn.

Aunque el virus recibió el nombre del lugar donde se halló, se sospecha que, si realmente fue el responsable de las muertes de los murciélagos –se descartaron otras posibles causas–, podía haber estado también presente en otras cuevas de España, Portugal y Francia, donde al mismo tiempo se observó una similar mortalidad en esta especie concreta, Miniopterus schreibersii, o murciélago de cueva.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

El hallazgo fue obra del equipo del Laboratorio de Arbovirus y Enfermedades Víricas Importadas del Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII), en Majadahonda (Madrid), dirigido entonces por el químico Antonio Tenorio, uno de esos nombres que deberían obtener un mayor reconocimiento en este país tan ignorante de sus brillantes científicos. Sin embargo, dado que en España no existe ni un solo laboratorio de nivel de bioseguridad 4, requerido para trabajar con patógenos tan peligrosos como el ébola (sí, hay quienes dicen: «no los necesitamos»; o sea, que no los necesitan ellos), los experimentos se han realizado en otros centros de EEUU.

Esos experimentos no han logrado aislar el virus; es decir, sacarlo entero de los murciélagos, echarlo a un cultivo de células para que se reproduzca y guardarlo después en un tubo. Como conté hace un par de años, de las muestras originales de los murciélagos en los que se detectó el lloviu, ya apenas queda nada aprovechable. Pero esto no implica que no pueda seguir investigándose: dado que se conoce su genoma, los científicos pueden reconstruir algunas partes de él y utilizarlas para ensayar qué hacen esas partes a los cultivos celulares; por ejemplo, colocar esas partes en un virus del Ébola para comprobar en qué cambia su manera de actuar. Algo así como tener el motor de un Ford y colocárselo a un Renault para ver cómo funciona.

Gracias a este tipo de experimentos con los llamados pseudovirus (un virus disfrazado de otro), científicos de EEUU, Japón, Australia y Alemania, en algún caso con la colaboración del ISCIII, han podido descubrir que teóricamente el lloviu sería capaz de infectar células humanas y de monos, que podría bloquear la respuesta inmunitaria del mismo modo que lo hace el ébola, que posiblemente actúa del mismo modo que el ébola en células de murciélago (aunque ciertos detalles aún están por estudiar), y que parece capaz de escapar de ciertos mecanismos celulares de control del mismo modo que lo hace el ébola.

En resumen, los experimentos no han hecho sino confirmar que el lloviu es una criatura extremadamente parecida al ébola. Lo cual, siempre insisto, no implica que el virus asturiano tenga por qué provocar los mismos efectos que el africano. Se sabe que el ébola mata a humanos y monos, pero no a murciélagos. En virología se dice que estos últimos animales sirven como reservorio del virus, ya que este se mantiene y se reproduce en ellos sin causarles daño. El reston, un pariente muy cercano del ébola, es casi inofensivo para los humanos, pero no para los monos. Y sin embargo el marburgo y el ravn, más diferentes del ébola que el reston, son letales para nosotros y nuestros parientes primates.

De lo anterior se concluye que ciertos virus son capaces de derribar por completo el organismo de una especie sin apenas provocarle molestias a otra, mientras que otros virus muy similares pueden causar efectos diferentes o incluso opuestos. Lo cual solo es una muestra de lo mucho que aún falta por conocer en el campo de los virus y sus mecanismos. En cuanto al lloviu, se supone que podría ser mortal para los murciélagos, aunque no se ha confirmado, y que su reservorio podría estar en los insectos. Su peligrosidad para los humanos es una completa incógnita.

Las últimas novedades sobre el lloviu acaban de llegar en forma de dos nuevos estudios. En el primero de ellos, investigadores de la Academia China de Ciencias Médicas dirigidos por Ying Guo han logrado fabricar nueve pseudovirus que utilizan como base el virus del sida VIH (sería la carrocería del Renault, en el ejemplo anterior), al que le han puesto distintos disfraces para asemejarlo a cada uno de los filovirus conocidos, incluido el lloviu.

Con estos pseudovirus han logrado simular la infección in vitro –en células en cultivo–, pero además con tres de ellos, el pseudoébola, el pseudomarbugo y el pseudolloviu, han infectado ratones de laboratorio en los que pueden seguir el proceso de la infección gracias a que al VIH utilizado se le ha añadido un gen que produce luz.

El estudio chino no aporta un nuevo descubrimiento, sino un nuevo hardware para la investigación, un sistema de estudio que permitirá a los científicos ensayar posibles antivirales contra el ébola, el marburgo y el lloviu. La ventaja de este modelo es que permite trabajar en laboratorios de nivel de bioseguridad 2, menos exigente que el 4, ya que el VIH es un virus de contagio más difícil que el ébola. Por el momento, los autores del trabajo ya han comprobado que dos fármacos llamados clomifeno y toremifeno, anteriormente identificados como inhibidores de la infección por filovirus, protegen a los ratones de la infección por estos pseudovirus.

El segundo estudio sí nos descubre un nuevo dato interesante, pero ya es tarde por hoy. Mañana seguimos.

El virus asturiano de Lloviu se escapa de la correa

Sabrán, y si no ya se lo cuento yo, que en este blog sigo de cerca todas las (muy escasas) novedades relativas al virus de Lloviu, también llamado simplemente lloviu o LLOV, un primo carnal del ébola presentado en sociedad en 2011.

La historia del virus se remonta a unos años antes: en 2002, investigadores de la Asociación Española para la Conservación y el Estudio de los Murciélagos (Secemu) descubren miles de murciélagos muertos en varias cuevas de España, Portugal y Francia, un extraño suceso del que informan a comienzos del año siguiente en la revista medioambiental Quercus. Al sospecharse la presencia de un virus, el Ministerio de Medio Ambiente pone el asunto en manos del laboratorio de referencia, el Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII), que junto con la Universidad Complutense de Madrid analiza cadáveres de los murciélagos recogidos en la cueva asturiana de Lloviu.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Los análisis de rabia son negativos. Pero cuando en 2005 se publica la presencia de virus del Ébola en murciélagos, los investigadores del ISCIII reanalizan los restos de los animales, y ¡bum!, allí aparece una secuencia genética muy similar al temible patógeno africano.

Varios años después, aún nadie ha visto el LLOV ni lo tiene en su poder. El virus ha resistido hasta ahora todos los intentos de cultivarlo extrayéndolo de los cadáveres de murciélagos. Como un criminal que huye del escenario dejando su ADN, lo único que se tiene del lloviu es su secuencia genética. Las muestras originales prácticamente se han agotado, aunque un nuevo proyecto de investigación pretende localizarlo de nuevo en su fuente original.

¿Por qué interesa tanto el lloviu? Para empezar, y para un biólogo no virólogo como es un servidor, encontrar un primo perdido en Europa de una familia de organismos que hasta entonces solo existía en África y Asia es como si de repente se localizara una población de canguros en Asturias. Por supuesto que hay diferencias clave cuando se trata de un parásito que normalmente vive agazapado en un reservorio (el animal al que infecta sin provocarle una enfermedad grave). Pero aun así, desde el punto de vista biológico es una rareza fascinante.

Pero dejando de lado la curiosidad científica, lo que sí nos importa a todos es la posibilidad de tener cerca de casa un virus hermano del ébola y por tanto potencialmente peligroso. Y recordemos que probablemente no solo está presente en la cueva de Lloviu. Aunque se le bautizó con este nombre porque de allí procedían las muestras estudiadas, siguiendo las reglas de la virología, el hecho de que la mortandad de los murciélagos ocurriera simultáneamente en varias cuevas de tres países sugiere que posiblemente la causa fuera la misma.

Pero por el momento, ni siquiera se sabe si fue realmente el lloviu lo que mató a los murciélagos. Ni mucho menos cuál podría ser su efecto en nosotros. A falta de disponer del bicho vivo y coleando (cuando se trata de virus, las palabras «bicho» y «vivo» deben tomarse como aproximaciones razonables), lo único que los científicos pueden hacer es fabricar partes del lloviu a partir de su secuencia genética y estudiar qué cosas hacen a las células en cultivo, comparándolas con las piezas similares de otros virus como el ébola.

Y hasta ahora, ese parecido es total. Todo indica que el lloviu sería capaz de infectar células humanas y de monos, y que provocaría un bloqueo inmunitario similar al que ocasiona el ébola. Pero recordemos que el ébola, letal para nosotros, es inofensivo para los murciélagos. Del lloviu se supone que mataría a estos últimos y se supone que no sería grave para nosotros, dado que no existe ningún caso en España, Portugal o Francia de nadie que haya aparecido en un hospital con fiebre hemorrágica después de haber visitado una cueva. Pero por el momento, son solo especulaciones sin confirmar.

Esta semana se ha publicado un nuevo indicio sobre el lloviu, y vuelve a presentar un nuevo parecido razonable entre este virus y el ébola. Entre los mecanismos de defensa que poseen las células contra ciertos virus, existe uno muy peculiar. Cuando estos se multiplican dentro de la célula y la abandonan en busca de nuevos objetivos, hay una pieza en la superficie celular que trata de impedírselo, clavándose en la cubierta del virus e impidiéndole que se marche, como la correa de un perro evita que se aleje del dueño.

Debido a esta función, la proteína recibe en inglés el nombre de tetherin, de tether, que significa «atar». Las células producen esta «atadurina» como parte de una reacción antiviral disparada por los interferones, moléculas que forman parte de la primera línea de defensa del organismo contra los virus. Pero a su vez, los invasores han inventado mecanismos para esquivar este contraataque: virus como el VIH y el propio ébola consiguen zafarse de la correa, aunque en el caso del segundo aún no se conoce en detalle cómo logra librarse de estas ataduras.

Investigadores del Centro de Primates de Alemania han revelado que la defensa del ébola contra la tetherina depende de una pieza concreta de una proteína del virus llamada GP, que forma parte de la maquinaria precisa para invadir la célula. Aún no se sabe exactamente cómo esta pieza, llamada GP1, actúa para librar al virus de las ataduras. Pero sobre todo, los científicos han descubierto algo más importante: cuando sustituyen la GP del ébola por la del lloviu, actúa de la misma manera. Es decir, y según palabras de los investigadores en el estudio publicado ahora en la revista Journal of Virology, «la tetherina no parece presentar una defensa contra la propagación del lloviu en humanos».

¿Representa esto un nuevo punto a favor de la posibilidad de que el lloviu sea peligroso para los humanos? En realidad, no. Significa que el lloviu continúa pareciéndose cada vez más al ébola. Pero el comportamiento de los filovirus, la familia del ébola y el lloviu, es caprichoso (una manera de decir que aún no se comprende lo suficientemente bien): de las cinco especies conocidas de ébola, una de ellas, el reston, es inofensiva para nosotros, mientras que es mortal para los monos. En cambio, los dos tipos de virus de marburgo (también de la misma familia), marburgo y ravn, más distintos del ébola que el reston, son fatales tanto para los monos como para nosotros. El raro virus asturiano continúa siendo un gran interrogante que conviene seguir de cerca.

En busca del virus perdido

Hace unos días conté aquí que el virus de Lloviu, un filovirus muy parecido al ébola y hallado en murciélagos muertos en una cueva asturiana en 2003, se ha perdido de momento para la ciencia. Así lo contaba una reciente revisión sobre filovirus olvidados escrita por un equipo de investigadores de Fort Detrick, el centro encargado de la defensa biológica de EEUU. Según este trabajo, las muestras se consumieron en su totalidad sin lograrse el cultivo del virus en el laboratorio, un requisito para caracterizarlo y saber hasta qué punto podría ser patógeno para animales y humanos.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Bien, resulta que no es del todo cierto que las muestras se hayan acabado. Hace unos días por fin conseguí respuesta de Anabel Negredo, la investigadora del Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII) que llevó el peso del trabajo inicial de identificación del virus y que firmó el estudio de descripción como coautora principal. Negredo me cuenta que aún quedan algunas muestras con baja carga viral. Aunque es mejor que nada, si no se logró sacar el virus de las muestras con mayor contenido vírico, es dudoso que se consiga con estas.

Sin embargo, hay una buena noticia. Según Negredo, un nuevo proyecto presentado en la convocatoria del Plan Nacional de I+D+i de 2013 buscará posibles virus en los murciélagos de la Península Ibérica, bajo la dirección del investigador Juan Emilio Echevarría. Uno de los objetivos del proyecto será tratar de recuperar el lloviu para volver a llevarlo de la cueva al laboratorio. “Estamos buscando su presencia o el rastro de su presencia en murciélagos de las cuevas donde se descubrió el virus, y para ello estamos utilizando métodos directos de detección de genoma viral y métodos indirectos de detección de anticuerpos”, dice Negredo.

Claro que no hay ninguna garantía de que el virus perdure hoy en aquel mismo lugar. El lloviu se descubrió en cadáveres de murciélagos, pero aún se desconoce si fue la causa de las muertes. Pensar que todos aquellos animales estaban infectados con un virus, y que sin embargo pudieran morir por otra causa, tal vez parezca un argumento innecesariamente retorcido. Pero la ciencia no avanza con conjeturas, por probables que sean.

Conviene recordar que el ébola, lo que más se parece al lloviu, no es letal para los murciélagos. Como ya conté aquí, un estudio propuso que estos animales mantienen una guardia permanente contra los virus que en otras especies solo se activa cuando hay infección, lo que podría explicar su superinmunidad.

Si el lloviu fuera mortal para los murciélagos, significaría tal vez que es capaz de tumbar una línea de defensa resistente incluso al ébola. Pero significaría además otra cosa: los virus tienen su reservorio, digamos su stock de almacén, en especies a las que no matan. Este es el caso del murciélago para el ébola. Si el lloviu resultara mortal para estos animales, el reservorio debería buscarse en otro sitio. Desde el primer momento, los investigadores del ISCIII han sospechado que podría estar en los insectos. Y por este motivo, el nuevo proyecto también investigará la posibilidad de encontrar el lloviu en los tipos de insectos que normalmente están en contacto con los murciélagos.

Confiemos en que pronto el lloviu regrese a los laboratorios. No solo es un virus que nos interesa conocer para saber a qué podríamos estar expuestos; si algo tan parecido al ébola resultara inofensivo para los humanos, tendría un enorme valor para la investigación en la lucha contra los filovirus peligrosos.

El virus asturiano de Lloviu vuelve a la cueva

Hasta hoy, el número total de estudios experimentales sobre el virus de Lloviu, ese primo español del ébola descrito por primera vez en 2011, asciende a… cinco. Trece, si añadimos las revisiones. Desde aquí y en algún otro medio, he dado cuenta de todo lo que se ha publicado sobre el virus (la última vez, aquí). Que, como ven, es muy poco.

Colonia de murciélagos de cueva ('Miniopterus schreibersii'), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Colonia de murciélagos de cueva (‘Miniopterus schreibersii’), la especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Y menos aún que va a publicarse. Porque, por desgracia, las muestras que contenían el virus, todas ellas recogidas en 2003 de cadáveres de murciélagos hallados en la cueva asturiana de Lloviu, ya se han terminado. Así lo revela una revisión sobre filovirus olvidados publicada ahora en la revista FEMS Microbiology Reviews por investigadores de Fort Detrick, el gigantesco complejo militar de Maryland que alberga el programa de defensa biológica de EEUU. «Todo el material de muestra se ha consumido», dice el estudio.

Uno de sus firmantes es Gustavo Palacios, investigador estadounidense que tras el descubrimiento del virus se encargó de los experimentos que no podían realizarse en España por la carencia de instalaciones de nivel 4 de contención biológica. Palacios fue el coautor principal del estudio que describía el virus por primera vez. He tratado de confirmar el dato del agotamiento de las muestras con la otra coautora principal, Anabel Negredo, del laboratorio de referencia del Instituto de Salud Carlos III de Madrid, pero no ha tenido a bien responder a mis preguntas.

Así pues, tal como el virus salió de la cueva, a ella vuelve. Esto no significa que no se vaya a poder estudiar absolutamente nada más sobre el lloviu. Dado que se dispone de su secuencia genómica, los investigadores podrán recrear las piezas del virus. Construir el virus completo es poco probable, ya que uno de los extremos del genoma no pudo secuenciarse. Pero sí es posible fabricar sus proteínas y estudiar qué hacen en cultivos celulares, y emplearlas para poner un disfraz de lloviu a otros virus relacionados, como el ébola.

Este método se conoce como seudotipado, y es lo que se ha hecho hasta ahora para tratar de comprender cómo se comportaría el lloviu auténtico si se le pusieran delante células humanas o de otras especies. Los virus seudotipados sirven también para producir anticuerpos contra las proteínas del lloviu, lo que ofrecería un método de diagnóstico.

Pero lo que de momento no va a poder hacerse es aislar el virus en cultivo, lo único que garantiza la posibilidad de investigar sus efectos reales en células humanas y en otras especies o en modelos animales de laboratorio. Los intentos de aislar el virus han fracasado, y ya no quedan muestras. Y con esto, de momento seguiremos sin saber si el virus es inocuo para nosotros o si podría ser un patógeno peligroso.

Cito lo que recoge la nueva revisión respecto a lo que sabemos del lloviu:

El análisis de los datos disponibles no permite extraer conclusiones sobre si el LLOV [lloviu] causó las muertes de los murciélagos. De modo similar a lo que ocurre con murciélagos infectados por MARV [marburgo] y RAVV [Ravn], los murciélagos infectados por LLOV podrían haber estado infectados por LLOV de forma persistente y subclínica, y haber muerto por otras causas.

El potencial de LLOV de infectar a los humanos es desconocido. Debido a la ausencia de un aislado de LLOV con capacidad de replicación, no se dispone de un modelo animal de la infección por LLOV. En consecuencia, la posible persistencia del LLOV en animales, su patogenicidad/virulencia, patogénesis o posibles contramedidas contra la infección son desconocidas.

Termino con la parte menos agradable, pero cuya divulgación es más necesaria:

A causa de esta falta de conocimiento ecológico [sobre los filovirus en general], la predicción de cuándo y dónde pueden surgir brotes de enfermedad de filovirus humanos y/o animales es imposible. Dado que el conocimiento de los filovirus olvidados (BDBV, LLOV, RAVV, RESTV y TAFV) es extremadamente limitado, no se puede excluir la posibilidad de grandes brotes futuros de EVD [enfermedad del virus del Ébola] o MVD [marburgo] causados por estos virus.

Un brote de enfermedad de la magnitud del brote de EVD causado por un filovirus olvidado podría resultar incluso más desastroso para África o el mundo. Entre los ya muy escasos institutos en todo el mundo que pueden investigar con filovirus con un nivel de seguridad biológica 4, pocos tienen siquiera acceso a filovirus olvidados.

Por consiguiente, hay pocas vacunas candidatas específicas y prácticamente no existen terapias específicas en preparación para prevenir o tratar infecciones por filovirus olvidados.

Por tanto, apelamos a la comunidad internacional de investigación en filovirus, y aún más a los financiadores de actividades de investigación y desarrollo en filovirus (hoy casi exclusivamente EBOV), para crear y mantener un programa global coordinado de colaboración con vistas a la creación de reactivos, ensayos, metodologías, bases de datos, modelos animales y contramedidas médicas que incluyan de forma rutinaria los filovirus olvidados.

No será porque nadie advirtió.

Los murciélagos, superinmunes al ébola (¿y al lloviu?)

Esta semana escribía aquí sobre el lloviu, un primo cercano del ébola descubierto en cadáveres de murciélagos en una cueva asturiana. Contaba también la paradoja de cómo dos virus tan similares parecen afectar a especies distintas de manera muy diferente: el ébola nos mata pero es inocuo para los murciélagos, mientras que la hipótesis sobre el lloviu (todavía sin ninguna prueba) es que podría aniquilar a estos últimos.

El zorro volador negro, 'Pteropus alecto'. Imagen de Wikipedia.

El zorro volador negro, ‘Pteropus alecto’. Imagen de Wikipedia.

Sobre sus posibles efectos en humanos aún no se conoce absolutamente nada, salvo la ausencia de casos autóctonos de fiebre hemorrágica en España (sin que la ausencia de prueba sea prueba de ausencia). Es decir, que en España, Portugal y Francia, países donde se hallaron los miles de murciélagos muertos que motivaron el hallazgo del lloviu, no se sabe de nadie que haya enfermado gravemente después de visitar una cueva.

Muy oportunamente, esta misma semana la revista PNAS ha publicado un estudio que podría resolver esta paradoja y ayudarnos a comprender por qué los murciélagos son inmunes al ébola y a otro centenar de virus que transportan sin inmutarse, muchos de los cuales son letales para nosotros. Y de paso, este avance abre una nueva vía de estudio de los posibles efectos del lloviu.

Debo comenzar explicándoles qué es el interferón. Sin duda han oído hablar de que nuestro sistema inmunitario reacciona específicamente contra los patógenos que nos invaden, y guarda memoria de la identidad de estos atacantes. En esto se basa la eficacia de las vacunas: el organismo recuerda agresiones pasadas y mantiene un arsenal de reserva preparado y adaptado para responder de nuevo contra esos invasores si se les ocurre volver a aparecer.

Pero por delante de esta inmunidad específica, existe una primera línea de defensa llamada respuesta inmune innata. Esta es la fuerza de intervención rápida, la que se dispara de forma inmediata a una infección y que no es específica ni adaptada al patógeno concreto. Entre los mecanismos de este sistema innato se encuentra un grupo de moléculas llamadas interferones, cuya función es dar la señal de alarma y poner en marcha otra serie de respuestas, incluyendo las específicas.

Hay tres tipos de interferones, I, II y III, que a su vez tienen subtipos: los humanos tenemos cinco de tipo I, designados con las letras griegas alfa, beta, épsilon, kappa y omega. Y a su vez, tenemos hasta 12 o 13 interferones alfa; todo ello suma, que conozcamos hasta ahora, una veintena larga de interferones humanos.

Sin embargo, los murciélagos solo tienen tres interferones alfa, más o menos la cuarta parte que nosotros. De hecho, es el mamífero conocido hoy con menos variedad de interferones. Esto es lo primero que revela el nuevo estudio, en el que un grupo de investigadores de Australia y Singapur ha analizado el repertorio de interferones del zorro volador negro (Pteropus alecto), un murciélago frugívoro australiano.

Lo segundo que hemos sabido gracias al estudio es que estos tres interferones alfa de los murciélagos están activos siempre, haya o no infección, a diferencia de lo que ocurre en otras especies. Estos animales están en un continuo estado de guerra contra los virus. Y según los autores del estudio, esta superinmunidad podría ser la causa de que los murciélagos sean capaces de llevar dentro de sí virus peligrosos como el ébola sin sucumbir a ellos, manteniéndolos siempre a raya mediante comandos de interferón siempre desplegados sobre el terreno.

Hasta aquí, todo suena perfecto. Pero mi reacción al leer los resultados de este estudio fue de sorpresa, ya que precisamente el trabajo que comenté esta semana sobre el lloviu afirmaba que las proteínas de este virus y del ébola bloqueaban el interferón alfa en las células de murciélago. De hecho, sus autores escribían que «las proteínas VP35 del ébola y el marburgo inhiben la producción de interferón alfa/beta» y que «la VP35 del lloviu bloquea la producción de interferón alfa/beta».

¿Dos estudios contradictorios? La solución llegó al releerme más detenidamente el primer trabajo. Los investigadores del Hospital Monte Sinaí de Nueva York dieron por hecho que la vía del interferón alfa estaba bloqueada porque las proteínas de los virus inhibían ciertos procesos que controlan la producción de este mediador inmunitario y otros que a su vez están controlados por él. Además, confirmaron que la infección anulaba la fabricación de interferón beta. Pero en cambio, no analizaron directamente la producción de interferón alfa, y por este pequeño agujero en el diseño experimental se les ha colado un error de bulto que no invalida sus experimentos, pero sí una de las conclusiones que extraen de ellos.

La codirectora del nuevo estudio, Michelle Baker, del CSIRO (el CSIC australiano), me confirma que esta es la explicación de la aparente discrepancia: los investigadores del Monte Sinaí «no incluyen datos que muestren la expresión de interferón alfa», señala. Y en cuanto a los procesos controlados por este mediador, «solo atendieron a uno, y hay muchos otros que también podrían revelar pruebas de la actividad del interferón alfa».

Baker resume: «Nuestros datos indican que al menos uno de los interferones alfa de P. alecto puede estar regulado de forma diferente que en otras especies». Así, esta podría ser la causa de que los murciélagos sean resistentes al ébola y a otros muchos virus que transmiten. Pero ¿qué ocurre con el lloviu? El virus se halló en cadáveres de murciélagos sin signos de ninguna otra anomalía que justificara sus muertes. Pero lo cierto es que tampoco se ha demostrado una relación, y Baker se aferra a este hecho: «Dado que solo se obtuvieron secuencias virales, y no se ha aislado el virus de los murciélagos muertos en España, solo podemos especular que el virus fuera la causa».

El siguiente paso sería entonces estudiar cómo afectan las proteínas del lloviu a la producción de interferón alfa en células de murciélago. Si el virus fuera capaz de tumbar la defensa innata de estos animales, apoyaría la posibilidad de que el lloviu fuera la causa de las muertes masivas. Pero aunque es arriesgado especular, sería raro que un virus tan similar al ébola lograra algo que el propio ébola no consigue. Y si el efecto de ambos sobre el interferón alfa de los murciélagos fuera el mismo, seguiríamos a oscuras sobre la relación entre el lloviu y las muertes.

Pero ¿y si…? Suponiendo que así fuera, y que el lloviu lograra desarticular la primera línea de defensa de los murciélagos, y que esta fuera la causa de las muertes, entonces estaríamos ante un supervirus más potente que el ébola, el coronavirus MERS o el hendra. Y desde luego, de un virus que matase a los murciélagos (y del que se sabe que infecta células humanas) no sería lógico esperar nada bueno. ¿Algún voluntario para mirar qué le pasa al interferón de los murciélagos con las proteínas del lloviu?

El lloviu asturiano se parece cada vez más al ébola

En 2003 tres biólogos españoles publicaron un artículo dando cuenta del extraño hallazgo de miles de cadáveres de murciélagos en cuevas de España, Portugal y Francia. Esta repentina oleada de mortandad alertó a las autoridades españolas, que decidieron encargar una investigación dirigida por el Instituto de Salud Carlos III (ISCIII), laboratorio de referencia en enfermedades animales transmisibles a los humanos, o zoonosis.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Las pruebas de rabia resultaron negativas. Pero cuando dos años más tarde se descubrió que los murciélagos actúan como reservorio del virus del Ébola (es decir, que sufren la infección sin verse afectados por ella, sirviendo como almacenes y distribuidores del virus), el entonces jefe del laboratorio competente del ISCIII, Antonio Tenorio, tuvo la luminosa inspiración de comparar el material genético extraído de los cadáveres de murciélagos de la cueva asturiana de Lloviu con las secuencias del virus. Y el resultado fue escalofriante: los murciélagos contenían algo que, en la parte analizada, era idéntico en un 75% al ébola. Según la clasificación actualizada en 2010 de la familia de los filovirus, un virus es ébola si se parece en más de un 50% a él.

Dado que España no cuenta con ninguna instalación de experimentación aprobada para manipular patógenos humanos que requieran un nivel de contención biológica 4, o NCB4 (perdónenme el circunloquio, pero es que es de risa que en los peores momentos de la crisis del ébola se liara en ciertos medios y blogs un tiquismiquismo terminológico sobre si tenemos NCB3+ que son casi-4 o que pueden funcionar como 4 según ciertos estándares pero no otros; aquí no hay laboratorios donde esté permitido trabajar con ébola, y punto), los científicos del ISCIII se aliaron con instituciones de EEUU para estudiar más a fondo lo que llevaban aquellos murciélagos.

El resultado, publicado en 2011, reveló que el virus era justo un pelo por encima del 50% diferente al ébola, más parecido a este que su primo más cercano conocido hasta entonces, el marburgo. Es decir, lo suficientemente distinto como para ponerle otro nombre, pero lo más parecido al ébola que se había descubierto jamás.

Así nació el virus de Lloviu, o LLOV. Actualmente la familia del ébola, los filovirus, se divide en tres géneros: Ebolavirus, con cinco especies (Zaire, Reston, Bundibugyo, Sudán y Taï Forest), Marburgvirus, con una especie y dos tipos (Marburg y Ravn), y Cuevavirus, con el asturiano como único representante.

A estas alturas, y para evitar que a ustedes se les erice el vello, debo aclarar que tanto la cueva de Lloviu como otras en las que se hallaron murciélagos muertos en España, Portugal y Francia están abiertas al público y son regularmente visitadas; y en ninguno de los tres países se conoce ningún caso de fiebre hemorrágica con posterioridad a la visita a uno de estos lugares. Aunque también conviene subrayar que tocar el cadáver de un murciélago (o para el caso, cualquier otro cadáver) nunca es una buena idea. Pero por responder a las preguntas que tal vez les estén surgiendo:

¿Causó el virus de Lloviu las muertes de los murciélagos? No se sabe.

¿Podría el lloviu causar alguna enfermedad en humanos? No se sabe.

¿Todos los parientes del ébola son igualmente fatales para los humanos? Esto sí se sabe, y la respuesta es que no.

Esto último es realmente peculiar, y da idea de lo mucho que se desconoce todavía sobre cómo el ébola y otros filovirus provocan una catástrofe en el organismo. De los cinco ebolavirus conocidos, cuatro de ellos causan fiebre hemorrágica en humanos. El quinto, el virus de Reston, parece ser completamente inofensivo para nosotros, mientras que es letal para los primates no humanos. Y sin embargo los dos marburgvirus conocidos, marburgo y ravn, más diferentes del ébola que el reston, son incluso más mortales para humanos y monos que el propio ébola. Y al menos varios de estos virus infectan a los murciélagos sin provocarles ningún síntoma aparente. ¿Por qué todo esto?

Hay una respuesta larga y otra corta. La corta: no se sabe.

Sobre cómo el ébola mata ya hablaré otro día; hay indicios interesantes, que sin embargo aún no acaban de explicar de forma clara y cristalina por qué este virus es capaz de descomponernos por dentro mientras que otros muy similares no llegan ni a despeinarnos (una pista: no es el virus). Pero de momento, lo único que los científicos pueden hacer para estudiar hasta qué punto el lloviu podría representar una amenaza para nosotros es investigarlo en el laboratorio.

El problema es que aún nadie ha logrado aislar el lloviu para infectar células en cultivo o animales de experimentación. De hecho, y a pesar de que la existencia del virus se conoce ya desde hace cinco años, aún apenas se ha publicado una docena de estudios. Por ello, lo único que ahora puede hacerse es fabricar partes sueltas del virus, a partir de su secuencia genética conocida, y analizar hasta qué punto lo que hacen estas partes sueltas en cultivos celulares se parece a lo que hace el ébola.

Y hasta ahora, esa similitud es total. Como ya conté aquí, parece que el lloviu es capaz de infectar células de humanos y monos por el mismo proceso que el ébola. Ahora el último estudio sobre el virus asturiano, publicado en la revista Virology por dos investigadores de la Facultad de Medicina del Hospital Monte Sinaí de Nueva York, revela un nuevo parecido entre ambos. Ya se sabía que tanto el ébola como su primo el marburgo cortan una serie de respuestas inmunitarias antivirales, lo que facilita su invasión del organismo. Sin embargo, estos dos patógenos humanos utilizan estrategias ligeramente diferentes para hacerlo.

Los científicos del Monte Sinaí han estudiado si el lloviu provoca este tipo de bloqueo inmunitario en células humanas y de murciélago en cultivo (dado que el lloviu aún no ha podido aislarse, lo han hecho empleando otro virus al que disfrazan con las proteínas del asturiano). Y el resultado es que sí, lo hace, y que lo hace como el ébola, no como el marburgo. Es decir, que una presunta infección por lloviu en un ser humano atacaría el sistema inmune del mismo modo que lo hace el ébola.

¿Es este un nuevo indicio de que el lloviu podría provocar en humanos una enfermedad similar a la del ébola? Pues lo cierto es que no, y estos últimos resultados no hacen sino enturbiar aún más nuestra comprensión de cómo actúa el ébola. La clave está en lo siguiente: los investigadores han descubierto que el bloqueo inmunitario provocado por el ébola en células humanas también ocurre del mismo modo en células de murciélago, algo que no se sabía hasta ahora. Sin embargo, se supone que estos mamíferos pasan la infección por el ébola sin síntomas graves. Y aunque aún se trata de una conjetura, se presume que el lloviu mata a los murciélagos. O sea, que dos virus capaces de actuar de manera idéntica en dos especies diferentes afectan a ambas de forma muy distinta. ¿Por qué? Ya lo han adivinado: no se sabe.

En resumen y como conclusión del estudio, hay algo que sí puede afirmarse: que la respuesta inmunitaria humana no sería un obstáculo para la infección por lloviu, como no lo es en el caso del ébola. Pero también que esta respuesta no es la responsable de que los murciélagos sean inmunes al ébola, ya que estos animales sufren el mismo bloqueo inmunitario que los humanos. Así que, como escriben los investigadores en su estudio, «aún no se puede determinar si el lloviu supondría una amenaza para los humanos».