BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘biología molecular’

Ciencia semanal: comer sin gluten puede ser perjudicial para los no celíacos

Una ronda de las noticias científicas más destacadas de la semana.

Gluten-free, solo para celíacos

Hace tan poco tiempo que aún podemos recordarlo, a los celíacos y otros afectados por trastornos metabólicos les costaba encontrar alimentos adaptados a sus necesidades, o al menos encontrarlos a precios asequibles. Por suerte esto fue cambiando, con la intervención destacada de algunos distribuidores. Hoy muchas tiendas y restaurantes ofrecen opciones para celíacos y detallan la idoneidad de sus productos para otros perfiles de trastornos y alergias.

Imagen de @joefoodie / Flickr / CC.

Imagen de @joefoodie / Flickr / CC.

Pero entonces comenzó a producirse un extraño fenómeno, cuando personas perfectamente sanas empezaron a adoptar la costumbre de evitar el gluten en su dieta en la errónea creencia de que es más sano. Y como no podía ser de otra manera, ciertas marcas aprovechan el tirón para fomentar tramposamente esta idea de forma más o menos velada. Mientras, los nutricionistas científicos se tiran de los pelos tratando de desmontar este mito absurdo y sin fundamento.

Estudios anteriores ya han mostrado que el consumo de alimentos libres de gluten no aporta absolutamente ningún beneficio a los no celíacos. Pero ahora estamos avanzando un paso más con la simple aplicación a este caso de un principio general evidente, y es que la restricción de nutrientes en la dieta cuando no hay necesidad de ello solo puede conducir a una dieta deficitaria.

Un estudio con más de 100.000 pacientes a lo largo de 26 años, elaborado en las facultades de medicina de Columbia y Harvard (EEUU) y publicado esta semana en la revista British Medical Journal, confirma que el consumo de gluten en las personas sin celiaquía no aumenta el riesgo de enfermedad coronaria (como sí hace en los celíacos), pero aporta algo más: la reducción del gluten en la dieta disminuye el consumo de grano entero (integral), que se asocia a beneficios en la salud cardiovascular, por lo que la dieta sin gluten puede aumentar el riesgo coronario en los no celíacos.

Los autores son conscientes de las limitaciones de todo estudio epidemiológico, aunque el suyo es muy amplio y excepcionalmente prolongado en el tiempo. Pero como conclusión, advierten: “no debe fomentarse la promoción de dietas libres de gluten entre personas sin enfermedad celíaca”.

Cassini, en el meollo de Saturno

Continuamos siguiendo la odisea de la sonda Cassini de la NASA en sus últimos meses de vida, mientras orbita entre Saturno y sus anillos antes de la zambullida que la llevará a su fin el próximo septiembre. La NASA ha publicado esta semana un vídeo elaborado con las imágenes de la atmósfera de Saturno tomadas por la sonda durante una hora de su recorrido alrededor del planeta gigante. Los científicos de la misión se han encontrado con la sorpresa de que la brecha entre Saturno y sus anillos está prácticamente limpia de polvo, al contrario de lo que esperaban.

Ataque al centro de mando del cáncer

Lo que han conseguido estos investigadores de la Universidad de Pittsburgh (EEUU) no es una de esas noticias que acaparan titulares, pero es un hito sobresaliente en la aplicación de una nueva tecnología de edición genómica (corrección de genes por un método de corta-pega) llamada CRISPR-Cas9, de la que se esperan grandes beneficios en las próximas décadas.

Los autores del estudio, publicado en Nature Biotechnology, han logrado por primera vez emplear esta herramienta para neutralizar un tipo de genes del cáncer llamados genes de fusión. Estos se forman cuando dos genes previamente separados se unen por un error genético, dando como resultado un gen de fusión que promueve el crecimiento canceroso de la célula. Los investigadores trasplantaron a ratones células cancerosas humanas que contienen un gen de fusión llamado MAN2A1-FER, responsable de cánceres de próstata, hígado, pulmón y ovarios. Luego introdujeron en los ratones un virus modificado artificialmente que contiene CRISPR, específicamente diseñado para cortar el gen de fusión y reemplazarlo por otro que induce la muerte de la célula.

El resultado fue que todos los ratones sobrevivieron durante el período total del estudio, sin metástasis y con una reducción considerable de sus tumores, mientras que todos los animales de control, a los que se les suministró un virus parecido pero ineficaz contra su gen de fusión, sucumbieron al cáncer.

Una ventaja adicional es que la técnica puede ir adaptándose a la aparición de nuevas mutaciones en las células cancerosas. Según el director del estudio, Jian-Hua Luo, es un ataque al “centro de mando” del cáncer. Y aunque aún queda un largo camino por delante hasta que el método sea clínicamente utilizable, sin duda es una brillante promesa en la lucha contra esta enfermedad.

Decir tacos nos hace más fuertes

Uno de esos estudios que no van a cambiar el curso de la historia, pero que tal vez confirma lo que algunos ya sospechaban; y que sobre todo dará un argumento científico a quienes sientan la necesidad de vomitar tacos, insultos e improperios durante un gran esfuerzo físico (desde deportistas a madres pariendo sin epidural), pero que tal vez se cohíban por aquello de guardar las formas: háganlo sin miedo. Si alguien se lo reprocha, cítenles los resultados presentados por el doctor Richard Stephens, de la Universidad de Keele (Reino Unido), en la Conferencia Anual de la Sociedad Británica de Psicología: gritar palabras malsonantes nos hace más fuertes.

Los investigadores compararon el rendimiento de un grupo de deportistas en pruebas de esfuerzo, sin y con tacos, descubriendo que en el segundo caso las marcas mejoraban. Curiosamente, y aunque la hipótesis de los autores era que este efecto se produciría a través del sistema nervioso simpático, como ocurre con la mayor tolerancia al dolor en estos casos, no encontraron signos que confirmaran esta asociación. “Así que aún no conocemos por qué decir tacos tiene estos efectos en la fuerza y la tolerancia al dolor”, dice Stephens. “Todavía tenemos que comprender el poder de las palabrotas”.

Sin un “segundo génesis”, no hay alienígenas

Si les dice algo el nombre del lago Mono, en California, una de dos: o han estado por allí alguna vez, o recuerdan el día en que más cerca estuvimos del “segundo génesis”.

Les explico. A finales de noviembre de 2010, la NASA sacudió el ecosistema científico lanzando un teaser previo a una rueda de prensa en la que iba a “discutirse un hallazgo de astrobiología que impactará la búsqueda de pruebas de vida extraterrestre”. La conferencia, celebrada el 2 de diciembre, solo decepcionó a quienes esperaban la presentación de un alien, algo siempre extremadamente improbable y que el anuncio tampoco insinuaba, salvo para quien no sepa leer. Para los demás, lo revelado allí era un descubrimiento excepcional en la historia de la ciencia: una bacteria diferente a todos los demás organismos de la Tierra conocidos hasta ahora.

El lago Mono, en California. Imagen de Wikipedia.

El lago Mono, en California. Imagen de Wikipedia.

Coincidiendo con la rueda de prensa, los resultados se publicaron en la web de la revista Science bajo un título breve, simple y atrevido: “Una bacteria que puede crecer usando arsénico en lugar de fósforo”. La sinopsis de la trama decía que un equipo de investigadores, dirigidos por la geobióloga Felisa Wolfe-Simon, había encontrado en el lago Mono un microorganismo capaz de emplear arsénico como sustituto del fósforo en su ADN. Lo que para otros seres terrestres es un veneno (su posible papel como elemento traza aún se discute), para aquella bacteria era comida.

Toda la vida en este planeta, desde el virus que infecta a una bacteria hasta la ballena azul, se basa en la misma bioquímica. Uno de sus fundamentos es un material genético (ADN o ARN) formado por tres componentes: una base nitrogenada, un azúcar y un fosfato. Dado que este fue el esquema fundador de la biología terrestre, todos los seres vivos estamos sujetos a él. Encontrar un organismo que empleara un sistema diferente, por ejemplo arseniato en lugar de fosfato, supondría hallar una forma de vida que se originó de modo independiente a la genealogía de la que todos los demás procedemos.

Esto se conoce informalmente como un “segundo génesis”, un segundo evento de aparición de vida (que no tiene por qué ser el segundo cronológicamente). Sobre si la bacteria del lago Mono, llamada GFAJ-1, habría llegado a representar o no un segundo génesis, hay opiniones. Hay quienes piensan que no sería así, ya que la existencia de un ADN modificado habría representado más bien una adaptación extrema muy temprana dentro de una misma línea evolutiva.

Para otros, es irrelevante que el origen químico fuera uno solo: dado que la definición actual de cuándo la no-vida se transforma en vida se basa en la acción de la evolución biológica, existiría la posibilidad de que la diversificación del ADN se hubiera producido antes de este paso crucial, y por lo tanto la vida habría arrancado ya con dos líneas independientes y paralelas.

Pero mereciera o no la calificación de segundo génesis, finalmente el hallazgo se desinfló. Desde el primer momento, muchos científicos recibieron el anuncio con escepticismo por razones teóricas, como el hecho de que el ADN con arsénico en lugar de fósforo daría lugar a un compuesto demasiado inestable para la perpetuación genética (este es solo un caso más de por qué muchas de las llamadas bioquímicas alternativas con las que tanto ha jugado la ciencia ficción son en realidad pura fantasía que hace reír a los bioquímicos). La publicación del estudio confirmó las sospechas: los experimentos no demostraban realmente que el ADN contuviera arsénico. Y como después se demostró, no lo contenía.

La bacteria GFAJ-1 del lago Mono resultó ser simplemente una extremófila más, un bicho capaz de crecer en aguas muy salinas, alcalinas y ricas en arsénico. Tenía una tolerancia fuera de lo común a este elemento, pero no lo empaquetaba en su ADN; se limitaba a acumularlo, construyendo su material genético con el fósforo que reciclaba destruyendo otros componentes celulares en tiempos de escasez. Su única utilidad real fue conseguir el propósito expresado en su nombre, GFAJ, formado por las iniciales de Give Felisa A Job (“dadle un trabajo a Felisa”): aunque el estudio fuera refutado, le sirvió a Wolfe-Simon como trampolín para su carrera.

Bacterias GFAJ-1. Imagen de Wikipedia.

Bacterias GFAJ-1. Imagen de Wikipedia.

Por algún motivo que desconozco, el estudio nunca ha sido retractado, cuando debería haberlo sido. Me alegro de que a Wolfe-Simon le vaya bien, pero desde el principio el suyo fue un caso de ciencia contaminada: no descubrió el GFAJ-1 por casualidad, sino que estaba previamente convencida de la existencia de bacterias basadas en el arsénico, algo que ya había predicado antes en conferencias y que le hizo ganar cierta notoriedad. El siguiente paso era demostrar que tenía razón, fuera como fuese.

Hoy seguimos sin segundo génesis terrestre. Y su ausencia es una razón que a algunos nos aparta de esa idea tan común sobre la abundancia de la vida alienígena. Afirmar que el hecho de que estemos aquí implica que la vida debe de ser algo muy común en el universo es sencillamente una falacia, porque no lo implica en absoluto. Es solo pensamiento perezoso; una idea que cualquiera puede recitar si le ponen en la boca un micrófono de Antena 3 mientras se compra unos pantalones en Zara, pero que si se piensa detenidamente y sobre argumentos científicos, no tiene sustento racional.

Pensémoslo un momento: si creemos que la vida es omnipresente en el universo, esto equivale a suponer que dado un conjunto de condiciones adecuadas para algún tipo de vida, por diferentes que esas condiciones fueran de las nuestras y que esa vida fuera de la nuestra, esta aparecería con una cierta frecuencia apreciable.

Pero la Tierra es habitable desde hace miles de millones de años. Y sin embargo, esa aparición de la vida solo se ha producido una vez, que sepamos hasta ahora. Si suponemos que los procesos naturales han actuado del mismo modo en todo momento (esto se conoce como uniformismo), debería haber surgido vida en otras ocasiones; debería estar surgiendo vida nueva hoy. Y hasta donde sabemos, no es así. Hasta donde sabemos, solo ha ocurrido una vez en 4.500 millones de años.

¿Por qué? Bien, podemos pensar que el uniformismo no es una regla pura, dado que sí han existido procesos excepcionales, como episodios globales de vulcanismo o impactos de grandes asteroides que han cambiado drásticamente las reglas del juego de la vida. Esto se conoce como catastrofismo, y la situación real se acerca más a un uniformismo salpicado con algunas gotas esporádicas de catastrofismo.

Pero si aceptamos que el catastrofismo fue determinante en el comienzo de la vida en la Tierra, la conclusión continúa siendo la misma: si deben darse unas condiciones muy específicas e inusuales, una especie de tormenta bioquímica perfecta, entonces estamos también ante un fenómeno extremadamente raro, que en 4.500 millones de años no ha vuelto a repetirse. De una manera o de otra, llegamos a la conclusión de que la vida es algo muy improbable. Desde el punto de vista teórico, para que la idea popular tenga algún viso de ser otra cosa que seudociencia debería antes refutarse la hipótesis nula (una explicación sencilla aquí).

A lo anterior hay una salvedad, y es la posibilidad de que la “biosfera en la sombra” (un término ya acuñado en la biología) procedente de un segundo génesis fuera eliminada por selección natural debido a su mayor debilidad, o sea eliminada una y otra vez, por muchos génesis que se produzcan sin siquiera enterarnos.

Esta hipótesis no puede descartarse a la ligera, pero tampoco darse por sentada: si en su día la existencia de algo como la bacteria GFAJ-1 no resultaba descabellada, es porque la idea de una biosfera extremófila en la sombra es razonable; una segunda línea evolutiva surgida en un nicho ecológico muy marginal, como el lago Mono, tendría muchas papeletas para prosperar, quizá más que un invasor del primer génesis pasando por un trabajoso proceso de adaptación frente a un competidor especializado. Y sin embargo, hasta ahora el resultado de la búsqueda en los ambientes más extremos de la Tierra ha sido el mismo: nada. Solo parientes nuestros que comparten nuestro único antepasado común.

Si pasamos de la teoría a la práctica, es aún peor. Hasta hoy no tenemos absolutamente ni siquiera un indicio de que exista vida en otros lugares del universo. En la Tierra la vida es omnipresente, y no se esconde. Nos encontramos con pruebas de su presencia a cada paso. Incluso en el rincón más remoto del planeta hay testigos invisibles de su existencia, porque en el rincón más remoto del planeta uno puede encender un GPS o un Iridium y recibir una señal de radio por satélite. Si el universo bullera de vida, bulliría también de señales. Y sin embargo, si algo sabemos es que el cosmos parece un lugar extremadamente silencioso.

Como respuesta a lo anterior, algunos científicos han aportado la hipótesis de que la vida microbiana sea algo frecuente, pero que a lo largo de su evolución exista un cuello de botella complicado de superar en el que casi inevitablemente fracasa, impidiendo el progreso hacia formas de vida superiores; lo llaman el Gran Filtro. Otros investigadores sugieren que tal vez la Tierra haya llegado demasiado pronto a la fiesta, y que la inmensa mayoría de los planetas habitables todavía no existan. Pero también con estas dos hipótesis llegamos a la misma conclusión: que en este momento no hay nadie más ahí fuera.

Pero esto es ciencia, y eso significa que aquello que nos gustaría no necesariamente coincide con lo que es; y debemos atenernos a lo que es, no a lo que nos gustaría. Personalmente, I want to believe; me encantaría que existiera vida en otros lugares y quisiera vivir para verlo. Pero por el momento, aquello del “sí, claro, si nosotros estamos aquí, ¿por qué no va a haber otros?”, mientras alguien rebusca en los colgadores de Zara, no es ciencia, sino lo que en inglés llaman wishful thinking, o pensamiento ilusorio.

Claro que todo esto cambiaría si por fin algún día tuviéramos constancia de ese segundo génesis terrestre. Y aunque seguimos esperando, hay una novedad potencialmente interesante. Un nuevo estudio de la Universidad de Washington, el Instituto de Astrobiología de la NASA y otras instituciones, publicado en la revista PNAS, descubre que en la Tierra existió un episodio de oxigenación frustrado, previo al que después daría lugar a la aparición de la vida compleja.

Hoy sabemos que hace unos 2.300 millones de años la atmósfera terrestre comenzó a llenarse de oxígeno (esto se conoce como Gran Oxidación), gracias al trabajo lento y constante de las cianobacterias fotosintéticas. Los fósiles más antiguos de células eucariotas (la base de los organismos complejos) comienzan a encontrarse en abundancia a partir de unos 1.700 millones de años atrás, aunque aún se discute cuándo surgieron por primera vez. Pero si de algo no hay duda, es de que fue necesaria una oxigenación masiva de la atmósfera para que la carrera de la vida tomara fuerza y se consolidara.

Los investigadores han estudiado rocas de esquisto de entre 2.320 y 2.100 millones de años de edad, la época de la Gran Oxidación, en busca de la huella de la acción del oxígeno sobre los isótopos de selenio. La idea es que la oxidación del selenio actúa como testigo del nivel de oxígeno en la atmósfera presente en aquella época.

Lo que han descubierto es que la historia del oxígeno en la Tierra no fue un “nada, después algo, después mucho”, en palabras del coautor del estudio Roger Buick, sino que al principio hubo una Gran Oxidación frustrada: los niveles de oxígeno subieron para después bajar por motivos desconocidos, antes de volver a remontar para quedarse y permitir así el desarrollo de toda la vida que hoy conocemos.

Este fenómeno, llamado “oxygen overshoot“, ya había sido propuesto antes, pero el nuevo estudio ofrece una imagen clara de un episodio en la historia de la Tierra que fue clave para el desarrollo de la vida. Según Buick, “esta investigación muestra que había suficiente oxígeno en el entorno para permitir la evolución de células complejas, y para convertirse en algo ecológicamente importante, antes de lo que nos enseñan las pruebas fósiles”.

El interés del estudio reside en que crea un escenario propicio para que hubiera surgido una “segunda” biosfera (primera, en orden cronológico) de la que hoy no tenemos constancia, y que tal vez pudo quedar asfixiada para siempre cuando los niveles de oxígeno se desplomaron por causas desconocidas. Pero Buick deja claro: “esto no quiere decir que ocurriera, sino que pudo ocurrir”.

E incluso asumiendo que la propuesta de Buick fuera cierta, en el fondo tampoco estaríamos hablando de un segundo génesis, sino de un primer spin-off frustrado a partir de un único génesis anterior; las bacterias, los primeros habitantes de la Tierra, ya llevaban por aquí cientos de millones de años antes del oxygen overshoot. El estudio podría decirnos algo sobre la evolución de la vida, pero no sobre el origen de la vida a partir de la no-vida, la abiogénesis, ese gran problema pendiente que muchos dan por resuelto, aunque aún no tengamos la menor idea de cómo resolverlo.

Y el autor del artículo de ciencia más comentado de 2016 es… Barack Obama

El Almendro vuelve a casa por Navidad, y los balances del año comienzan a florecer en los medios como… como flores. La compañía Altmetric, que mide la repercusión de los estudios científicos y académicos en internet, ha publicado su Top 100 de 2016. Y la novedad, quizá no la sorpresa, es que el número uno, el artículo más comentado del año, se publicó el 2 de agosto (11 de julio en internet) en la revista The Journal of the American Medical Association (JAMA) y viene firmado por un solo autor, un tal Barack Obama.

Barack Obama. Imagen de Wikipedia.

Barack Obama. Imagen de Wikipedia.

Hasta este momento, el artículo ha aparecido en 315 noticias, 45 entradas de blogs, 8.943 tuits y 201 entradas de Facebook, entre otros medios y redes. A todos ellos hay que añadir uno más, este que están ustedes leyendo: 20 Minutos está en la lista de los medios recogidos por Altmetric. Y seguramente la noticia de que es el artículo de ciencia más comentado del año le dará a su vez un nuevo empujón.

Obviamente el artículo de Obama no es científico, sino político. Se titula United States Health Care Reform: Progress to Date and Next Steps (Reforma sanitaria de EEUU: progreso hasta la fecha y próximos pasos) y analiza lo que valora como un “cambio positivo” en el que ha sido uno de los grandes objetivos de su mandato, recomendando prioridades para el próximo gobierno; que, por entonces, en julio, ni él ni nadie podía imaginar que estaría presidido por un malo de peli mala como Donald Trump.

Pero lo que quiero comentar aquí no es la reforma del sistema sanitario en EEUU; no es el contenido, sino el continente. El artículo de Obama es una típica pieza de análisis y opinión en una revista científica, con su estructura canónica, su declaración de conflictos de intereses, sus 68 referencias bien citadas y enumeradas, su información sobre la identidad, titulación y afiliación del autor (Barack Obama, JD [doctor en leyes], presidente de Estados Unidos, The White House, 1600 Pennsylvania Ave NW, Washington, DC 20500), y su correo electrónico de contacto, que naturalmente no es el suyo propio sino el de prensa de la Casa Blanca.

Y siendo obvio que Obama no se lo ha guisado y comido solito, sino que le ha ayudado un equipo de expertos convenientemente citados en los agradecimientos, a lo que voy con todo esto es, y perdónenme el grito en mayúsculas:

¿IMAGINAN ALGO PARECIDO AQUÍ?

Por lo demás, la lista de los diez estudios y artículos científicos más comentados incluye algunas de las historias más importantes del año en este campo y que también han tenido cabida en este blog, como el descubrimiento de las ondas gravitacionales, la relación entre zika y microcefalia, el posible Planeta Nueve del Sistema Solar, la polémica sobre el azúcar y las grasas, o el nuevo atlas mundial de la contaminación lumínica.

Hay un dato que resulta curioso. La lista que sigue muestra el número de estudios del Top 100 de Altmetric en los que participan instituciones de cada país. He seleccionado los 20 países más potentes en ciencia por número de publicaciones según el ránking de SCImago que ya comenté aquí:

  1. Estados Unidos: 75
  2. China: 5
  3. Reino Unido: 33
  4. Alemania: 14
  5. Japón: 5
  6. Francia: 8
  7. Canadá: 6
  8. Italia: 5
  9. India: 3
  10. España: 4
  11. Australia: 12
  12. Corea del Sur: 2
  13. Rusia: 1
  14. Holanda: 5
  15. Brasil: 4
  16. Suiza: 6
  17. Taiwán: 1
  18. Suecia: 3
  19. Polonia: 4
  20. Turquía: 0

No olvidemos, el Top 100 de Altmetric no dice nada de la calidad de los estudios o de su relevancia para la ciencia, sino solo de cuánto se han comentado (con enlaces directos) en medios online, blogs y redes sociales; es un índice mediático, no científico. Los responsables de este Top 100 son (somos) los periodistas de ciencia, científicos presentes en blogs o redes y el público con interés en el campo.

La conclusión es que la ciencia anglosajona es infinitamente más mediática; su maquinaria de divulgación es la más potente, además de contar con la ventaja de su idioma, lingua franca de la ciencia. Destacan EEUU (primera potencia mundial en ciencia) con 75 estudios, Reino Unido con 33 y Australia con 12, además de Alemania con 14. China, segunda actualmente en número de publicaciones, solo participa en cinco estudios, uno más que España.

Casi todos los países de la lista participan en el estudio de descubrimiento de las ondas gravitacionales publicado en Physical Review Letters, un trabajo monstruo con la colaboración de más de 1.000 científicos de 133 instituciones. España colaboró a través del equipo de la Universitat de les Illes Balears.

Los otros tres estudios con participación española son: el hallazgo de Proxima Centauri b, el exoplaneta posiblemente habitable más cercano, en el sistema de Alfa Centauri, publicado en Nature; la revisión en Science que proponía denominar Antropoceno a la época geológica actual, en la que participaba el geólogo de la Universidad del País Vasco Alejandro Cearreta; y un estudio genético aparecido en Nature Communications que identificaba genes implicados en los rasgos del pelo de la cara y la cabeza en la población latinoamericana, con la participación del equipo del biólogo molecular de la Universidad de Oviedo Carlos López-Otín.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Pero sin duda el trabajo estrella de la ciencia española en este año que termina es el hallazgo de Proxima b, el exoplaneta más cercano a la Tierra jamás descubierto con posibilidades de contener agua líquida en su superficie, a solo 4,2 años luz. La investigación cuenta con la participación del Instituto de Astrofísica de Andalucía, pero además el principal responsable del estudio es catalán, Guillem Anglada-Escudé, de la Universidad Queen Mary de Londres.

Obviamente es más que probable que otros estudios del Top 100 de Altmetric cuenten con la participación de investigadores españoles trabajando en el extranjero; tenemos científicos de primer nivel, pero nos faltan centros de primer nivel que atraigan también a científicos extranjeros de primer nivel. Lo que cuenta a la hora de valorar la potencia científica de un país es la ubicación del centro en el que se ha gestado su trabajo, con independencia de que sus autores se llamen Pérez o Smith.

Milo Aukerman (Descendents), (ex)biotecnólogo vegetal

“Tengo un doctorado en bioquímica. ¿Hay algo que mole menos?”. Él siempre ha cultivado deliberadamente esa imagen de empollón anti-rockstar, bicho raro con gafas y ropa de persona normal. Tanto se ha recreado en su propia personificación del tópico motivador de esta pequeña serie que, en lugar de pisotear la caricatura burlona que le hizo un compañero del instituto, y que fue utilizada para una campaña de las elecciones a delegado de curso (“no seas como Milo, vótame”), la tomó como inspiración para el garabato-mascota que adorna la mayoría de sus discos. A quienes vivieron aquellos años, tal vez llegue a recordarles vagamente al genial Poch. Ya sabrán, y si no ya se lo cuento, que les estoy hablando del doctor

Milo Aukerman

Milo Aukerman con Descendents en un concierto en California en 2014.

Milo Aukerman con Descendents en un concierto en California en 2014.

Las rarezas de Milo Aukerman comienzan por el hecho de que él ni siquiera fundó ni nombró la banda de la que llegaría a convertirse en alma e imagen. Descendents es la criatura de Frank Navetta y Dave Nolte, amigos del colegio de Manhattan Beach (Los Ángeles) que comenzaron a tontear con los instrumentos allá por 1977, el año de la explosión del punk. El grupo fue desde el principio un ir y venir. Nolte se marchaba, llegaban Tony Lombardo y Bill Stevenson, quien a su vez en 1980 traería a su amigo de clase para ocuparse de las voces, un tipo nerdy llamado Milo Aukerman.

Curiosamente Stevenson, el batería del grupo, es el único superviviente de la formación original, mientras que Aukerman, con su look antitético del ídolo punk, se convirtió en la esencia visible de Descendents. Hasta tal punto que, durante sus ausencias, el resto de los miembros cambiaban de marca para transformarse en All. La primera de ellas, cuando Milo dejó la banda para marcharse a estudiar biología a la Universidad de California en San Diego. Aquel hito quedó marcado en el primer LP de Descendents, Milo Goes to College.

Portada de Milo Goes to College (1982).

Portada de Milo Goes to College (1982).

Desde entonces (1982) hasta hoy, o mejor dicho hasta ayer, Descendents ha sido un grupo Guadiana, apareciendo y desapareciendo. En el camino han ido dejando siete álbumes de estudio y otros discos que han ejercido una influencia mucho mayor sobre otras bandas y corrientes de lo que su limitada difusión daría a entender. Descendents entra en esa categoría que algunos llaman grupos de culto. Experimentando con sonidos desde el hardcore punk al pop o el surf, pasando por lo inclasificable, muchos ven en ellos los inventores de estilos como el pop punk y el skate punk, los padres de grupos como The Offspring y Green Day, y en general una influencia clave en el punk californiano.

Para ilustrar sus excentricidades, basta repasar las constantes que han marcado la identidad del grupo a lo largo de su errática carrera: el café, los pedos (sí, han leído bien) y un eterno peterpanismo que dejaron escrito en uno de sus discos, I Don’t Want to Grow Up.

Descendents tocando en 2014 en California. Imagen de Wikipedia.

Descendents tocando en 2014 en California. Imagen de Wikipedia.

La razón de esta carrera sinuosa ha sido la dedicación preferente de Aukerman a lo que él siempre contempló como su verdadero trabajo, la biología; la música era solo un divertimento. Tras terminar su carrera, se enganchó a un doctorado en la universidad donde había estudiado. En 1992 se ganaba los galones de doctor con la tesis Analysis of opaque-2 function in maize, un estudio sobre una mutación espontánea del maíz que origina plantas con mayor contenido en los aminoácidos esenciales triptófano y lisina.

La variedad de maíz opaque-2, descrita por primera vez en 1964, interesó mucho en los años 70 para la alimentación de animales de granja por su alto valor nutritivo, pero no servía para consumo humano por su sabor diferente y sus granos blandos. En 1989, investigadores italianos publicaban la secuencia del gen opaque-2 y descubrían que producía una proteína cuya probable función era la activación de otros genes. Al año siguiente, un nuevo estudio en la revista PNAS describía con detalle la proteína producida por el gen opaque-2 y su función activadora. Uno de los cuatro firmantes del trabajo, todos ellos de la Universidad de California en San Diego, era un tal Milo J. Aukerman.

Como resultado de su trabajo de tesis, Aukerman publicaría otros cuatro estudios más (1991, 1992, 1993a, 1993b) y una revisión (1994) detallando la función de opaque-2 y la naturaleza de la mutación. El maíz opaque-2 después serviría como base a otros investigadores para obtener la variedad llamada Quality Protein Maize, cultivada en varios países del mundo y que ha llevado alimento de alto valor nutritivo a regiones deprimidas.

Con un valioso equipaje de tesis doctoral y siete publicaciones (antes de dedicarse al maíz, ya había publicado un primer estudio en 1989 sobre un mecanismo molecular de la fecundación del erizo de mar), se trasladó a Madison para trabajar como investigador postdoctoral en la Universidad de Wisconsin (y curiosamente, con ello hacía el recorrido contrario a Greg Graffin de Bad Religion). Allí comenzó a analizar los mecanismos moleculares que regulan la floración de la planta Arabidopsis thaliana, el equivalente vegetal de los ratones como modelo de laboratorio. El primer estudio en el que participó, publicado en 1994, identificaba un gen llamado LUMINIDEPENDENS que está implicado en regular el tiempo de floración a través de la sensibilidad a la luz.

Aukerman pretendía hacerse con una plaza de profesor en la Universidad de Wisconsin, pero ciertos amigos suyos empleados de la multinacional DuPont le recomendaron que solicitara un puesto en los laboratorios de la firma dedicados a investigación en biotecnología vegetal. Hacia 2002 o 2003, Aukerman se trasladó a Delaware y comenzó a trabajar en DuPont, estudiando los mecanismos moleculares de la floración y el desarrollo de plantas. En esta etapa ha publicado otros diez estudios, incluyendo una minirrevisión en la revista Cell, una de las más importantes en biología.

Como contribución más relevante, un estudio dirigido por Aukerman y publicado en 2003 fue uno de los primeros en mostrar la regulación de genes temporales (en este caso, de floración) en plantas mediante pequeñas moléculas de ARN llamadas miRNAs (que ya expliqué al hablar de Dexter Holland), y la posibilidad de controlar estos genes mediante versiones artificiales de esos reguladores. Las aplicaciones finales del trabajo de Aukerman se dirigen a la obtención de variedades vegetales mejoradas con rasgos interesantes de cara a la producción, un campo en el que DuPont es uno de los líderes mundiales.

Pero todo eso ha sido hasta este año. Hacia el verano pasado, Aukerman anunciaba que abandonaba la ciencia para volcarse profesionalmente y por entero en Descendents. Las razones son fáciles de imaginar. Según él mismo contaba, los primeros años en DuPont fueron provechosos, con una labor de investigación similar a la que desempeñaba en la universidad, pero sin el engorro de depender de becas y subvenciones (y aunque esto no lo ha dicho, obviamente con un salario incomparablemente más jugoso).

Portada de Hypercaffium Spazzinate (2016).

Portada de Hypercaffium Spazzinate (2016).

Pero la empresa es la empresa. Con el tiempo se vio obligado a seguir líneas que no le interesaban, y el trabajo se volvió monótono. Además, pronto descubrió que nunca ascendería la escalera de los puestos directivos; él lo sabía, y DuPont lo sabía. Finalmente, cuando estaba acariciando la idea de largarse, le despidieron.

Con 53 años, Aukerman comienza por primera vez en su vida una carrera musical con dedicación plena. Perdemos un científico brillante, pero a cambio ganamos Descendents. Y debo confesarles, aunque me esté mal decirlo, que me alegro de ello. Ya tenemos el primer fruto: este año, el grupo ha lanzado con Epitaph Records (el sello fundado por Brett Gurewitz de Bad Religion) su primer disco de estudio en 12 años, Hypercaffium Spazzinate. La portada repite maravillosamente la línea clásica del grupo: caricatura de Milo, esta vez (irónicamente) frente a dos probetas y un matraz Erlenmeyer. Y por cierto, en una de las probetas aparece escrita la fórmula química C8H10N4O2. ¿Adivinan de qué compuesto se trata? Eso es: ¡cafeína!

Dexter Holland (The Offspring), investigador del VIH

Según esa maldita efigie popular y estereotipada, el científico es un tipo/a físicamente mal acabado como un Lada de los 70, incapaz de conjuntar los calcetines y con una inteligencia social tan ínfima como elevado es su genio intelectual. Y que posiblemente cantaría de memoria todas las Lieder de Schubert, pero que no tiene la menor idea de quién era Lou Reed.

Este absurdo tótem ya no solo se perpetúa en películas y series de televisión, sino que llega hasta Clan, el canal infantil de TVE: un personaje llamado Doctor Einstein, por otra parte muy simpático, deja clara la elección a los niños desde que son pequeñitos: o eres guay, o eres científico.

Nombres como el de Brian May, cuyo caso conté ayer, suelen adornar listas de curiosidades sobre celebrities o estrellas del rock. Por algún motivo, parece que al presentar estos casos como rarezas se declara explícitamente que el rock y el trabajo intelectual de la ciencia se contemplan como mundos incapaces de encontrarse.

Todo lo cual, como sabe cualquiera que haya habitado el ecosistema de la investigación, es un mito sin ningún fundamento en la realidad. De hecho, incluso podría decirse que entre los científicos existe una especial inclinación a hacer ruido con instrumentos; es decir, a los géneros musicales más decibélicos, como el heavy o el punk en todas sus formas y variaciones. Aunque por supuesto, no todos convierten ese ruido en algo que merezca la pena escuchar, y solo a unos pocos les lleva a alcanzar una fama impensable desde el laboratorio.

Y en concreto, biología y punk parecen entrelazarse misteriosamente en un buen número de casos; pero sobre todo en un trío de ases, los tres californianos de nacimiento o de adopción, y cuyo primer representante traigo hoy:

Dexter Holland (The Offspring)

Dexter Holland y The Offspring tocando en 2009 en Budapest (Hungría). Imagen de Wikipedia.

Dexter Holland con The Offspring tocando en 2009 en Budapest (Hungría). Imagen de Wikipedia.

Bryan Keith Holland sí que parece todo un estereotipo, pero de su ambiente de crianza: el condado californiano de Orange (O. C.), hogar de los descapotables, el surf y las mansiones de estilo hispano con criados hispanos. Pero también de los chicos rebeldes atizando una batería y aserrando las cuerdas de una guitarra en el garaje de sus padres. Con su pelo rubio pollito, sus ojos azules y su porte un poco a lo Biff Tannen de Regreso al futuro, Dexter Holland (su nombre de guerra) pasaría por el típico quarterback de High School, de no ser porque tiene una buena cabeza sobre los hombros: fue el mejor de su clase, destacando sobre todo en matemáticas.

El mismo año de su graduación en el instituto, 1984, Holland cofundó Manic Subsidal, un grupo que dos años después se transformaría en The Offspring. El nombre ya revelaba las inclinaciones de Holland: offspring” significa “progenie” y es un término muy utilizado en biología, sobre todo en genética.

La banda ascendió al éxito internacional a mediados de los 90, llegando a convertirse en uno de los grupos punk más populares de todos los tiempos. Otra cosa sería discutir si pueden calificarse como “punk”. Sus raíces y sus influencias originales lo son. Algunos tal vez los etiquetarían como pop punk o skate punk, y los más estrictos les despegarían incluso estas etiquetas. En mi sola opinión, y purismos aparte, la música y las letras de The Offspring llevan impreso el sello característico del punk californiano, que no es el neoyorquino ni el londinense; O. C. imprime carácter.

Probablemente porque el grupo tardó un decenio en ganarse la fama, a Holland le dio tiempo a terminar la carrera de biología en la Universidad del Sur de California y apuntarse a un doctorado en biología molecular. Pero hasta ahí; en 1994 llegó Smash, un disco muy apropiadamente titulado: fue un smash, un bombazo, y smasheó la carrera científica de Holland. Como a Brian May, el tirón del éxito comercial le apartó de la ciencia.

Y como May, ha regresado recientemente a ella cuando puede permitírselo: con unos 40 millones de discos vendidos, su propia marca de salsa picante (Gringo Bandito) y tres aviones, incluyendo un antiguo caza soviético y un jet privado con el símbolo anarquista en el plano de cola. Ya con la vida más que resuelta, Holland trabaja ahora en su tesis doctoral en el Laboratorio de Oncología Viral e Investigación Proteómica de la Escuela de Medicina Keck de la Universidad del Sur de California, bajo la dirección de la profesora de Patología Suraiya Rasheed.

Ya sea debido al síndrome de popularidad o por otra causa, es difícil saber cuál es el tema de la tesis doctoral de Holland: no hay ninguna información disponible (o al menos yo no he podido encontrarla) sobre su línea de investigación, con la sola excepción del único fruto de ella aparecido hasta la fecha: su primer estudio, publicado en 2013 en la revista PLOS One, tuiteado por el propio Holland, y que también está disponible en la web oficial de Offspring aquí.

Resumiendo en un titular, el estudio propone lo que podría ser un mecanismo utilizado por el VIH, el virus del sida, para combatir el sistema inmunitario de los humanos. Pero atención a la cursiva: de momento es solo una especulación.

Para explicarlo a todo fan de los Offspring ajeno a la biología, empiezo por el principio, el ADN de la célula. Como suelo decir, los genes no producen el pelo rubio pollito de Holland o esa nariz del abuelo; los genes solo producen proteínas, los actores funcionales mayoritarios de la célula. Y son las funciones de esas proteínas y sus interacciones en redes muy complejas las que llevan al rubio pollito o a la nariz.

Para que este proceso tenga lugar, la información del ADN, que es el archivo máster, debe antes reproducirse en una copia de trabajo, del mismo modo que se saca de la caja fuerte un manuscrito muy valioso para fotografiarlo o escanearlo, y poder trabajar así sobre un duplicado sin dañar el original. En la célula, esa copia desechable de un gen se llama ARN mensajero. El ARN lleva exactamente la misma información que su ADN original, pero desde el punto de vista químico es ligeramente distinto. Posteriormente, una maquinaria celular llamada ribosoma se encarga de leer ese ARN y traducirlo para crear una proteína.

En los años 90 se descubrió que muchos organismos tienen un mecanismo de regulación de la traducción del ARN mensajero a través de pequeñas moléculas también de ARN. Estas son complementarias a una parte del mensajero y se unen a él, bloqueando la traducción y por tanto impidiendo la creación de su proteína correspondiente. Podemos pensar en una memoria USB con su enchufe de conexión; cuando la tapa está puesta, la información que contiene el pincho es inaccesible. Los llamados microARN, o miRNA, actúan como esa tapa.

Los miRNA participan en infinidad de procesos de regulación de la actividad de los genes en la célula, y los fallos en estos sistemas de control se han relacionado con multitud de enfermedades, desde la sordera al cáncer. En la pasada década comenzó a descubrirse que algunos virus también tienen miRNAs, y que tanto estos como los de la propia célula participan en el proceso de infección, aunque cómo lo hacen y cuál es el resultado de ello (a quién beneficia, si al virus o a quien lo sufre) todavía es materia de investigación.

En el caso del VIH, hace pocos años se descubrió que las células infectadas por el virus tienen alteradas algunas de sus proteínas que se regulan por miRNAs, que ciertos miRNAs de la célula podrían actuar sobre las funciones del virus, y que el genoma del VIH también podría contener sus propios miRNAs, que a su vez podrían actuar sobre el propio virus o sobre la célula. De todo esto se desprende que probablemente los miRNAs de la célula y del virus desempeñan papeles importantes durante la infección, pero aún no se sabe cuáles son esos papeles.

Y así llegamos al estudio de Holland. El trabajo es una investigación in silico, o en ordenador. Es decir, que el cantante de Offspring no se ha calzado ninguna bata de laboratorio, sino que ha empleado herramientas informáticas para analizar la secuencia del genoma del VIH, compararla con la de la célula y sacar conclusiones al respecto.

Lo que el trabajo propone es que el genoma del VIH contiene ocho posibles miRNAs que tienen dos peculiaridades: por un lado, son muy similares a miRNAs de la célula a la que infecta. Y por otra parte, están insertados en lo que se llama secuencias codificantes del virus, es decir, en partes del genoma que se utilizan para producir proteínas.

¿Qué significado tiene esto? En cuatro palabras: aún no se sabe. Todavía no existe la seguridad de que esos ocho fragmentos funcionen realmente como miRNAs, ni mucho menos se conoce para qué sirven. Los estudios in silico permiten hacer predicciones, pero para comprobarlas hay que recurrir a la experimentación.

En cuanto a las predicciones, y dado que los miRNAs del VIH son parecidos a otros de la célula, la hipótesis es que podrían servir al virus para inutilizar algunas defensas celulares; actuarían como infiltrados, ladrones con uniforme de policía. El ordenador predice que esos miRNAs virales serían capaces de bloquear la producción de algunas proteínas celulares que de hecho sí aparecen anuladas en las células infectadas por el VIH.

El hecho de que los miRNAs del virus estén incrustados en partes de sus genes que son críticas para la infección sugiere que posiblemente el genoma viral ha evolucionado a lo largo de millones de años para aprender a disfrazar sus armas de ataque con piezas que la célula interpreta como propias y que consiguen inutilizar su defensa: si hay más ladrones disfrazados de policías que polis auténticos, vencen los malos.

En resumen, el trabajo es bonito, pero muy especulativo: hay más preguntas que respuestas. Es un buen comienzo para una tesis, pero solo un comienzo. Para confirmar la importancia de esos posibles miRNAs virales, habría que comprobar cómo actúan en células infectadas por el VIH. En una entrevista, Holland dijo que su pretensión es “rajarle las ruedas al sida”, y que el trabajo es prometedor. Y ciertamente lo es: You’re gonna go far, kid; pero eso sí, hay que ponerse a ello.

El virus asturiano de Lloviu se escapa de la correa

Sabrán, y si no ya se lo cuento yo, que en este blog sigo de cerca todas las (muy escasas) novedades relativas al virus de Lloviu, también llamado simplemente lloviu o LLOV, un primo carnal del ébola presentado en sociedad en 2011.

La historia del virus se remonta a unos años antes: en 2002, investigadores de la Asociación Española para la Conservación y el Estudio de los Murciélagos (Secemu) descubren miles de murciélagos muertos en varias cuevas de España, Portugal y Francia, un extraño suceso del que informan a comienzos del año siguiente en la revista medioambiental Quercus. Al sospecharse la presencia de un virus, el Ministerio de Medio Ambiente pone el asunto en manos del laboratorio de referencia, el Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII), que junto con la Universidad Complutense de Madrid analiza cadáveres de los murciélagos recogidos en la cueva asturiana de Lloviu.

Un murciélago de cueva 'Miniopterus schreibersii', especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Un murciélago de cueva ‘Miniopterus schreibersii’, especie en la que se descubrió el virus de Lloviu. Imagen de Wikipedia.

Los análisis de rabia son negativos. Pero cuando en 2005 se publica la presencia de virus del Ébola en murciélagos, los investigadores del ISCIII reanalizan los restos de los animales, y ¡bum!, allí aparece una secuencia genética muy similar al temible patógeno africano.

Varios años después, aún nadie ha visto el LLOV ni lo tiene en su poder. El virus ha resistido hasta ahora todos los intentos de cultivarlo extrayéndolo de los cadáveres de murciélagos. Como un criminal que huye del escenario dejando su ADN, lo único que se tiene del lloviu es su secuencia genética. Las muestras originales prácticamente se han agotado, aunque un nuevo proyecto de investigación pretende localizarlo de nuevo en su fuente original.

¿Por qué interesa tanto el lloviu? Para empezar, y para un biólogo no virólogo como es un servidor, encontrar un primo perdido en Europa de una familia de organismos que hasta entonces solo existía en África y Asia es como si de repente se localizara una población de canguros en Asturias. Por supuesto que hay diferencias clave cuando se trata de un parásito que normalmente vive agazapado en un reservorio (el animal al que infecta sin provocarle una enfermedad grave). Pero aun así, desde el punto de vista biológico es una rareza fascinante.

Pero dejando de lado la curiosidad científica, lo que sí nos importa a todos es la posibilidad de tener cerca de casa un virus hermano del ébola y por tanto potencialmente peligroso. Y recordemos que probablemente no solo está presente en la cueva de Lloviu. Aunque se le bautizó con este nombre porque de allí procedían las muestras estudiadas, siguiendo las reglas de la virología, el hecho de que la mortandad de los murciélagos ocurriera simultáneamente en varias cuevas de tres países sugiere que posiblemente la causa fuera la misma.

Pero por el momento, ni siquiera se sabe si fue realmente el lloviu lo que mató a los murciélagos. Ni mucho menos cuál podría ser su efecto en nosotros. A falta de disponer del bicho vivo y coleando (cuando se trata de virus, las palabras “bicho” y “vivo” deben tomarse como aproximaciones razonables), lo único que los científicos pueden hacer es fabricar partes del lloviu a partir de su secuencia genética y estudiar qué cosas hacen a las células en cultivo, comparándolas con las piezas similares de otros virus como el ébola.

Y hasta ahora, ese parecido es total. Todo indica que el lloviu sería capaz de infectar células humanas y de monos, y que provocaría un bloqueo inmunitario similar al que ocasiona el ébola. Pero recordemos que el ébola, letal para nosotros, es inofensivo para los murciélagos. Del lloviu se supone que mataría a estos últimos y se supone que no sería grave para nosotros, dado que no existe ningún caso en España, Portugal o Francia de nadie que haya aparecido en un hospital con fiebre hemorrágica después de haber visitado una cueva. Pero por el momento, son solo especulaciones sin confirmar.

Esta semana se ha publicado un nuevo indicio sobre el lloviu, y vuelve a presentar un nuevo parecido razonable entre este virus y el ébola. Entre los mecanismos de defensa que poseen las células contra ciertos virus, existe uno muy peculiar. Cuando estos se multiplican dentro de la célula y la abandonan en busca de nuevos objetivos, hay una pieza en la superficie celular que trata de impedírselo, clavándose en la cubierta del virus e impidiéndole que se marche, como la correa de un perro evita que se aleje del dueño.

Debido a esta función, la proteína recibe en inglés el nombre de tetherin, de tether, que significa “atar”. Las células producen esta “atadurina” como parte de una reacción antiviral disparada por los interferones, moléculas que forman parte de la primera línea de defensa del organismo contra los virus. Pero a su vez, los invasores han inventado mecanismos para esquivar este contraataque: virus como el VIH y el propio ébola consiguen zafarse de la correa, aunque en el caso del segundo aún no se conoce en detalle cómo logra librarse de estas ataduras.

Investigadores del Centro de Primates de Alemania han revelado que la defensa del ébola contra la tetherina depende de una pieza concreta de una proteína del virus llamada GP, que forma parte de la maquinaria precisa para invadir la célula. Aún no se sabe exactamente cómo esta pieza, llamada GP1, actúa para librar al virus de las ataduras. Pero sobre todo, los científicos han descubierto algo más importante: cuando sustituyen la GP del ébola por la del lloviu, actúa de la misma manera. Es decir, y según palabras de los investigadores en el estudio publicado ahora en la revista Journal of Virology, “la tetherina no parece presentar una defensa contra la propagación del lloviu en humanos”.

¿Representa esto un nuevo punto a favor de la posibilidad de que el lloviu sea peligroso para los humanos? En realidad, no. Significa que el lloviu continúa pareciéndose cada vez más al ébola. Pero el comportamiento de los filovirus, la familia del ébola y el lloviu, es caprichoso (una manera de decir que aún no se comprende lo suficientemente bien): de las cinco especies conocidas de ébola, una de ellas, el reston, es inofensiva para nosotros, mientras que es mortal para los monos. En cambio, los dos tipos de virus de marburgo (también de la misma familia), marburgo y ravn, más distintos del ébola que el reston, son fatales tanto para los monos como para nosotros. El raro virus asturiano continúa siendo un gran interrogante que conviene seguir de cerca.

150 años de H. G. Wells, biólogo y profeta de la biología

Dicen que a H. G. Wells, que hoy cumpliría 150 años, en realidad no le interesaba demasiado la tecnología como tema principal de sus novelas; muchos autores de ciencia ficción suelen aclarar que les interesa más el impacto de la tecnología en la sociedad. Pese a ello, en su ejercicio profético, Wells tuvo algunos aciertos notables; probablemente el mayor de ellos fue la bomba atómica, como ya conté aquí. En cuanto a sus ensayos de futurología, repartió tiros con puntería dispar.

H. G. Wells en torno a 1922. Imagen de Wikipedia.

H. G. Wells en torno a 1922. Imagen de Wikipedia.

Sin embargo, hay un aspecto menos citado: Wells era biólogo. Y eso le diferencia (junto con Asimov) de otros autores de ciencia-ficción con formación científica o tecnológica que suelen provenir de los campos de la física, la ingeniería o la computación (véase el ejemplo de B. V. Larson que traje aquí ayer).

Wells fue además un biólogo educado en una época en la que sumarse a la teoría elaborada por aquel Charles Darwin aún tenía algo de apuesta arriesgada. Fue alumno de Thomas Henry Huxley, conocido como el Bulldog de Darwin por su fiera defensa de las tesis darwinistas. Esta formación evolucionista caló en el joven aspirante a escritor, manifestándose después en su obra: los marcianos de La guerra de los mundos mueren por selección natural, incapaces de adaptarse al medio hostil terrestre que los elimina con sus infecciones. La hipotética biología de Marte fue un interés constante para Wells, que siguió reflexionando y escribiendo sobre ello hasta varios años después de la publicación de su invasión marciana.

Pero antes de La guerra de los mundos y después de su primera novela, La máquina del tiempo, Wells escribió un segundo “scientific romance“, como por entonces se conocía lo que después se llamaría ciencia-ficción. En La isla del Doctor Moreau (1896), el autor británico relataba la historia de un fisiólogo exiliado en una isla y dedicado a la creación de seres híbridos entre humanos y animales mediante vivisección, la cirugía experimental en organismos vivos.

Aunque hoy se ha convertido en otro de los clásicos inmortales de Wells, en su día la novela no tuvo buena acogida, siendo calificada de indecente y morbosa. Según me cuenta el profesor emérito de la Universidad Kingston de Londres Peter Beck, autor del recién publicado libro The War of the Worlds: From H. G. Wells to Orson Welles, Jeff Wayne, Steven Spielberg and Beyond (Bloomsbury Publishing, 2016), “muchos críticos pensaron que nunca debió publicarse por su temática truculenta”. El propio Wells la calificó como “un ejercicio de blasfemia de juventud”.

Según Beck, temiendo caer en desgracia ante la crítica, Wells cambió de rumbo en su siguiente novela, La guerra de los mundos, que describió como “una gran historia científica semejante a La máquina del tiempo“. “Fue una manera de enderezar su carrera y su reputación, y sobre todo de mantener sus finanzas a flote; temía fracasar como escritor y tener que regresar al periodismo”, dice Beck.

Cartel de la adaptación al cine de 'La isla del Dr. Moreau' realizada en 1977.

Cartel de la adaptación al cine de ‘La isla del Dr. Moreau’ realizada en 1977.

Es evidente que hoy La isla del Doctor Moreau es casi un cuento infantil en comparación con las temáticas exploradas ahora por el terror y la ciencia-ficción. Lo cual nos revela una conclusión: si resultaba repugnante en su día, es porque se adelantó a su época. Wells no fue el primer autor que escribió sobre viajes en el tiempo o sobre alienígenas. En cambio, difícilmente encontraremos muchas referencias anteriores (Frankenstein y poco más) sobre lo que el futuro de la biología podría deparar. Y naturalmente, por entonces se consideraba algo demasiado escabroso.

En tiempos de Wells, el debate en torno a la experimentación biológica se centraba en la vivisección, un término hoy obsoleto que no se emplea en el ámbito científico. Pero hasta llegar aquí, lo cierto es que en épocas pasadas la cirugía agresiva en seres vivos y sin anestesia era práctica común, y siguió siéndolo después de Wells, incluso en humanos. El caso más dramático fue la infame Unidad 731, la división del ejército japonés que durante la Segunda Guerra Mundial creó una auténtica Casa del Dolor (en terminología de Wells) donde se experimentó brutalmente y se asesinó con enorme sufrimiento hasta a 250.000 personas, incluyendo niños y bebés. A diferencia de los campos nazis, la Unidad 731 estaba específicamente dedicada por entero a la experimentación.

El Dr. Moreau explicaba a su horrorizado huésped, el también científico Prendick, cómo había dedicado su vida al estudio de la “plasticidad” de los seres vivos, creando lo que el visitante describía como “animales humanizados” a través de la vivisección y el trasplante. “Las criaturas que usted ha visto son animales tallados y forjados en nuevas formas”, decía Moreau.

En lo que respecta a lo estrictamente científico, Wells fue visionario al entrever fronteras de la biología más allá de los objetivos de la experimentación de entonces. En el contexto científico de la época, Darwin había escrito sobre “variaciones” cuyo sustrato físico aún no se conocía. Las leyes de Mendel sobre la herencia, aunque publicadas en 1866, pasaron prácticamente inadvertidas hasta que fueron redescubiertas por la ciencia oficial al borde del cambio de siglo. La palabra “gen” no se acuñaría hasta 1909, y hasta casi mitad del siglo pasado no se confirmaría que el ADN era la sede de la información genética.

Sin embargo, Wells logró atisbar el futuro de la creación de los animales humanizados tal como hoy se entienden; no los monstruos de Moreau, sino ratones que contienen genes o tejidos humanos y que han sido cruciales en el avance de la medicina regenerativa y de los tratamientos contra el cáncer o las enfermedades infecciosas.

Incluso aún sin conocimientos de genética, Wells tuvo una intuición brillante al sugerir que los rasgos fenotípicos de los animales modificados por Moreau no se transmitían a la descendencia; hasta el propio Darwin cayó en la confusión de creer que ciertos caracteres adquiridos podían heredarse (fue su errada teoría de la pangénesis, de la que ya hablé aquí).

Pero al mismo tiempo, Wells intuyó correctamente que estos caracteres adquiridos sí podían modificar otros rasgos fenotípicos; esta es hoy la idea central de la epigenética (cuyas variaciones en realidad sí pueden heredarse, pero esa es otra historia). Y la plasticidad fenotípica, la variación de los rasgos según un fondo genético esté expuesto a un entorno o a otro diferente, es también una noción muy actual de la biología.

Claro que los textos sobre la obra de Wells no suelen centrarse en este tipo de cosas, sino en lo que realmente quiso decir con todo ello. ¿Los peligros de la ciencia desbocada? ¿La monstruosa naturaleza oculta en la condición humana? ¿O en la ambición de los científicos sin corazón? Las interpretaciones son libres. Pero deberían serlo un poco menos cuando el propio autor explicó de qué iba su libro: un año antes de la publicación de la novela (por tanto, se supone que mientras trabajaba en ella), Wells escribió un ensayo titulado The Limits of Individual Plasticity (1895). Curiosamente, algunos párrafos del artículo aparecerían replicados literalmente en la novela.

En aquel ensayo, Wells advertía del horror que supondría el uso de la vivisección para crear monstruos. Pero no se quedaba ahí; el ensayo concluye así:

Hemos dicho lo suficiente para desarrollar esta curiosa proposición. Puede ser que los límites fijos de la estructura y la capacidad psíquica sean más estrechos de lo que aquí se supone. Pero mientras exista la posibilidad, este tratamiento artístico de las cosas vivas, este modelado del individuo común hacia lo bello o lo grotesco, ciertamente parece tan creíble hoy como para merecer un lugar en nuestras mentes entre las cosas que algún día podrían ser.

Es decir, que Wells reconocía el potencial de aquella línea de experimentación para crear también “the beautiful“. Claro que esto no está presente en La isla del Dr. Moreau. Pero ¿quién habría comprado una novela sobre un doctor dedicado a crear lo “beautiful“? Pensemos en el caso de Aldous Huxley: su novela distópica Un mundo feliz (1932) es inmensamente popular; en cambio, lo es mucho menos La isla (1962), la contrapartida utópica que escribió al final de su carrera.

En su intento de provocar, la “blasfemia de juventud” de Wells se pasó de la raya, pero logró mantener la suficiente atención sobre su trabajo como para que su posterior invasión marciana fuera ampliamente leída. Al fin y al cabo, como dice Beck, Wells simplemente quería vivir de lo que escribía. Y parece claro que los lectores sentimos más atracción por el morbo de la distopía que por la hermosura de la utopía. Será nuestra monstruosa naturaleza.

PD. Si alguno de ustedes tiene la suerte de dejarse caer estos días por Woking, la localidad inglesa donde Wells residió durante una parte de su vida, tendrá la oportunidad de disfrutar de un buen puñado de actividades de conmemoración, incluyendo el descubrimiento de una nueva estatua de Wells. Más información en @wellsinwoking y en wellsinwoking.info.

Lo siento, elefantes, tenéis que cambiar de nombre

No, no es que a partir de ahora vayamos a tener que llamarlos slon, como se nombran en varias lenguas eslavas, ni tembo o ndovu, como les dicen en swahili (por desgracia, mi swahili aún no llega para saber el motivo de la diferencia entre ambos nombres). Ni que tengamos que inventar una nueva palabra como megatrompero, por poner algo. La ciencia no se mete en el lenguaje común, sino solo en la denominación científica. Y aquí sí: si alguno de ustedes ha conocido al elefante africano de toda la vida como Loxodonta africana, vaya preparándose. Porque este nombre ya no sirve; hay que buscarle otro nuevo.

Recreación del 'Paleoloxodon antiquus'. Imagen de Wikipedia.

Recreación del ‘Paleoloxodon antiquus’. Imagen de Wikipedia.

Esta es la historia. Desde que se inventó la secuenciación de ADN, los taxónomos –los biólogos encargados de clasificar los seres vivos en categorías como órdenes, familias o géneros– pudieron comenzar a construir sus clasificaciones según criterios evolutivos. Hasta entonces, las especies se organizaban sobre todo según criterios morfológicos, de semejanza. Pero en ciertos casos hay rasgos que se parecen mucho en animales que realmente no tienen ningún parentesco cercano entre sí. Parece más lógico utilizar el grado de semejanza en sus secuencias de ADN, porque este criterio retrata mucho más fielmente cuán lejano o cercano es su antecesor común, y por tanto quiénes son hermanos, primos, parientes lejanos o muy, muy lejanos, como nosotros y las bacterias.

Claro que no todos los taxónomos se sumaron con entusiasmo al nuevo sistema. Un curioso ejemplo fue Vladimir Nabokov, más conocido como el autor de Lolita; pero como ya conté aquí, también un apasionado entomólogo especializado en mariposas. Con el advenimiento de las técnicas de ADN a comienzos de los años 70, Nabokov renegó de la posibilidad de utilizar este nuevo sistema para clasificar las mariposas, aferrándose a sus años de entrenamiento mirando genitales bajo el microscopio.

Pero la resistencia de Nabokov era inútil: el genoma de los seres vivos nos revela dónde encajan realmente en la complicada trama evolutiva de la naturaleza. El problema es que, a veces, llevando esta metodología al extremo podemos encontrar que llegamos a espinosos callejones sin salida. Un ejemplo curioso lo comentó hace unos años la bióloga evolutiva y escritora Carol Kaesuk Yoon, y es el caso de los peces.

La idea simplificada es esta: si una madre A tiene tres hijas B, C y D, y B y C llevan el apellido de A, no hay manera de justificar que D no lleve el mismo apellido. Aplicado a la taxonomía evolutiva, si de una línea se deriva un grupo, más tarde un segundo y después un tercero, y los dos primeros se clasifican en un taxón (categoría) con una denominación concreta, el tercero también debe integrarse ahí, dado que de hecho los representantes actuales del segundo y el tercero están hoy evolutivamente más próximos entre sí que los del primero y el segundo (la separación evolutiva de estas dos ramas es más antigua).

Esta idea es la que hoy clasifica como dinosaurios a las aves, y esto resulta muy aceptable. Pero cuando lo aplicamos a los peces, tenemos un problema. Si, como señalaba Kaesuk Yoon, la línea ancestral de los peces se ramificó para originar primero el linaje de los peces actuales (A), después el de los peces pulmonados (B), y por último el que después daría lugar a los mamíferos (C), resulta que B y C tienen que compartir una categoría taxonómica de la que A esté ausente. Pero la cosa es que A y B son peces. Lo que implica que nosotros también debemos serlo; o los peces pulmonados no son peces, o los humanos también somos peces. O nos cargamos los peces e inventamos otro nombre.

¿La solución? No teman, en este caso hay truco: en realidad, “peces” no es un taxón biológico, sino un nombre común. Y ya hemos dicho que la ciencia no entra en los nombres comunes. Pero recuérdenlo la próxima vez que hablen de ellos a la ligera como si nosotros no formáramos parte de su estirpe.

En cambio, el caso de los elefantes que traigo hoy sí es peliagudo. Esta semana se ha celebrado en Oxford el 7º Simposio Internacional de Arqueología Biomolecular. Y según informa Nature, en él se ha presentado el genoma del Paleoloxodon antiquus, un enorme elefante que vivió en Europa en el Pleistoceno y cuyos restos más recientes, de hace unos 70.000 años, se hallaron en Soria.

Hasta ahora, los elefantes vivos se clasificaban en tres especies. Conocemos el asiático (Elephas maximus) y el africano (Loxodonta africana). Pero en 2010 el análisis genético dejó claro que el elefante africano de bosque, que vive en las selvas del interior del continente y hasta entonces se tenía por una subespecie del de sabana (Loxodonta africana cyclotis), no era tal, sino que cumplía los criterios para clasificarse como una especie separada, Loxodonta cyclotis. Y por cierto, aprovecho la ocasión para recomendarles un magnífico libro sobre el elefante africano de bosque: Los silencios de África, de Peter Matthiessen.

Así, estaban dos primos cercanos, los africanos L. africana y L. cyclotis, y un pariente más lejano, el asiático E. maximus. Hasta que ha llegado el genoma del Paleoloxodon antiquus. Por el estudio de los fósiles (según los criterios morfológicos a los que se aferraba Nabokov), se suponía que esta era una rama más cercana al elefante asiático.

Nada de eso: el estudio genético revela que aquel monstruo de cuatro metros de altura estaba más estrechamente emparentado con el elefante africano de bosque que con ninguna otra especie actual. Incluso hoy, los cyclotis están genéticamente más próximos al elefante europeo del Pleistoceno que a sus parientes de la sabana.

Lo cual implica que el género Loxodonta, tal como hoy lo conocemos, ya no sirve. Ahora, los taxónomos tendrán que volver a la pizarra para asignar nuevos nombres. Y sí, para los que tengan hijos en la edad escolar adecuada para estudiar estas cosas, sepan que también habrá que cambiar los libros de texto. Es lo que tiene la ciencia, que avanza…

Drácula, Poe, el Kama Sutra y OK Go sobrevivirán al fin del mundo

No es que la música de OK Go sea de mi más especial predilección (como ya he manifestado aquí, mis preferencias suelen ir por otros sonidos), pero admiro lo que hacen estos cuatro tipos de Chicago. Adoro a la gente que camina en sentido contrario a los demás, a quienes se toman demasiadas molestias para algo que realmente no lo requiere, y a los que se enfrascan en algo anteponiendo la pasión al plan de negocio. Es decir, a quienes violan las tres leyes fundamentales del universo: la ley de la inercia, la ley del mínimo esfuerzo y la ley de la conservación de lo que sea.

Captura del vídeo de OK Go. Imagen de YouTube.

Captura del vídeo de OK Go. Imagen de YouTube.

Para quien aún no los conozca, explico que lo más distintivo de OK Go son sus vídeos. Entre tanta saturación de efectos digitales y realidad virtual, ellos se diferencian por organizar unas complejísimas coreografías reales, increíblemente sincronizadas, que a menudo se ruedan en un solo plano secuencia y que además en muchos casos juegan con la ciencia aplicada. Si les interesa descubrirlos, basta una simple búsqueda en YouTube. Pero hay un motivo para que hoy traiga aquí uno de sus clips, el de This Too Shall Pass.

Para este tema, organizaron un montaje al estilo de lo que en EEUU llaman una máquina de Rube Goldberg. Los que pasamos de los 40 tenemos aquí un equivalente cultural propio, los Grandes Inventos del TBO, cuyo principal artífice fue el dibujante catalán Ramón Sabatés.

Tanto Goldberg como Sabatés presentaban a un ficticio profesor (Lucifer Gorgonzola Butts en la versión americana, Franz de Copenhague en la española) que diseñaba unas complicadísimas máquinas cuyo resultado era una tarea muy tonta, fácilmente accesible por medios infinitamente más simples; por ejemplo, limpiar la boca con la servilleta. En el caso del vídeo de OK Go, el resultado final de su máquina es disparar un chorro de pintura a cada uno de los integrantes de la banda.

El motivo por el que hoy lo traigo aquí es que este clip de OK Go es el primer vídeo jamás codificado en forma de ADN. Ya he explicado aquí y en otros medios en qué consiste la codificación de archivos digitales en material genético: se diseña un sistema de conversión del código binario (unos y ceros) a las cuatro bases del ADN (A, T, G y C), se traduce el archivo deseado y se sintetiza una cadena de ADN con esa secuencia.

Y también he explicado por qué esta línea de investigación es interesante: los soportes digitales caducan rápidamente, bien porque se estropean, o bien porque aparecen otros formatos y soportes nuevos que dejan obsoletos a los antiguos. En cuanto a su conservación física, el ADN puede durar cientos de años, miles de años, incluso millones de años, según el sistema de almacenamiento elegido. Y en cuanto a su vigencia tecnológica, si de algo no cabe absolutamente ninguna duda es de que siempre vamos a seguir necesitando dispositivos de lectura de ADN. Las máquinas cambiarán, pero el ADN continuará siendo el mismo por los siglos de los siglos.

Entre los grupos de investigación que trabajan en esta línea se encuentra un equipo de Microsoft Research y la Universidad de Washington (EEUU). El pasado abril, los investigadores presentaron en un congreso la codificación de cuatro imágenes en forma de ADN. Ahora han anunciado un nuevo hito: la conversión a material genético de la Declaración Universal de los Derechos Humanos en más de 100 idiomas, los 100 libros de dominio público más descargados del Proyecto Gutenberg, la base de datos de semillas del proyecto Crop Trust y, claro está, el vídeo de OK Go en alta definición. En total, 200 MB; una ridiculez para los tamaños digitales, un gran salto para el almacenamiento en ADN.

Según Karin Strauss, la investigadora principal del proyecto en Microsoft, eligieron este vídeo de OK Go porque guarda paralelismo con el trabajo que ellos llevan a cabo. “Son muy innovadores y están reuniendo en su campo cosas diferentes de distintas áreas, y sentimos que estamos haciendo algo muy similar”.

Naturalmente, la codificación en ADN tiene sus inconvenientes, y siempre los tendrá. Tanto escribir como leer una secuencia genética es mucho más lento que escribir o leer un archivo binario, y más costoso. En general el sistema no se contempla como para un uso inmediato de los datos en dispositivos móviles, sino para crear repositorios a largo plazo. Pero a cambio, la densidad de información que puede alcanzar el ADN es 100 millones de veces mayor que las cintas magnéticas empleadas hoy en los grandes centros de datos: según los investigadores de Washington, los datos que llenarían todo el volumen de un hipermercado en formato electrónico caben en un terrón de azúcar si se traducen a ADN.

Pero sobre todo, su enorme ventaja es la durabilidad. Si algún día llegara ese fin del mundo que tantas veces hemos contemplado desde la butaca y del que tanto llevan advirtiéndonos, difícilmente se salvarían los datos digitales. Suelen decirnos que en el mundo existen muchas copias de toda la información que volcamos en la red, como estas palabras que estoy escribiendo. Pero ¿cuántas son “muchas”? ¿Decenas? ¿Centenas? ¿Millares, como mucho? Cada una de esas copias está escrita en un sofisticado y frágil soporte electrónico. ¿Cuántos de ellos se salvarían en caso de una catástrofe planetaria?

Como ha demostrado el investigador del Instituto Federal Suizo de Tecnología en Zúrich (ETH) Robert Grass, el ADN puede encapsularse en fósiles artificiales capaces de proteger la información que guardan durante miles o tal vez millones de años. El método consiste en encapsular la molécula en minúsculas bolitas de sílice de 0,15 milésimas de milímetro; es decir, granos de arena muy fina.

Hagamos una pequeña cuenta recreativa: según las compañías EMC Corporation e International Data Corporation, en 2020 el universo digital ocupará un total de 44 zettabytes (ZB), o 44.000 millones de terabytes (TB), o 44 billones de gigabytes (GB). La compañía Cisco calculó que un ZB ocuparía el mismo volumen que la Gran Muralla China. Tomando una cifra publicada para el volumen de la muralla de 34.423.725.600 pies cúbicos, o 974.771.357 metros cúbicos, tenemos que en 2020 el volumen total de datos digitales del planeta será de 42.889.939.708 metros cúbicos.

En forma de ADN, la densidad de almacenamiento es 100 millones de veces mayor, lo que nos daría un volumen de unos 429 metros cúbicos. La raíz cúbica de 429 es aproximadamente 7,5. Es decir, que en un cubo de arena de siete metros y medio de lado cabría, en forma de ADN, toda la información digital jamás producida desde el origen de la humanidad hasta 2020.

Y cuando se sintetiza ADN, no se fabrica una sola copia, sino millones. Playas y playas de nanocápsulas de sílice que conservarían todo lo que fuimos, durante millones de años. Por supuesto que, en caso de apocalipsis, deberíamos esperar a que los supervivientes reinventaran de nuevo la tecnología necesaria para leerlo. O a que otros lo hicieran por nosotros y así llegaran a saber quiénes fuimos.

Por si se lo están preguntando, en ese puñado de libros ya codificados para la eternidad solo hay uno de un autor español, y no es necesario que les aclare de cuál se trata. Pero lamento comunicarles que esta versión comienza así:

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away with three-quarters of his income.

Antes de que nadie se lleve las manos a la cabeza, insisto en lo que he mencionado más arriba: son los 100 libros más descargados. El Proyecto Gutenberg también dispone de la versión original en castellano. Pero si el Quixote acumula más del doble de descargas que el Quijote, la culpa no es del Proyecto Gutenberg.

Y sí, están el Drácula de Stoker, La metamorfosis y El proceso de Kafka y (solo) dos de los cinco volúmes de las obras completas de Poe. Y Wells. Y Anna Karenina. Y Moby Dick. Y El corazón de las Tinieblas. Y El retrato de Dorian Gray. Y Madame Bovary. Ah, y el Kama Sutra, para que no se nos olvide nada. Personalmente, y si pudiera elegir, añadiría a Proust, La vida es sueño, algunas cosas de Hemingway, Fitzgerald, Steinbeck… Lovecraft… ¡Dinesen, claro!… Y los rusos… algo más de Verne… Y claro, todo el romanticismo español. Pero también Zola. Y Víctor Hugo. Qué difícil es elegir. Pero por razones que no vienen al caso, me gustaría poder volver a escuchar al menos la obertura de la Cavalleria Rusticana de Mascagni, el Moonriver cantado por Audrey Hepburn, November Rain de Guns N’ Roses, el Ecstasy of Gold/Call of Ktulu/Master of Puppets de Metallica, Janie Jones de los Clash y Ceremony de Joy Division. Y el Script of the Bridge completo de los Chameleons. Habría muchísimos más. Pero con esto creo que bastaría para entretenerme mientras espero el fin.

Los transgénicos serán el futuro, pero sólo si aguantamos el cambio de ciclo

En los años 50 y 60 del siglo pasado, superado el trauma de la Segunda Guerra Mundial, en el mundo occidental dominaba un espíritu de optimismo que cabalgaba sobre el caballo de la modernidad. Fue la época del baby boom, el coche para todos, las vacaciones en la playa y el desarrollismo inmobiliario. Ni siquiera España, que vivía en su piña franquista debajo del mar, se sustraía a esta euforia del bienestar. Y tampoco el roce de la guadaña del apocalipsis en las gargantas (la escalada nuclear, la Guerra Fría, la crisis de los misiles de Cuba) era capaz de aguar la fiesta.

Hace dos veranos, casi por estas mismas fechas (ignoro qué tiene el verano que me hace pensar en esto), conté aquí que en 1964 y con ocasión de la Feria Mundial de Nueva York, mi ilustre colega por partida doble Isaac Asimov (por bioquímico y por escritor) lanzaba un vaticinio a 50 años vista. En 2014, auguraba Asimov, los seres humanos seguirían “apartándose de la naturaleza para crear un entorno más adecuado a ellos”. Viviríamos en hogares subterráneos sin ventanas y con iluminación exclusivamente artificial, comeríamos solo alimentos precocinados y lavaríamos la ropa en una lavadora alimentada por pilas atómicas.

Lo curioso (hoy) es que Asimov no pintaba todo esto como una distopía, sino como la mayor de las utopías, y con bocas abiertas de admiración era como los ciudadanos de entonces recibían profecías como aquella. Era un futuro ideal al que, créanlo los jóvenes de hoy o no, la inmensa mayoría quería apuntarse sin dilación.

Cómo han cambiado las cosas, ¿no? Lo que en tiempos de Asimov era el sueño del mañana, hoy es la pesadilla. ¿Y por qué?, se preguntará alguien. No, no es porque nuestros padres y abuelos fueran más tontos o porque tuvieran deseos de destruir y arrasar el planeta.

Simplemente se trata del Zeitgeist, un concepto que no acuñó, pero sí inspiró, la filosofía de Hegel. Es el signo de los tiempos, el conjunto de ideas y la forma de pensar que dominan en una época. Como los objetos físicos, la especie humana funciona por un principio de acción y reacción; a las revoluciones les siguen las contrarrevoluciones. Y a la modernidad le siguió la posmodernidad, y todo aquello que inspiraba la visión de Asimov se desplazó al extremo contrario: vuelta a la naturaleza, alimentos orgánicos, vida natural y cosechar energía en lugar de fabricarla.

Todo esto, introduzco un paréntesis, tiene mucho que ver también con otras cosas que hoy no voy a tratar. A menudo se pregunta (y me preguntan) por qué el ser humano no ha vuelto a la Luna desde 1972, por qué no se han establecido colonias allí o en Marte. Siempre respondo que hay un único motivo, y es que no hay dinero: lo que se gastó en la carrera espacial se gastó, y ya no hubo más. Pero lo que subyace es el Zeitgeist: la razón de que no hubo más es que hoy (casi) nadie suspira por vivir en la Luna o en Marte. El ciclo cambió antes de que todo aquello se hiciera posible, y el nuevo ciclo no lo quería.

Arroz dorado (derecha). Imagen de Wikipedia.

Arroz dorado (derecha). Imagen de Wikipedia.

Pero una prueba de que hoy no somos más listos que nuestros padres y abuelos es que no nos guiamos con mayor preferencia por el conocimiento real. Y ya llego: a su vez, prueba de ello es el asunto de los transgénicos. El hecho de que tantas voces se manifiesten públicamente en contra de los cultivos modificados genéticamente, y que las marcas se vean obligadas a seguir esta corriente popular si es que quieren vender algo, no casa en absoluto con el conocimiento real actual sobre los transgénicos. Y esto no es una opinión, sino un hecho.

Ya conté aquí a finales de mayo que ahora tenemos el veredicto definitivo (rectifico: el veredicto provisionalmente correcto hoy, como todo en ciencia) sobre la inocuidad de los transgénicos, en forma de un trabajo de 400 páginas, más de 100 expertos, dos años de trabajo, 900 estudios publicados a lo largo de más de dos decenios.

Más recientemente, y muy a raíz de aquel informe de las Academias Nacionales de Ciencia, Ingeniería y Medicina de EEUU, los transgénicos han saltado a los titulares por la carta de más de un centenar de premios Nobel acusando a Greenpeace de crimen contra la humanidad por su cerril oposición incondicional a los transgénicos, en concreto al arroz dorado. Pero todo esto no servirá de nada; jamás servirá para convencer a quienes no tienen el menor interés en conocer la realidad. Seguirán anclados en su convencimiento de que todos los que defendemos los transgénicos estamos financiados por las multinacionales biotecnológicas y que formamos parte de una conspiración interesada en tapar la verdad.

Por supuesto que no puede faltar un poco de autocrítica: científicos y adláteres, y más los que hemos sido científicos y ahora somos adláteres, debemos de haber hecho algo mal para no ser capaces de transmitir un mensaje tan evidente que consiste únicamente en la verdad cruda sin tintes ni retoques: que los transgénicos no hacen (no han hecho hasta ahora) ningún daño a nadie ni a nada, ni a la salud humana, ni a la salud animal, ni al medio ambiente ni a la biodiversidad. Pero incluso reconociendo esta culpa, y una vez más, hay algo que subyace, y es el Zeitgeist. No se puede luchar contra esto.

Pero el ciclo, como ya he dicho arriba, cambia por sí solo con el tiempo, sin que nadie lo empuje. Si la humanidad continúa funcionando como lo ha hecho siempre, la mentalidad dominante acabará reformándose más tarde o más temprano, se reducirá la actual desconfianza hacia la ciencia y la tecnología (al menos toda aquella que no sirva para usar Twitter), se volverá a creer en el progreso, y entonces probablemente los transgénicos resultarán menos antipáticos.

Si hay algo claro es que las inmensas posibilidades de la tecnología de los transgénicos, que pueden salvar millones de vidas en las regiones más desfavorecidas del planeta, va a seguir progresando. Ahora existe una herramienta de nueva generación que ha traído una revolución a la modificación de genes y que, como conté ayer, brinda esperanzas frescas en el combate contra innumerables enfermedades, entre ellas el cáncer. Y sí, CRISPR también servirá para producir nuevos cultivos transgénicos mejorados.

Pero ahora vivimos un momento crucial. Siempre se ha dicho que la tecnología no se detiene, y que si algo puede hacerse, llegará a hacerse. Personalmente elevo una excepción a esta norma, y es lo que va en contra de esa mentalidad dominante. La tecnología que pilla la ola, en símil surfero, viajará como un rayo; pero la que trata de nadar contra la corriente puede acabar ahogada, y esto es lo que podría suceder con la tecnología de los transgénicos si empresas y gobiernos no se implican en su defensa y sucumben a la tentación demagógica de pillar la ola.

En cuanto a las empresas, y en contra de la vieja doctrina de Friedman, hoy la actividad empresarial está casi voluntariamente obligada a asumir un compromiso de responsabilidad social, tal vez mayor cuanta más visibilidad pública tienen sus marcas o sus operaciones. Y en materia de transgénicos, las compañías alimentarias, multinacionales o no, no lo están haciendo. Las empresas que se dejan llevar por la fuerza de la ola, eliminando los transgénicos de sus productos y pregonándolo en su publicidad, están incurriendo en una dejación de su responsabilidad social e hipotecando el bienestar de las generaciones futuras en interés de su propio beneficio rápido.