Entradas etiquetadas como ‘cromosoma Y’

El sexo no solo está en los cromosomas sexuales

Hay una razón biológica para que tengamos sexo, aunque todavía no estamos seguros de si la comprendemos en su totalidad. Imaginemos que pudiéramos tener descendencia a voluntad sin intervención de otra persona. Sin duda la vida sería mucho más aburrida, pero también nos evitaría innumerables quebraderos de cabeza y un inmenso gasto de energía.

Evidentemente, es difícil concebir cómo sería la vida sin el sexo; no sin practicarlo (que también), sino sin que existiera. Pero nosotros, los humanos, no hemos elegido que las cosas sean como son. Nos han venido dadas de esta manera, y lo único que podemos hacer es intentar comprender por qué. Bueno, por supuesto y mientras lo intentamos, también podemos disfrutar de los mecanismos que lo hacen posible.

Los organismos que se reproducen asexualmente tienen una gran ventaja sobre nosotros, y es que pueden aumentar sus poblaciones con mucha más facilidad y rapidez, evitando además el engorro y el coste energético de tener que encontrar una pareja adecuada. Queda claro que hablamos desde un punto de vista biológico, desde el cual nuestras células germinales –óvulos y espermatozoides– son tan importantes como nosotros, o incluso más; si tenemos en cuenta las generaciones celulares, entre nuestra generación y la de nuestros hijos hay otra más, la de nuestras células germinales. De hecho, nosotros no somos más que instrumentos al servicio de nuestros genitales para producir descendencia. No es una idea provocadora, simplemente es biología.

Parece claro que entonces, para que la reproducción sexual haya perdurado, debe aportar alguna ventaja a ciertos organismos –en realidad somos una minoría los que utilizamos esta estrategia reproductiva–. La más obvia es que nos confiere una mayor diversidad genética gracias a la mezcla de genes entre el padre y la madre; cada uno de nosotros solo legamos a nuestros hijos la mitad de nuestro genoma, y así fabricamos genomas híbridos que son completamente inéditos, nunca antes aparecidos en la historia de la humanidad.

Cromosomas humanos. Imagen de Public Domain Files.

Cromosomas humanos. Imagen de Public Domain Files.

Esta diversidad genética es el medio para conseguir fines prácticos: nos ayuda a diluir el efecto y la acumulación de mutaciones perjudiciales, que los seres asexuales se ven condenados a arrastrar generación tras generación. Y al haber genomas muy diversos en una población lo suficientemente grande, aumentan las posibilidades de supervivencia de la especie frente a las agresiones del entorno, cuando las condiciones ambientales cambian: si llega una glaciación, siempre hay quienes la soportarán.

Para que todo esto se produzca es necesario que existan dos sexos, con un dimorfismo sexual característico –lo que nos diferencia físicamente– que nos permite reconocernos mutuamente. Y según la norma más general, lo que genera esas disparidades entre los cuerpos de hombres y mujeres también determina otros parámetros, como nuestra identidad sexual (sentirnos hombres o mujeres) y nuestra orientación sexual (que nos atraigan los hombres o las mujeres).

En tiempos pasados, cuando aún no se comprendían los mecanismos responsables de todo esto –y, todo hay que decirlo, cuando los prejuicios sociales y religiosos eran mucho más prevalentes que hoy–, se interpretaba que la naturaleza humana era forzosamente binaria, valga la insistencia, por naturaleza: hombre y mujer, macho y hembra, sexo donador y sexo aceptor, cada uno atraído por el opuesto. Todo lo que se saliera de esta norma mayoritaria se consideraba anormal, y por lo tanto patológico. Para algunos, incluso satánico.

Naturalmente, hoy los criterios sociales han cambiado, y los religiosos ya no determinan el funcionamiento de la sociedad. Pero aunque sin duda esto debe agradecerse principalmente a todas las personas que han entregado sus mayores esfuerzos a esta causa, es esencial no olvidar algo: cuando el Papa Francisco, en sus recientes y decepcionantes declaraciones, atribuía la homosexualidad a una moda (o al menos su mayor visibilidad actual), está ignorando un siglo de conocimiento científico.

Está ignorando que, con independencia de las tendencias y los cambios en la realidad social y del empeño de quienes los han impulsado, el hecho biológico es que la homosexualidad, la bisexualidad, la transexualidad, la intersexualidad y las discrepancias entre fenotipo e identidad u orientación sexual son situaciones completamente NATURALES, que forman parte de la distribución normal (en sentido matemático; es decir, campana de Gauss) de la variabilidad sexual humana.

Y el hecho de que ya no se consideren patologías ni siquiera se debe a la necesidad de crear una sociedad más inclusiva, como sí ocurre para el caso de ciertos trastornos mentales que hoy se pretende desestigmatizar; la variabilidad sexual no es patológica, sencillamente porque en esta categoría entran las condiciones que perturban gravemente a las propias personas o a las cercanas a ellas. Y el único motivo por el que la variabilidad sexual ha creado perturbaciones a tantas personas durante tantos siglos es por esos antiguos prejuicios sociales y religiosos, no por nada inherente a esas propias condiciones, que en sí misma son tan patológicas como el hecho de que dos padres rubios tengan un hijo moreno.

Como ilustración de todo esto, llega un nuevo estudio que descubre uno más de los factores genéticos involucrados en la determinación del fenotipo sexual humano. Desde hace años se conoce el gen SRY, presente en el cromosoma sexual masculino Y, cuya entrada en funcionamiento durante el desarrollo embrionario es fundamental para la aparición de los genitales masculinos. Como ya expliqué aquí y en contra de ese mito tan extendido, esto no implica que todos comencemos nuestro desarrollo como embriones femeninos; la ausencia del cromosoma Y con su gen SRY solo resulta en una diferenciación completa de la anatomía femenina cuando existen dos cromosomas X, no solo uno de ellos. Antes de la puesta en marcha del Y, el embrión no es femenino, sino un proyecto de hermafrodita.

Pero ¿cómo actúa SRY? Los genes en realidad no producen caracteres, sino solo proteínas. Muchas de estas proteínas a su vez estimulan la actividad de otros genes, cuyos productos activan otros genes, y así. Estas cadenas llevan en algún momento a la fabricación de proteínas que participan en rutas metabólicas de la célula, las cuales modifican la producción de otras moléculas involucradas en otras rutas o en la activación de otros genes… El proceso en conjunto podría asemejarse a esos inmensos montajes de fichas de dominó que hace unos años tanto parecían gustar a los japoneses, donde las líneas se ramificaban y se volvían a unir para al final disparar pirotecnia o hacer caer un coche. Los montajes de dominó de la célula pueden resultar finalmente en varios efectos diferentes y en apariencia no relacionados entre sí, como el color de la piel y el funcionamiento del páncreas.

El nuevo estudio, publicado en Nature Communications por investigadores del Instituto de Investigación Infantil Murdoch (Australia), ha identificado el mecanismo de uno de esos mediadores de la acción del gen SRY. Se trata del gen SOX9, activado por SRY y que produce un factor de transcripción, es decir, un estimulador de la expresión de otros genes. Así, SOX9 es un eslabón en una de esas cadenas, en concreto la que lleva al desarrollo de los genitales masculinos. Si se rompe ese eslabón, la cadena no funciona y los testículos no se desarrollan. Si por el contrario ese eslabón se multiplica, se favorece el desarrollo de los testículos cuando no debería ocurrir.

En concreto, toda la magia ocurre no en el propio gen SOX9, sino en una región del genoma adyacente a él. Cuando a comienzos de siglo se terminó de secuenciar el genoma humano, a los investigadores les sorprendió descubrir que solo una pequeña parte de él contiene genes; el resto se denominó ADN basura, pero fue un nombre desafortunado, ya que en realidad esta materia oscura del genoma (una denominación más adecuada) contiene secuencias esenciales para que los genes se activen. Esas partes que no producen proteínas albergan promotores y enhancers (potenciadores), segmentos de ADN a los que se unen esos factores de transcripción y otras proteínas reguladoras para ordenar a los genes que fabriquen proteínas. Son los semáforos de los genes: cuando están en rojo, el gen está inactivo; necesitan que una proteína reguladora se una a ellos y los ponga en verde para que el gen funcione.

Los investigadores australianos han descubierto que el gen SOX9 está bajo el control de tres semáforos, o enhancers, que dependen de SRY para ponerse en verde y dar paso a la producción de una proteína que actúa como eslabón crítico en la cadena que lleva al desarrollo de los testículos. Cuando estos enhancers aparecen en mayor número de lo habitual, el resultado es que se forman testículos, incluso cuando la persona tiene cromosomas XX, es decir, es genéticamente femenina. Y al contrario, cuando los enhancers de SOX9 son deficitarios, aparecen ovarios, incluso si la persona es XY, genéticamente masculina.

En resumen, las variaciones en el control de SOX9 por medio de sus enhancers explican muchos casos de intersexualidad: personas cromosómicamente femeninas que poseen testículos, o cromosómicamente masculinas que poseen ovarios. El gen SOX9 no se ubica en los cromosomas sexuales sino en el cromosoma 17. Por supuesto no es el primer caso conocido de control del sexo a través de genes situados en cromosomas que no son los sexuales, pero sirve para reforzar la idea de que el sexo no solo está en los cromosomas sexuales.

Y naturalmente, las variaciones en el control de los enhancers de SOX9 no son enfermedades. No son trastornos (aunque, por desgracia, la terminología todavía debe adaptarse a esta realidad). Y dado que los procesos genéticos y bioquímicos que controlan la definición de la identidad y la orientación sexual en el cerebro (es decir, si nos sentimos más hombres, más mujeres o ninguno de ambos en particular, o si nos atraen más los hombres, las mujeres o ambos) dependen de sus propias cadenas dentro esos inmensos montajes de dominó, puede ocurrir que las personas XX que son fenotípicamente hombres, o las XY que son fenotípicamente mujeres, se sientan hombres o mujeres, y les atraigan los hombres o las mujeres.

Son simplemente casos minoritarios, que caen en las partes más delgadas de la campana de Gauss de la variabilidad sexual humana. Pero no sufren ningún mal, salvo aquellos que la sociedad quiera cargar sobre ellos por el hecho de no haber caído en la parte más alta de la campana de Gauss.

¿Qué ocurrirá cuando puedan resolverse viejos crímenes prescritos?

Existe una película de hace unos años protagonizada por los muy admirables Hilary Swank y Sam Rockwell, y dirigida por Tony Goldwyn, el malo de Ghost. He tenido que recurrir a Google porque no recordaba el título, y poco importa: nada más plano y aburrido que los títulos de las películas de abogados. A esta le pusieron Conviction, en España Betty Anne Waters.

Si no recuerdo mal, Swank interpreta a una camarera y madre que se embarca en el peliagudo empeño de estudiar leyes y convertirse en abogada para liberar de prisión a su hermano (Rockwell), condenado a cadena perpetua por un asesinato del que ella le cree inocente. Me disculpo por el spoiler: al final, y después de una angustiosa carrera por recuperar las pruebas físicas del caso, consigue que su hermano quede exonerado gracias a los tests de ADN, que aún no se habían inventado cuando se cometió el delito.

Retrato robot del asesino de Eva Blanco. Imagen de Guardia Civil.

Retrato robot del asesino de Eva Blanco. Imagen de Guardia Civil.

Ayer conocimos la detención del asesino de la niña Eva Blanco, 18 años después del crimen. La sociedad se ha maravillado, han llovido las felicitaciones a la Guardia Civil y se ha elogiado su incansable trabajo callado durante casi dos decenios en un caso ya frío. Y desde luego que no voy a poner en duda tales merecimientos; pero es capital subrayar –me ciño a las informaciones publicadas– que la resolución satisfactoria del caso no ha sido el producto de 18 años de trabajo, sino solo de uno, el último.

Según cuentan hoy los medios, hace un año el Instituto de Ciencias Forenses de la Universidad de Santiago de Compostela, en colaboración con el Servicio de Criminalística de la Guardia Civil, reanalizó las muestras de ADN halladas en su día en la ropa de Eva. El examen concluyó que los restos biológicos pertenecían a una persona magrebí. Con este dato, la Guardia Civil rastreó el padrón de Algete, seleccionó a los más de 1.000 sospechosos y se fijó en uno que había abandonado la localidad poco después del crimen, pero que aún tenía un hermano viviendo en ese pueblo. A este hermano le practicaron pruebas de ADN, y ¡bingo!

Tal vez alguien se pregunte por qué este análisis de ADN no se realizó hace 18 años. Y la respuesta está en la película de Swank y Rockwell: hace 18 años no podía conocerse el origen geográfico de una persona por su ADN.

Las pruebas forenses de ADN se desarrollaron y comenzaron a aplicarse a la criminología en 1985. Aunque el genoma de todos los humanos es enormemente uniforme, existen pequeñas regiones cromosómicas llamadas minisatélites y microsatélites que varían enormemente entre las personas, pero que son más similares entre los individuos emparentados. Este tipo de análisis es el que se emplea rutinariamente en perfiles de ADN y pruebas de paternidad, y el que probablemente ha servido para pescar al asesino de Eva a partir de la muestra de su hermano.

Pero existe otro tipo de análisis diferente que es mucho más reciente, y que ha podido desarrollarse gracias a iniciativas como el Proyecto Genográfico, lanzado en 2005 por National Geographic y la compañía IBM. Consiste en reunir muestras genéticas de amplias poblaciones humanas y leer las secuencias de dos segmentos concretos, el ADN mitocondrial y el cromosoma Y. El primero se hereda por línea materna y es el ADN rebelde de la célula, el único que no se encuentra en el núcleo sino en las mitocondrias, las centrales energéticas de las células. El segundo se transmite de padre a hijo varón; dado que solo se hereda una copia, su secuencia no se ve alterada por el intercambio de fragmentos entre los pares de cromosomas que se reciben por vías paterna y materna.

En otras palabras: el ADN mitocondrial y el cromosoma Y no varían (o varían poco) dentro de un grupo emparentado, pero sí lo hacen poco a poco en una escala de tiempo histórica, por lo que es posible relacionar secuencias tipo, llamadas haplogrupos, con orígenes étnicos y geográficos concretos. Para ello no solamente fue necesario reunir una extensa colección de muestras, sino además desarrollar herramientas bioinformáticas complejas que permitieran el tratamiento de los datos.

Este tipo de análisis es, supongo, el que ha permitido al Instituto de Ciencias Forenses de Santiago asignar el ADN del sospechoso sin identificar a un haplogrupo originario del Magreb. Y el resto es historia. Así que vaya desde aquí mi felicitación, aunque sea la única, no solo a los magníficos profesionales del Instituto gallego, sino a todos los genetistas de poblaciones, paleoantropólogos moleculares y bioinformáticos que han participado en este progreso científico. Gracias y enhorabuena.

Claro que todo esto tiene un corolario. La semana pasada, un estudio publicado en PeerJ revelaba que cada humano produce, y viaja acompañado por, su propia nube personal de microbios, única e intransferible, compuesta por microorganismos de la piel, la boca y otros orificios corporales. Aunque en principio el hallazgo no sería aplicable a la resolución de un crimen, a no ser que este se produzca dentro de una cámara estéril, el avance ilustra cómo la peculiaridad de que cada uno llevemos puesto nuestro propio reino de microbios –lo que se conoce como microbioma humano– no solo está revolucionando la biología y la medicina, sino que también podría encontrar aplicaciones en la ciencia forense.

Se está avanzando también en otras líneas, como la determinación del fenotipo a partir del genotipo, o los rasgos físicos de una persona conociendo su ADN, y hoy es posible saber en qué región geográfica vivió alguien y qué comía a partir de los isótopos de sus dientes y huesos, algo que se aplicó en la identificación de los restos del rey Ricardo III de Inglaterra.

En resumen, la ciencia avanza en alta velocidad. El problema es que, mientras, la ley viaja en burro. El asesino de Eva podrá recibir lo suyo gracias a que se ha evitado por un par de años el plazo de 20 en el que su crimen habría prescrito. Y no cabe ninguna duda de que dentro de diez años, de veinte y de treinta, la ciencia podrá resolver casos policiales que hoy son callejones sin salida. En países como Estados Unidos, los delitos de asesinato nunca prescriben. Aquí, y a menos que los barandas de turno decidan subirse al tren y hacer algo al respecto, lo más probable y lamentable es que otras muchas Evas quedarán sin recibir justicia.