BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘astrofísica’

Ciencia semanal: los ‘Homo erectus’ podrían haber tocado el piano

Una ronda rápida de las noticias científicas más destacadas de esta semana que termina.

Pensando como humanos desde hace 1,8 millones de años

¿Desde cuándo los humanos somos humanos? Si pudiéramos de repente introducirnos en la mente de un individuo perteneciente a una especie ancestral de la familia humana, como un australopiteco o un Homo erectus, ¿a partir de cuál de ellos nos reconoceríamos a nosotros mismos como humanos, con nuestra autoconsciencia y nuestra capacidad de raciocinio?

Esta es una de las preguntas más interesantes de la paleoantropología, y también de las más difíciles de responder. Ni siquiera podemos precisar del todo cómo siente y piensa hoy uno de nuestros parientes vivos más próximos, como el bonobo o el chimpancé; ¿cómo hacerlo para una especie que desapareció hace miles de años?

Las nuevas tecnologías y la creatividad de los científicos hoy están logrando adentrarse en terrenos que antes parecían impenetrables. En muchos casos la clave de estos avances está en la interdisciplinariedad, la comunicación entre especialistas de ramas científicas muy diversas, tanto que hasta hace unos años no podría imaginarse para qué los conocimientos de uno podrían servir al otro. Por ejemplo, y como he contado aquí en alguna ocasión, hoy los arqueólogos ya no solo emplean libros y herramientas de campo, sino que aprovechan la capacidad de herramientas físicas avanzadas como los aceleradores de partículas para desentrañar secretos de sus hallazgos que serían inaccesibles por otros medios.

La investigadora de la Universidad de Indiana (EEUU) Shelby Putt es neuroarqueóloga, una especialidad que habría parecido absurda hace unos años, ya que ni el pensamiento ni su sustrato biológico, las neuronas, dejan huellas en el registro fósil. Pero Putt ha ideado un precioso experimento para tratar de entender cómo nuestros parientes ancestrales se parecían a nosotros en sus capacidades mentales.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

Putt y sus colaboradores pusieron a un grupo de voluntarios a fabricar herramientas de piedra como lo hacían los antiguos homininos en dos etapas distintas de la evolución: según la industria olduvayense, que comenzó a utilizarse hace 2,6 millones de años, o la achelense, más avanzada, cuyos primeros restos se remontan a hace 1,8 millones de años con el Homo erectus, y que se han fabricado hasta hace unos 100.000 años. Mientras los voluntarios se dedicaban a esta artesanía prehistórica, se registraba su actividad cerebral mediante una técnica avanzada no invasiva llamada espectroscopía funcional de infrarrojo cercano.

Los resultados, publicados en Nature Human Behaviour, muestran que la fabricación de las herramientas olduvayenses, más primitivas, solo requiere la actividad de regiones cerebrales implicadas en la atención visual y el control motor. Por el contrario, las achelenses activan una parte del cerebro mucho mayor, incluyendo áreas de alto nivel intelectual implicadas en la planificación. “Sorprendentemente, estas partes del cerebro son las mismas implicadas en actividades modernas como tocar el piano”, dice Putt. El estudio concluye: “La fabricación de herramientas achelenses puede tener más vínculos evolutivos con interpretar a Mozart que con citar a Shakespeare”.

Los superbichos son anteriores a los dinosaurios

Las bacterias multirresistentes, inmunes a todos los antibióticos conocidos, son hoy una de las mayores preocupaciones de epidemiólogos y especialistas en salud pública. Conocidos coloquialmente como superbichos (superbugs en inglés), estos microbios suelen anidar en los hospitales y en numerosas ocasiones provocan la muerte de pacientes ingresados por otras causas. Algunos expertos llegan incluso a dibujar un futuro atemorizador, en el que nuestros antibióticos actuales serán del todo inservibles y regresaremos a la época en que no teníamos herramientas para combatir las infecciones bacterianas.

Un nuevo estudio dirigido por Michael Gilmore, de la Facultad de Medicina de Harvard (EEUU), y publicado en la revista Cell, ha rastreado los orígenes evolutivos de un tipo de superbichos, los enterococos. Los resultados son sorprendentes: el origen de estos seres se remonta a hace 450 millones de años, en una época anterior a los dinosaurios, cuando los primeros animales estaban saliendo del agua para colonizar el medio terrestre.

Imagen de Mark Witton.

Imagen de Mark Witton.

Según los investigadores, cuando aquellos animales comenzaron a abandonar el medio acuático, llevaron con ellos los ancestros de los enterococos, y aquel cambio de hábitat fue seleccionando los genes necesarios para hacerlos resistentes a la desecación, a la falta de nutrientes y a las sustancias antimicrobianas, en lo cual está el origen de su extraordinaria resistencia a todo tipo de agresiones del medio externo. Cuatrocientos cincuenta millones de años después, es evidente que su estrategia evolutiva ha sido todo un éxito para ellos, y una seria amenaza para nosotros.

Un médico pronosticó el ciberataque

El premio al profeta de la semana se lo lleva Krishna Chinthapalli, neurólogo del Hospital Nacional de Neurología y Neurocirugía de Londres. El pasado miércoles, Chinthapalli recordaba en la revista British Medical Journal un reciente ciberataque a un hospital de Los Ángeles en el que se utilizó un virus de ransomware, que obliga a los atacados a pagar un rescate para recuperar el control de sus sistemas informáticos. El neurólogo escribía: “Deberíamos estar preparados: casi con seguridad este año más hospitales sufrirán ataques de ransomware“. Solo dos días después, un ataque con el ransomware WannaCry secuestraba el sistema británico de salud pública, entre otras muchas instituciones de varios países.

La Nebulosa del Cangrejo, vista como nunca

Les dejo con esta nueva y espectacular imagen de la Nebulosa del Cangrejo, publicada esta semana. La nebulosa es el resto de la violenta explosión de una supernova que pudo verse en el cielo en el año 1054 de nuestra era. Esta nueva imagen se ha construido superponiendo capturas en todo el espectro de luz tomadas por cinco instrumentos astronómicos: ondas de radio en rojo por el VLA, infrarrojo en amarillo por el telescopio espacial Spitzer, luz visible en verde por el Hubble, ultravioleta en azul por el XMM-Newton y rayos X en morado por el Chandra.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Un hallazgo en un cometa complica la búsqueda de vida alienígena

¿Cómo puede un descubrimiento en un cometa complicar la búsqueda de vida alienígena? Si les interesa, sigan leyendo.

Tal vez recuerden que hace dos años y medio hasta algunos telediarios abrieron con el primer aterrizaje de un artefacto espacial en un cometa: se trataba de Philae, un módulo separable de la sonda Rosetta de nuestra Agencia Europea del Espacio (ESA). Philae solo pudo operar durante un par de días debido a que su aterrizaje defectuoso lo dejó en un lugar bastante escondido de la luz del sol, pero su breve vida fue suficiente para hacer ciencia muy valiosa. Por su parte, su nodriza Rosetta concluyó su misión en septiembre de 2016 estrellándose contra el objeto de su estudio, el cometa 67P/Churyumov–Gerasimenko.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Imagen del cometa 67P/Churyumov–Gerasimenko tomada por la sonda Rosetta. Imagen de ESA/Rosetta/NAVCAM.

Entre los descubrimientos que Rosetta ha aportado al conocimiento, en 2015 los científicos de la misión anunciaron el hallazgo de oxígeno molecular en la atmósfera del cometa. El oxígeno molecular es lo que respiramos, una molécula formada por dos átomos de oxígeno, O2. Y a pesar de que el oxígeno como elemento es uno de los más abundantes en el universo (el tercero, después de hidrógeno y helio), su forma molecular, la respirable, es extremadamente rara, que sepamos hasta ahora. Hasta 2011 no se confirmó por primera vez su existencia fuera del Sistema Solar, y no fue precisamente aquí al lado: en una región formadora de estrellas de la nebulosa de Orión, a unos 1.500 años luz. Posteriormente se ha detectado también en otra zona de formación de estrellas de la nebulosa Rho Ophiuchi.

La rareza del oxígeno molecular estriba en que es muy reactivo, muy oxidante, por lo que tiende a reaccionar rápidamente con otros compuestos y desaparecer en esta forma; por ejemplo, con el hidrógeno para producir agua. Así que, cuando los científicos encontraron oxígeno molecular en el cometa 67P, la reacción lógica se resumía en tres letras: WTF?

La explicación que sugirieron los investigadores de Rosetta era que el oxígeno estaba congelado en el cometa desde su formación, en los tiempos del origen del Sistema Solar, y que se iba liberando por el calor del sol. Sin embargo, la hipótesis fue cuestionada porque incluso en este caso parecía improbable que el oxígeno pudiera haber permanecido intacto, sin reaccionar, durante miles de millones de años.

Ahora, por fin existe una explicación para el oxígeno de 67P, y ha llegado de una fuente inesperada: un ingeniero químico que se dedica a la investigación de nuevos componentes electrónicos. Konstantinos Giapis, de Caltech (EEUU), se dedica desde hace 20 años a cosas como bombardear semiconductores con chorros de átomos cargados a alta velocidad para estudiar las reacciones químicas que se producen.

Cuando Giapis supo del descubrimiento de Rosetta, de repente se dio cuenta de que el cometa podía ser un ejemplo real de los experimentos que él realiza en el laboratorio: el hielo presente en 67P se calienta con el sol, liberando vapor de agua que se ioniza con la radiación ultravioleta solar y se estrella de nuevo a alta velocidad con el cuerpo del cometa por el efecto del viento solar. Cuando estas moléculas de agua chocan contra la superficie de 67P, arrancan átomos de oxígeno que se combinan con el oxígeno del agua para formar O2.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

Ilustración del experimento de Konstantinos Giapis. Al bombardear con moléculas de agua (izquierda) una superficie de materiales similares a los del cometa 67P, se desprende oxígeno molecular (en rojo; el hidrógeno, en azul). Imagen de Caltech.

No es solo una teoría: Giapis lo ha puesto a prueba en su laboratorio, simulando el proceso que tiene lugar en el cometa, y ha demostrado que se produce oxígeno molecular. Así que la presencia de este compuesto en 67P no es una reliquia de la época del nacimiento del cometa, sino una reacción que está ocurriendo ahora para generar oxígeno respirable fresco.

Lo cual nos lleva de vuelta al título de este artículo. Y es que, aunque el estudio de Giapis aporta un interesante hallazgo en el campo de la astrofísica/química, sus repercusiones pueden complicar aún más la búsqueda de firmas de vida en planetas extrasolares: incluso si se detecta oxígeno en la atmósfera de alguno de estos lejanos planetas, ya hay otro mecanismo más que podría explicar su origen sin necesidad de que exista algo vivo allí.

El drama de la búsqueda de vida en el universo es que difícilmente llegaremos jamás a tener una prueba directa, una confirmación absoluta. Todos los intentos de encontrar biología en planetas extrasolares, que cada vez son más (los intentos y los planetas), deben conformarse con buscar indicios indirectos, como señales que no sean fácilmente atribuibles a un fenómeno natural. Los nuevos instrumentos de observación van a facilitar en los próximos años el análisis de las atmósferas de muchos exoplanetas, y con ello será posible sospechar que tal o cual composición atmosférica podría indicar la existencia de vida.

Naturalmente, la más evidente de estas posibles firmas biológicas atmosféricas es el oxígeno. Nunca se ha pretendido que esta fuese una firma definitiva: existen procesos geológicos y químicos que pueden dar lugar a la generación de este gas sin intervención de nada vivo. Por ejemplo, Europa y Ganímedes, dos de las grandes lunas de Júpiter, tienen atmósferas de oxígeno muy tenues, pero allí este gas se forma por la ruptura del agua (H2O) causada por la radiación, o radiolisis.

Sin embargo, con los procesos abióticos (sin vida) de fabricación de oxígeno ocurren dos cosas: primero, no parece fácil que puedan originar enormes cantidades de este gas y sostenidas a lo largo del tiempo. En el caso de la Tierra, el gran inflado de nuestra atmósfera se produjo por la proliferación de microbios fotosintéticos, y si aún hoy podemos respirar es gracias a que seguimos teniendo organismos fotosintéticos.

Segundo, en algunos casos esos procesos requieren condiciones que tampoco son hospitalarias para la vida. Por ejemplo, en planetas muy calientes y próximos a su estrella, la radiación UV de esta puede descomponer el agua. Pero si se encuentra oxígeno en un planeta así, sus propias condiciones hacen muy improbable que exista algo vivo.

En resumen, y aunque detectar oxígeno en abundancia en la atmósfera de un exoplaneta no sería una demostración de vida, sí sería un buen comienzo. O al menos, lo era, hasta el hallazgo de Giapis. Ahora sabemos que hay una manera más de producir oxígeno, que a 67P le funciona muy bien, y en la que no interviene nada parecido a la vida. Desde Caltech ya nos advierten: “otros cuerpos astrofísicos, como planetas más allá de nuestro Sistema Solar, o exoplanetas, también podrían producir oxígeno molecular por el mismo mecanismo abiótico, sin necesidad de vida. Esto puede influir en la futura búsqueda de signos de vida en exoplanetas”.

Sin rastro de vida inteligente en más de 6.000 estrellas

Será curioso saber qué artículo despierta mayor interés, si el que publiqué ayer, sugiriendo que la búsqueda de signos de vida extraterrestre pronto podría dar frutos, o este de hoy. Las buenas noticias y las malas tienden a atraerse como los polos opuestos, en sentido puramente electromagnético (nunca he creído en esa aplicación metafórica a los seres humanos; o al menos en mi caso, no funciona así).

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

El sistema triple Alfa Centauri: A, B y Proxima (señalada en rojo). Imagen de Wikipedia.

La mala noticia de hoy es que dos proyectos de búsqueda de señales de vida inteligente, uno en 5.600 estrellas y otro en 692, han concluido con las manos vacías. Nada por aquí, nada por allá. Y les aseguro que no me alegro de ello, pero es otro apoyo más a la hipótesis de que la vida no es un fenómeno común en el universo.

El primero de los proyectos es obra de dos investigadores de la Universidad de California en Berkeley. Nathaniel Tellis y Geoffrey Marcy han emprendido lo que se conoce como SETI óptico; es decir, búsqueda de inteligencia extraterrestre (cuyas iniciales en inglés forman el acrónimo SETI), pero no en forma de señales de radio, sino de pulsos de luz visible.

La idea inspiradora, puramente especulativa, es que una civilización lo suficientemente avanzada podría emplear el láser como un medio de comunicación a grandes distancias, y uno de estos pulsos que cayera en nuestra dirección podría detectarse como un chispazo de luz distinguible del brillo de la estrella.

Los dos investigadores han aplicado un algoritmo a un exhaustivo conjunto de datos recogidos por el telescopio Keck de Hawái entre 2004 y 2016, correspondientes a 5.600 estrellas de la Vía Láctea distribuidas por todo el cielo, en su mayoría hasta una distancia de unos 326 años luz, y de un amplio rango de edades, desde menos de 200 millones de años hasta casi 10.000 millones de años. Para cada estrella, han buscado posibles chispazos en casi todo el espectro de luz visible (todos los colores) y en un radio de hasta decenas de unidades astronómicas (una unidad astronómica, UA, es la distancia media de la Tierra al Sol).

Después de todo ello, esta es la conclusión de los investigadores en su estudio, que se publicará próximamente en la revista The Astronomical Journal: “No hemos encontrado emisiones láser procedentes de las regiones planetarias en torno a ninguna de las 5.600 estrellas”. Según los datos actuales disponibles, Tellis y Marcy calculan que este conjunto de estrellas debería albergar unos 2.000 planetas templados de tamaño similar a la Tierra, así que los resultados no son nada alentadores.

El segundo proyecto es el Breakthrough Listen, una de las Iniciativas Breakthrough del programa SETI fundado en 2015 por el físico y magnate ruso Yuri Milner, y que cuenta con la participación del Centro SETI de la Universidad de California en Berkeley. Breakthrough ha celebrado esta semana en la Universidad de Stanford su segunda conferencia anual, donde se han discutido cuestiones como el potencial para la existencia de vida en algunos mundos recientemente descubiertos, por ejemplo Proxima b, el sistema TRAPPIST-1 o el recién llegado LHS 1140b, del que hablé ayer. También se debatió sobre el Breakthrough Starshot, el proyecto de Milner de enviar una flota de minúsculas sondas al sistema Alfa Centauri.

En la conferencia Breakthrough se han presentado las conclusiones del primer año de Listen. El director del SETI en Berkeley, Andrew Siemion, expuso los resultados de la escucha de posibles señales de radio de origen inteligente en 692 estrellas con el radiotelescopio de Green Bank, una instalación histórica para el SETI, ubicada en Virginia Occidental. De todas las señales captadas, los investigadores seleccionaron 11 como las más significativas. Pero el veredicto es claro, o más bien oscuro: “se considera improbable que alguna de estas señales tenga un origen artificial, pero la búsqueda continúa”, han declarado los responsables del proyecto.

En resumen, seguimos en blanco, solos y sin compañía. Por supuesto, hay recurso al viejo aforismo: la ausencia de prueba no es prueba de ausencia. Como no podía ser de otra manera, Tellis reconoció a la revista The Atlantic que el hecho de no haber detectado comunicaciones láser no significa que esas 5.600 estrellas estén desprovistas de vida. “Cada una de esas estrellas podría tener un Nueva York, un París o un Londres, y no tendríamos ni idea”, dijo. De hecho, nosotros no enviamos comunicaciones por láser al espacio; si alguien nos estudiara desde allí empleando la misma técnica, no encontraría ningún rastro de nuestra presencia.

Pero no olvidemos que el aforismo es de por sí discutible cuando sirve para encubrir una llamada a la ignorancia. Por poner un ejemplo tan ridículo como claro, es indefendible alegar que la ausencia de pruebas de que hay un dragón invisible en la habitación no prueba que el dragón invisible no esté presente, por mucho que uno desee creer en los dragones invisibles. La vida es muy común en el estanque de mi jardín. Si tomo una simple gota al azar, encuentro al primer vistazo esta diminuta maravilla:

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Alga verde microscópica Scenedesmus. Imagen de J. Y., tomada acercando la cámara del móvil al ocular de un microscopio.

Que, por cierto, es una alga verde Scenedesmus, una clorofícea colonial que suele formar grupos de cuatro u ocho células, llamados cenobios. Pero en el estanque del universo, ninguna gota de las muchas analizadas hasta ahora de una manera u otra ha revelado absolutamente nada. ¿Es la vida realmente tan común en el universo?

La vida extraterrestre, cada vez más cerca

Durante buena parte del siglo pasado cundía la sensación de que la confirmación de la vida extraterrestre era una fruta madura a punto de caer. Eran los años 60, 70 y 80, cuando el fenómeno ovni estaba en su apogeo y parecía que la prueba definitiva llegaría mañana o pasado. Pero después comenzaron a aparecer las cámaras digitales y los móviles con cámara (que, para los recién llegados, en realidad son anteriores a los smartphones).

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Ilustración del exoplaneta LHS 1140b. Imagen de M. Weiss/CfA.

Hoy hasta los maasáis de la sabana keniana llevan en el bolsillo una cámara de fotos de alta definición (no es broma); y en contra de lo que muchos habrían previsto, en lo referente a los ovnis seguimos estancados en la misma coyuntura de los tiempos en que una cámara era un bien escaso y rudimentario. Cada día se suben milles de millones de fotos y vídeos a internet, pero ninguno de los 7.500 millones de humanos dispersos por todos los rincones del planeta nos ha mostrado una entrevista con alienígenas recién bajados de un platillo volante, grabada en Full HD con un iPhone no-sé-cuántos-van-ya.

Ya expliqué aquí hace tiempo mis razones para no creer en los ovnis, mal que me pese; y en algún otro medio he contado cómo la ciencia ha ido desmontando uno por uno los presuntos casos de avistamientos más sonados de los últimos años. Pero si lo que piense alguien que tiende al escepticismo puede mover a otros a un escepticismo hacia el escepticismo, la cuestión es que, como conté en un reportaje hace ya ocho años, incluso algunos ufólogos hace tiempo que tiraron la toalla; claro está, aquellos que han sostenido frente al fenómeno ovni una actitud honesta y racional, no quienes tratan de seguir viviendo del cuento a toda costa.

Rescato algunos ejemplos de lo anterior que cité en aquel reportaje. Jenny Randles, ufóloga, escritora y antigua directora de investigación de la British UFO Research Association (BUFORA), reconocía: “ET no aterrizó y el mundo sigue su camino como siempre”. Wendy Connors, ufóloga estadounidense, escribió un artículo sobre la “muerte de la ufología”. El español Ricardo Campo, investigador crítico del fenómeno ovni, calificaba la ufología como “ciencia abortada”, y me contaba a su vez que muchos ufólogos se habían rendido a la evidencia. El ufólogo Vicente-Juan Ballester Olmos también cerraba el ataúd de la ufología: “Lo que no ha ocurrido ya en estos 60 años no creo que vaya a ocurrir en lo sucesivo; el misterio de los ovnis ya está momificado y es labor para historiadores, antropólogos y sociólogos”, decía.

Y a pesar de todo, en ciertos programas de televisión continúan desfilando personajes que no hacen sino confirmar aquella idea del genial Carl Sagan: “los casos fiables no son interesantes, y los casos interesantes no son fiables. Desafortunadamente, no hay casos que sean a la vez fiables e interesantes”.

Todo lo cual no significa que la creencia en los ovnis haya desaparecido de la calle. De hecho, algún análisis reciente apunta que esta fe, ya que a tales alturas no cabe otra calificación, puede estar remontando desde sus mínimos históricos, tal vez debido a las corrientes culturales cíclicas, y tal vez enmarcada dentro de un fenómeno más general de auge de las pseudociencias y del movimiento anti-Ilustración, algo de lo que ya he hablado aquí.

Pero una cosa es el fenómeno ovni, y otra muy diferente la confirmación de vida extraterrestre. Y respecto a esto último, sí podría decirse, desde un enfoque científico, que la situación actual tiene un cierto sabor a años 60-70: como entonces, hoy se diría que la noticia de que nuestro planeta no es el único lugar habitado del universo parece a punto de caer, aunque los otros puedan ser simplemente organismos simples como hongos o bacterias.

Ya conté aquí hace unos días que por primera vez se ha logrado detectar una atmósfera en un planeta de tamaño y masa similares a la Tierra. En plenas vacaciones de Semana Santa, la revista Science nos sorprendía con un bombazo: Encélado, una luna de Saturno que se postula como uno de los candidatos del Sistema Solar para albergar vida, puede tener fuentes hidrotermales en el fondo de su océano subglacial. Recordemos que hoy muchos científicos se inclinan por la hipótesis de que fue precisamente en este tipo de fumarolas submarinas donde pudo nacer la vida en la Tierra.

Ahora, esta misma semana, la revista Nature publica el hallazgo de un nuevo exoplaneta que uno de sus descubridores, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (CfA), califica como “el mejor objetivo para la búsqueda de vida más allá de la Tierra”. LHS 1140b, que así se llama, es una superTierra de 6,6 veces la masa terrestre y 1,4 veces su diámetro, probablemente rocosa, situada en la zona templada de su estrella, una enana roja a 40 años luz de nosotros.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Ilustración del exoplaneta LHS 1140b. Imagen de ESO/spaceengine.org.

Las palabras de Dittmann no solo se justifican por las condiciones propicias del planeta, sino también por las condiciones propicias para estudiarlo: el nuevo planeta transita ante la cara de su estrella desde nuestro punto de vista, algo que no sucede en todos los casos, como por ejemplo en el muy prometedor Proxima b, descubierto el año pasado. Este paso de LHS 1140b delante de su estrella permitirá estudiar la luz que lo roza para determinar si tiene atmósfera, si su composición es apta para la vida, y si podría mostrar alguna firma biológica.

Por último, LHS 1140b cuenta con dos ventajas interesantes frente a otros exoplanetas recientemente descubiertos. A diferencia de la muy cacareada TRAPPIST-1, la estrella LHS 1140 parece tranquila, sin grandes fulguraciones achicharrantes. Y también a diferencia de TRAPPIST-1, la estrella del nuevo exoplaneta parece tener una edad suficiente (según los autores del estudio, por lo menos 5.000 millones de años) como para haber dado margen a un proceso de desarrollo de vida…

…si es que este proceso ha podido llegar a ocurrir alguna vez fuera de la Tierra. Algo de lo que personalmente también me declaro escéptico, por razones que ya he contado aquí y que se resumen en una: si en 4.540 millones de años de edad de la Tierra, y que sepamos, la vida solo ha surgido aquí una única vez, ¿qué parte de este argumento nos incita a dar por supuesto que la aparición de la vida sea un fenómeno frecuente? Pero de verdad, me encantaría tener que reconocer mi equivocación aquí mañana mismo…

Ciencia semanal: el primer Brexit ocurrió hace 160.000 años

Como vengo haciendo recientemente, aquí les dejo mi selección personal de lo más importante o interesante ocurrido en el mundo de la ciencia en los últimos siete días.

El Brexit original que nadie votó

A veces la ciencia también se suma con astucia a la ola de la actualidad, y parece demasiada coincidencia para ser casual que este estudio se haya publicado precisamente cuando Reino Unido acaba de poner en marcha su proceso de abandono de la Unión Europea. De hecho, la noticia se ha divulgado justamente así, como el Brexit original.

Lo que cuenta el estudio, publicado en la revista Nature Communications, es que hace 450.000 años Gran Bretaña era algo parecido a Dinamarca, unida al continente a través del actual estrecho de Dover por una muralla de roca de 100 metros de alto y 32 kilómetros de largo que encerraba un enorme lago helado, el actual Mar del Norte. Aquella pared rocosa estaba formada por el mismo material que hoy vemos en los acantilados blancos de Dover: creta, una roca de calcio de la que originalmente se obtenía la tiza.

Aquel paisaje espectacular, a juzgar por la ilustración, comenzó a cambiar hace 450.000 años, cuando el lago se desbordó formando siete cascadas que horadaron el suelo en su caída durante cientos de miles de años. En una segunda etapa, hace 160.000 años, la presa sufrió finalmente un desmoronamiento catastrófico a consecuencia del cual, como les gusta decir al otro lado, el continente se quedó aislado.

Recreación del aspecto del antiguo puente de tierra entre Gran Bretaña y Europa. Imagen de Imperial College London / Chase Stone.

Recreación del aspecto del antiguo puente de tierra entre Gran Bretaña y Europa. Imagen de Imperial College London / Chase Stone.

Comienza el retrato del agujero negro

Como ya anticipé aquí, esta semana ha comenzado el trabajo de la red global de radiotelescopios reunidos bajo el nombre de Event Horizon Telescope (EHT), y cuyo objetivo es fotografiar por primera vez en la historia un agujero negro con el suficiente detalle para distinguir su estructura. Esta red planetaria equivale a un solo telescopio del tamaño de la Tierra, lo que proporciona a los científicos una resolución equivalente a la necesaria para contar las costuras de una pelota de béisbol desde casi 13.000 kilómetros de distancia, según comentaron los investigadores esta semana. El objeto de la investigación es Sagitario A*, el presunto agujero negro supermasivo que ocupa el centro de nuestra galaxia.

Aún no hay previsiones sobre cuándo sabremos si el proyecto ha tenido éxito, ni en caso afirmativo, de cúando la imagen estará construida; pero los investigadores estiman que los resultados se harán esperar hasta 2018. Para dar una idea de lo que supone este empeño inédito en la historia de la ciencia basta apuntar una curiosidad: las observaciones de los diferentes radiotelescopios que forman el EHT van a generar un volumen tan inmenso de datos que llevaría demasiado tiempo transmitirlos electrónicamente a la sede principal del proyecto, el Observatorio Haystack del Instituto Tecnológico de Massachusetts. En su lugar, todos estos petabytes de datos llegarán a Haystack por una vía más rápida, el avión.

Amaina la tormenta en Júpiter

No andamos escasos de imágenes de Júpiter, pero el telescopio espacial Hubble ha aprovechado la oposición este mes de abril (la máxima cercanía a la Tierra) para enviarnos nuevos retratos de nuestro vecino más voluminoso. Y aunque el aspecto de Júpiter es de sobra conocido, las nuevas fotos del Hubble confirman algo que los científicos llevan años notando: la Gran Mancha Roja, esa inmensa tormenta de tamaño mayor que la Tierra y que lleva activa al menos más de 150 años, se está reduciendo. La diferencia es muy evidente en la comparación de estas dos vistas, la de la izquierda tomada por la sonda Pioneer 10 en 1973, frente a la nueva del Hubble. Por otra parte, a la derecha y un poco más abajo de la gran peca se va definiendo otra más pequeña que los científicos han bautizado como la Mancha Roja Junior.

Dos imágenes de Júpiter: izquierda, diciembre de 1973 (Pioneer 10); derecha, abril de 2017 (Hubble). Imágenes de NASA.

Dos imágenes de Júpiter: izquierda, diciembre de 1973 (Pioneer 10); derecha, abril de 2017 (Hubble). Imágenes de NASA.

Un paso más hacia la marginación de los gordos

Termino con una noticia preocupante. Recientemente han proliferado en los medios los casos de mujeres que dan un paso al frente para defender su guerra personal contra las tallas minúsculas y reivindicar su propia comodidad dentro de sus cuerpos, más amplios de lo que dictan los cánones de belleza aún vigentes. Prueba indirecta de que estas tomas de postura reciben el aplauso general (al que sumo el mío) es el hecho de que las campañas publicitarias de algunas marcas comerciales se han sumado a la defensa de las “mujeres normales”. La publicidad siempre es oportunista; no crea la ola, sino que se sube a ella.

Por ello resulta aún más curioso que al mismo tiempo, y en sentido contrario, prosiga la campaña de marginación de los gordos. En el nuevo paso que traigo aquí, se trata de un estudio llevado a cabo por un hospital malagueño y financiado por una compañía de seguros. Las aseguradoras llevan años tratando de establecer discriminaciones entre sus clientes por factores relacionados con la obesidad, o tratando de justificar las discriminaciones que ya aplican hacia sus clientes por este motivo. No afirmo que sea el caso del nuevo estudio y la aseguradora que lo apoya; simplemente sitúo la información en el contexto de un debate actual.

Lo que cuenta el estudio es que los trabajadores obesos españoles son más propensos a acogerse a bajas laborales por enfermedades no relacionadas con el trabajo que sus compañeros delgados. La conclusión de los investigadores es “la necesidad de desarrollar intervenciones efectivas dirigidas a reducir el impacto negativo de la epidemia de obesidad entre la población trabajadora”.

Quiero dejar clara mi postura al respecto. Con los datos disponibles hoy, y a pesar de los muchos matices que he comentado aquí en ocasiones anteriores, debemos continuar dando validez a la hipótesis de que la obesidad es un factor de riesgo en un amplio espectro de dolencias (aunque debe distinguirse, como bien hace el estudio, entre las personas obesas metabólicamente sanas o enfermas); esto no es un secreto para nadie. Y que, por tanto, las recomendaciones sobre estilos de vida destinados a reducir la prevalencia de esta condición son consejos útiles de salud pública.

En cambio, otra cosa muy diferente es llevar a cabo un estudio que revela un dato de por sí nada sorprendente, pero cuya puesta de manifiesto ofrece un motivo de estigmatización de las personas obesas en sus puestos de trabajo. Piensen ustedes en un ejemplo similar; hay muchos posibles. A mí se me ocurre este: es muy probable que las madres sin pareja con hijos pequeños falten más a sus puestos de trabajo que las madres con pareja o las mujeres sin hijos. No creo necesario explicar el porqué. Y sin embargo, a nadie en su sano juicio se le ocurriría mostrar en un estudio cuánto más se ausentan estas mujeres de su trabajo, o qué coste económico tiene su menor productividad.

E incluso en este caso, las madres eligen serlo; las personas obesas, no. Muchas de ellas desearían no estar gordas, y llevan a cuestas su obesidad con suficiente vergüenza, incomodidad y baja autoestima, como para además colocarles una etiqueta de malos trabajadores. El estudio no aporta ningún bien, salvo tal vez para la aseguradora que lo financia; no revela ningún nuevo dato científicamente relevante, ni porporciona ninguna conclusión valiosa de utilidad en salud pública. Simplemente, sienta en España un precedente peligroso en ese camino hacia la estigmatización de las personas obesas que algunos se están empeñando en recorrer.

Arranca la caza del agujero negro

Uno de los momentos científicos estelares previstos para este 2017 está a punto de comenzar: en una semana desde hoy, el equipo de investigadores del Event Horizon Telescope tratará de fotografiar un agujero negro por primera vez en la historia.

En realidad, ya tenemos imágenes de agujeros negros. Si miramos hacia el centro de nuestra galaxia, allí está Sagitario A*, un agujero negro con unas cuatro millones de veces la masa del Sol, pero cuyo radio (6.700 millones de kilómetros) es solo algo menos de 10.000 veces el de nuestra estrella.

Imagen de rayos X de Sagitario A* tomada por el observatorio Chandra. Imagen de NASA.

Imagen de rayos X de Sagitario A* tomada por el observatorio Chandra. Imagen de NASA.

Es precisamente esta inmensa densidad la que confiere a los agujeros negros sus propiedades peculiares, pero en realidad estos objetos son simplemente estrellas (o lo que queda de ellas) con una masa tan monstruosa que atraen hacia sí todo lo que cae en sus cercanías, incluyendo la luz; en concreto, todo lo que se acerca más allá de una frontera llamada horizonte de sucesos. Pueden imaginar un imán; hay que acercarlo a una determinada distancia de otro para que notemos la atracción entre ambos. Aplicado a la gravitación de los agujeros negros, ese límite sería el horizonte de sucesos.

Pero no, no miren al cielo. Desde la Tierra no podemos ver Sagitario A* porque su brillo se pierde en la neblina cósmica de los brazos en espiral de la Vía Láctea; es lo que los astrónomos llaman extinción interestelar. O dicho de forma más simple, no resplandece lo suficiente como para que podamos observarlo desde aquí. Pero los científicos sí han logrado fotografiar su potente emisión de ondas de radio. La radio también es luz, aunque no visible para nuestros ojos; sí para los radiotelescopios. Fruto de estas observaciones son imágenes como la que inserto a la derecha, tomada por el telescopio espacial de rayos X Chandra de la NASA.

En realidad habría que aclarar, para los puristas, que el nombre de Sagitario A* no designa exactamente un agujero negro. Este nombre se aplica a un objeto en el centro de la galaxia que emite una potente señal de ondas de radio. La hipótesis generalmente aceptada es que este objeto esconde en su interior un agujero negro supermasivo que no tiene un nombre particular, sobre todo porque su existencia no está demostrada. Pero incluso los propios astrónomos se refieren a él con el nombre de Sagitario A*, o Sgr A*.

Queda claro así que imágenes como la de arriba muestran el agujero negro, pero no: una foto de un huevo es una foto de un huevo, pero en realidad muestra solo la cáscara del huevo. Lo que los astrónomos se disponen a hacer ahora es ofrecernos una imagen de la clara y la yema. En este caso la yema es negra y no puede verse, pero los científicos confían en fotografiar el horizonte de sucesos gracias al Event Horizon Telescope (EHT).

El EHT no es un telescopio tal como lo entendemos, sino una red formada por varios radiotelescopios dispersos por todo el mundo, entre ellos el plato de 30 metros situado en el pico Veleta de Sierra Nevada y perteneciente al Institut de Radioastronomie Millimétrique (IRAM), una colaboración franco-germano-española participada por el Instituto Geográfico Nacional.

En la práctica, esta combinación de telescopios equivale a uno solo del tamaño de la Tierra, lo que puede ofrecer la resolución suficiente para distinguir el horizonte de sucesos del agujero negro. O al menos eso es lo que esperan los responsables del experimento; según una comparación que suelen citar, la resolución del EHT al observar Sgr A* equivaldrá a poder distinguir una uva sobre la superficie de la Luna.

A partir del próximo 5 de abril y hasta el 14, el consorcio del EHT va a tratar de obtener esa imagen. Los investigadores confían en distinguir el disco de polvo y gas que orbita en torno al agujero negro, y cuya luz dispersada estará distorsionada por la enorme masa del objeto. La imagen esperada será más bien la de algo parecido a una media luna, en lugar de un disco.

Tres versiones de la imagen del agujero negro para la película 'Interstellar' según Kip Thorne y sus colaboradores. La inferior es la más realista; la superior es más simplificada y próxima a lo que se mostró en la pantalla. Imagen de James et al, Classical and Quantum Gravity.

Tres versiones de la imagen del agujero negro para la película ‘Interstellar’ según Kip Thorne y sus colaboradores. La inferior es la más realista; la superior es más simplificada y próxima a lo que se mostró en la pantalla. Imagen de James et al, Classical and Quantum Gravity.

Una representación relativamente realista del aspecto que tendría un agujero negro para un observador cercano aparecía en la película de 2014 Interstellar. El director Christopher Nolan y el equipo de efectos visuales contaron con la colaboración del físico teórico Kip Thorne. En un estudio posterior, Thorne y sus colaboradores explicaron cómo habían diseñado la imagen del agujero negro. Aunque Nolan decidió modificar más que ligeramente el gráfico diseñado por Thorne para darle un aspecto más llamativo de cara al espectador, los científicos consideran que el de Interstellar es el retrato más fiel de un agujero negro mostrado hasta ahora en el cine.

El experimento del EHT no solo podrá confirmarlo, sino que haría algo de mucho más peso: proporcionar la primera prueba palpable de la existencia de los agujeros negros y de su estructura, pronosticada durante décadas por la teoría. De lograrse, será sin duda, imprevistos mediante, la imagen científica de este 2017, y una foto para la historia del conocimiento del cosmos.

Miguel Hernández y Javier Gorosabel ya orbitan en torno al Sol

No hace falta que les explique quién era Miguel Hernández ni por qué merece honores. Pero déjenme un momento para contarles que Javier Gorosabel fue un astrónomo vasco, nacido en Eibar (Guipúzcoa) y cuyo trabajo es referencia mundial en el estudio de los Brotes de Rayos Gamma (BRG, o GRB en inglés), un tipo de cataclismo cósmico que ha podido marcar alguna regla del juego en nuestra historia como organismos: se piensa que un BRG pudo ser responsable, al menos en parte, de la extinción masiva del Ordovícico-Silúrico, que hace 450 millones de años comenzó a marcar el declive de los trilobites.

Gorosabel falleció prematuramente en 2015, con solo 46 años, y el Planetario de Pamplona ha querido rendirle un homenaje perpetuando su nombre en un asteroide que a partir de ahora circulará por nuestro Sistema Solar con el nombre de Javiergorosabel.

Les cuento la historia. En 2015, la Unión Astronómica Internacional (UAI) convocó un concurso público llamado NameExoWorlds, destinado a dar nombre a una serie de estrellas y exoplanetas. Primero se propuso a universidades, planetarios y otras organizaciones astronómicas que sugirieran nombres, y luego se abrió a los internautas la votación de los 247 nombres seleccionados. Como resultado de aquello, se nominaron 14 estrellas y 31 exoplanetas.

Algunos de los nombres elegidos por los votantes habían sido propuestos por dos entidades españolas: Hypatia, una asociación de estudiantes de Físicas de la Universidad Complutense de Madrid, puso el nombre de la astrónoma griega a un planeta que orbita en torno a la estrella Edasich o Iota Draconis, a unos 101 años luz de nosotros. Por su parte, el Planetario de Pamplona dedicó todo un sistema solar, a unos 50 años luz, a la cumbre de las letras españolas: la estrella Cervantes (antes llamada mu Arae) y sus planetas Quijote (mu Arae b), Dulcinea (c), Rocinante (d) y Sancho (e) (me pregunto por qué el caballo va antes que el pobre escudero, pero en fin; si es por ser el más pesado y gaseoso, pase).

Como premio por haber triunfado en las votaciones, la UAI decidió conceder a las instituciones ganadoras la oportunidad de nominar 17 objetos menores del Sistema Solar. Y según acaba de hacer público la UAI, el nombre elegido por Hypatia para el asteroide (6138) 1991 JH1 es el de Miguelhernández, mientras que el Planetario de Pamplona ha bautizado al (6192) 1990 KB1 como Javiergorosabel. Ambos son asteroides del cinturón que ciñe nuestro vecindario cósmico entre Marte y Júpiter. Así que, desde aquí, mi enhorabuena al poeta de la Luna y al astrónomo de los BRG.

Imagen de la UAI.

Imagen de la UAI.

En cuanto al resto hasta los 17, otras instituciones premiadas del mundo han seleccionado nombres variados. La Sociedad Astronómica Urania de México eligió el nombre de Andréseloy por el astrónomo aficionado mexicano Andrés Eloy Martínez. Otros nombres se refieren a lugares o a las propias instituciones premiadas.

Claro que los nuevos nombres no han gustado a todos. La web de tecnología Gizmodo publica un artículo titulado “Estos pobres planetas muestran por qué no debería dejarse a internet nombrar cosas”. El artículo califica Miguelhernández o Javiergorosabel como nombres “terribles”. Pero no dice lo mismo de otros nombres y apellidos también elegidos, como Bernardbowen o Franzthaler. “Está ahora dolorosamente claro que el sistema para poner nombre a los objetos celestiales está roto”, escribe el autor. “Hoy nuestro Sistema Solar suena un poco más como una cesta de planetas rechazados de una película de ciencia ficción de serie c”, añade.

Bien, es cuestión de gustos, y cada uno es libre de manifestar los suyos. Pero no puedo resistir la tentación de devolver un revés. Y es que, mientras uno lee el artículo de Gizmodo, a su izquierda aparecen anuncios de Google en los que una tal Deborah ofrece clases para la sanación espiritual de heridas y traumas, o se ofrecen “cuatro poderosas técnicas de sanación por energía” para “mejorar tus relaciones, dinero, propósitos y salud”, o se advierte al usuario de que la frecuencia de su vibración personal puede estar perjudicando su éxito en la vida y su felicidad.

Ya, ya, sé que nada tiene que ver una cosa con otra, y que tampoco el autor del artículo puede elegir los textos de los anuncios que aparecen junto a su obra (soy consciente de que corro el riesgo de verme en otra igual). Pero solo se me ocurre una respuesta, y ni siquiera es una palabra: ¡pffffff…!

Nota añadida: acabo de ver esos mismos anuncios junto a mi artículo, lo cual me ha desatado una carcajada por ser, creo, mi predicción más prontamente acertada. Pero lo cual a su vez refuerza la tesis que defendía aquí ayer, y en la que aprovecho para insistir.

Y el autor del artículo de ciencia más comentado de 2016 es… Barack Obama

El Almendro vuelve a casa por Navidad, y los balances del año comienzan a florecer en los medios como… como flores. La compañía Altmetric, que mide la repercusión de los estudios científicos y académicos en internet, ha publicado su Top 100 de 2016. Y la novedad, quizá no la sorpresa, es que el número uno, el artículo más comentado del año, se publicó el 2 de agosto (11 de julio en internet) en la revista The Journal of the American Medical Association (JAMA) y viene firmado por un solo autor, un tal Barack Obama.

Barack Obama. Imagen de Wikipedia.

Barack Obama. Imagen de Wikipedia.

Hasta este momento, el artículo ha aparecido en 315 noticias, 45 entradas de blogs, 8.943 tuits y 201 entradas de Facebook, entre otros medios y redes. A todos ellos hay que añadir uno más, este que están ustedes leyendo: 20 Minutos está en la lista de los medios recogidos por Altmetric. Y seguramente la noticia de que es el artículo de ciencia más comentado del año le dará a su vez un nuevo empujón.

Obviamente el artículo de Obama no es científico, sino político. Se titula United States Health Care Reform: Progress to Date and Next Steps (Reforma sanitaria de EEUU: progreso hasta la fecha y próximos pasos) y analiza lo que valora como un “cambio positivo” en el que ha sido uno de los grandes objetivos de su mandato, recomendando prioridades para el próximo gobierno; que, por entonces, en julio, ni él ni nadie podía imaginar que estaría presidido por un malo de peli mala como Donald Trump.

Pero lo que quiero comentar aquí no es la reforma del sistema sanitario en EEUU; no es el contenido, sino el continente. El artículo de Obama es una típica pieza de análisis y opinión en una revista científica, con su estructura canónica, su declaración de conflictos de intereses, sus 68 referencias bien citadas y enumeradas, su información sobre la identidad, titulación y afiliación del autor (Barack Obama, JD [doctor en leyes], presidente de Estados Unidos, The White House, 1600 Pennsylvania Ave NW, Washington, DC 20500), y su correo electrónico de contacto, que naturalmente no es el suyo propio sino el de prensa de la Casa Blanca.

Y siendo obvio que Obama no se lo ha guisado y comido solito, sino que le ha ayudado un equipo de expertos convenientemente citados en los agradecimientos, a lo que voy con todo esto es, y perdónenme el grito en mayúsculas:

¿IMAGINAN ALGO PARECIDO AQUÍ?

Por lo demás, la lista de los diez estudios y artículos científicos más comentados incluye algunas de las historias más importantes del año en este campo y que también han tenido cabida en este blog, como el descubrimiento de las ondas gravitacionales, la relación entre zika y microcefalia, el posible Planeta Nueve del Sistema Solar, la polémica sobre el azúcar y las grasas, o el nuevo atlas mundial de la contaminación lumínica.

Hay un dato que resulta curioso. La lista que sigue muestra el número de estudios del Top 100 de Altmetric en los que participan instituciones de cada país. He seleccionado los 20 países más potentes en ciencia por número de publicaciones según el ránking de SCImago que ya comenté aquí:

  1. Estados Unidos: 75
  2. China: 5
  3. Reino Unido: 33
  4. Alemania: 14
  5. Japón: 5
  6. Francia: 8
  7. Canadá: 6
  8. Italia: 5
  9. India: 3
  10. España: 4
  11. Australia: 12
  12. Corea del Sur: 2
  13. Rusia: 1
  14. Holanda: 5
  15. Brasil: 4
  16. Suiza: 6
  17. Taiwán: 1
  18. Suecia: 3
  19. Polonia: 4
  20. Turquía: 0

No olvidemos, el Top 100 de Altmetric no dice nada de la calidad de los estudios o de su relevancia para la ciencia, sino solo de cuánto se han comentado (con enlaces directos) en medios online, blogs y redes sociales; es un índice mediático, no científico. Los responsables de este Top 100 son (somos) los periodistas de ciencia, científicos presentes en blogs o redes y el público con interés en el campo.

La conclusión es que la ciencia anglosajona es infinitamente más mediática; su maquinaria de divulgación es la más potente, además de contar con la ventaja de su idioma, lingua franca de la ciencia. Destacan EEUU (primera potencia mundial en ciencia) con 75 estudios, Reino Unido con 33 y Australia con 12, además de Alemania con 14. China, segunda actualmente en número de publicaciones, solo participa en cinco estudios, uno más que España.

Casi todos los países de la lista participan en el estudio de descubrimiento de las ondas gravitacionales publicado en Physical Review Letters, un trabajo monstruo con la colaboración de más de 1.000 científicos de 133 instituciones. España colaboró a través del equipo de la Universitat de les Illes Balears.

Los otros tres estudios con participación española son: el hallazgo de Proxima Centauri b, el exoplaneta posiblemente habitable más cercano, en el sistema de Alfa Centauri, publicado en Nature; la revisión en Science que proponía denominar Antropoceno a la época geológica actual, en la que participaba el geólogo de la Universidad del País Vasco Alejandro Cearreta; y un estudio genético aparecido en Nature Communications que identificaba genes implicados en los rasgos del pelo de la cara y la cabeza en la población latinoamericana, con la participación del equipo del biólogo molecular de la Universidad de Oviedo Carlos López-Otín.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Ilustración de un posible paisaje en el exoplaneta Proxima Centauri b. Imagen de ESO/M. Kornmesser vía Wikipedia.

Pero sin duda el trabajo estrella de la ciencia española en este año que termina es el hallazgo de Proxima b, el exoplaneta más cercano a la Tierra jamás descubierto con posibilidades de contener agua líquida en su superficie, a solo 4,2 años luz. La investigación cuenta con la participación del Instituto de Astrofísica de Andalucía, pero además el principal responsable del estudio es catalán, Guillem Anglada-Escudé, de la Universidad Queen Mary de Londres.

Obviamente es más que probable que otros estudios del Top 100 de Altmetric cuenten con la participación de investigadores españoles trabajando en el extranjero; tenemos científicos de primer nivel, pero nos faltan centros de primer nivel que atraigan también a científicos extranjeros de primer nivel. Lo que cuenta a la hora de valorar la potencia científica de un país es la ubicación del centro en el que se ha gestado su trabajo, con independencia de que sus autores se llamen Pérez o Smith.

Una nueva teoría de la gravedad prescinde de la materia oscura

Como sabe cualquiera que haya abierto una lavadora después del centrifugado, el giro tiende a expulsar las cosas hacia fuera. En la lavadora, son las paredes del tambor las que impiden que la ropa salga volando. Pero las galaxias, que también centrifugan, no tienen tambor; ¿qué es lo que evita que las estrellas salgan volando en todas direcciones?

Lo que mantiene una galaxia unida es la gravedad, que tiende a juntar las masas unas a otras. Es lo mismo que nos mantiene pegados al suelo. El problema es que, cuando los físicos calculan la masa de una galaxia, las cuentas no salen: la gravedad es demasiado baja como para compensar la inercia que tiende a dispersarla. Como conté ayer, la solución por la que se ha optado es suponer que la masa es realmente mucho mayor de lo que se ve, pero el resto es invisible: materia oscura. A más masa, más gravedad, y así todo cuadra.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Representación hipotética de la distribución de materia oscura (nube azul) en la Vía Láctea. Imagen de ESO/L. Calçada vía Wikipedia.

Pero algunos físicos piensan que tal vez no sea necesario inventar un tipo de materia de la que hasta ahora no ha podido obtenerse ninguna prueba; que quizá la inercia sea menor de lo que sospechamos, o la gravedad sea mayor. Ayer conté un ejemplo de lo primero, una hipótesis que reduce el valor de la inercia. Otras propuestas se basan en un aumento del valor de la gravedad, asegurando que al menos en ciertos casos no se comporta como sospechamos.

La propuesta más conocida en esta línea fue desarrollada por el israelí Mordehai Milgrom en 1983, y se conoce como Dinámica Newtoniana Modificada, o MOND. En breve, lo que Milgrom propone es que el valor familiar proporcionado por Newton para la gravedad no funciona en escalas extremas, cuando la aceleración es enormemente baja o la distancia al centro de la galaxia es muy grande, como ocurre en las estrellas de la periferia. En estos casos la gravedad sería mayor de lo normal, compensando la inercia que tiende a dispersar la galaxia.

Un resultado similar –una gravedad mayor– se deriva de una nueva teoría propuesta ahora por el holandés Erik Verlinde, de la Universidad de Ámsterdam. Aunque en este caso, el punto de partida es completamente distinto. Verlinde comenzó su carrera bajo la dirección de Gerard ’t Hooft, conocido sobre todo (además de por su Nobel en 1999) como el creador del llamado Principio Holográfico.

El Principio Holográfico es una audaz propuesta según la cual el universo es la proyección de un holograma contenido en una esfera que lo rodea. La idea del holograma es la misma que conocemos de las tarjetas de crédito: una superficie de dos dimensiones que contiene información sobre un objeto tridimensional. Dado que el holograma tiene una dimensión menos que el objeto al que representa, en el caso del universo se trataría de un espacio tridimensional en un área bidimensional; o si añadimos el tiempo, un universo 4D en un espacio 3D, siendo el tiempo una de estas dimensiones.

El Principio Holográfico es una aplicación cosmológica de la Teoría de Cuerdas, un modelo emergente de la física que trata de conciliar la cuántica con la relativística, hasta ahora dos mundos separados. En cuántica no existe la gravedad, el concepto fundamental de la relatividad. En la Teoría de Cuerdas, la materia no está formada por esas bolitas con las que asociamos la imagen de las partículas subatómicas, sino por hilos de una sola dimensión que vibran de diferentes maneras para originar las diferentes clases de partículas. Una de esas partículas originadas por una de las muchas vibraciones posibles es el gravitón, la responsable de la gravedad, por lo que la Teoría de Cuerdas ofrece un modelo de gravedad cuántica que trata de desbrozar el camino hacia eso que habitualmente se conoce como Teoría del Todo.

El Principio Holográfico interesa a muchos físicos porque permite correlacionar dos teorías en principio muy distintas que se diferencian en una dimensión, lo que permite abordar problemas muy complejos en un marco mucho más sencillo. En el caso que nos ocupa, la ventaja es que la gravedad aparece en el universo como consecuencia de la información contenida en ese holograma.

Sin embargo, lo que propone Verlinde es una enmienda al modelo de su maestro: que en realidad el holograma es incompleto. Imaginemos uno de esos cuadros holográficos que se venden en los bazares, y supongamos que una parte de la imagen, por ejemplo la mano de un personaje, no estuviera representada en el holograma, sino que sobresaliera del cuadro como un objeto tridimensional real. Según Verlinde, al menos una parte de la gravedad no está codificada en el holograma, sino que surge intrínsecamente como una propiedad del tejido del espacio-tiempo, del mismo modo que la temperatura aparece como consecuencia del movimiento de las partículas.

En 2010 Verlinde publicó su teoría de la Gravedad Emergente, como se ha dado en llamar. Ahora, en un nuevo estudio la aplica a los movimientos de las estrellas en las galaxias, llegando a un sorprendente resultado: esa gravedad emergente explica la fuerza habitualmente atribuida a la presencia de la materia oscura. Es decir, que la desviación de la gravedad einsteniana en el caso de las grandes escalas se compensa cuando se introduce esa porción extra de gravedad oscura. No hace falta materia extra que no se ve, sino una fuerza extra que no se había calculado.

Tal vez piensen que sustituir la materia oscura por una gravedad oscura es como elegir muerte en lugar de susto. Pero lo cierto es que se trata de encontrar el origen de un balance de fuerzas que evidentemente existe. Ante el continuado fracaso en los intentos de detección de materia oscura, algunos físicos han llegado a sugerir que esta materia se encuentra escondida en otra dimensión, siendo la gravedad la única de las fuerzas fundamentales cuyos efectos son transversales a todas las dimensiones. Y esto no solo explicaría por qué la gravedad de la que tenemos constancia es tan débil (solo tendríamos constancia de una parte de ella), sino que encajaría con el universo de 11 dimensiones propuesto por una variante unificadora de la Teoría de Cuerdas llamada Teoría M. Pero la hipótesis de Verlinde prescinde por completo de la materia oscura, y es probable que algunos defensores de la Teoría de Cuerdas respirarían aliviados con esta solución.

Aún habrá que esperar para comprobar cómo la teoría de Verlinde es recibida por la comunidad física, y qué posibles objeciones plantearán los expertos. Pero como dije ayer, están surgiendo nuevas visiones alternativas que tal vez, solo tal vez, algún día podrían hacernos recordar con una sonrisa los tiempos en que teníamos inmensos, carísimos y complejos detectores buscando un tipo de materia tan invisible como –tal vez, y solo tal vez– inexistente.

¿Y si la materia oscura fuera un cuento?

Durante más de 2.000 años, mentes brillantes de la talla de Aristóteles, Galeno, Hipócrates, Demócrito, Paracelso, Alberto Magno, Tomás de Aquino, Spencer, Erasmus Darwin o Lamarck creyeron en la herencia de caracteres adquiridos. Es decir, que un día una jirafa comenzó a estirar el cuello para alcanzar las copas de los árboles, y que cada generación sucesiva lo estiraba un poquito más, hasta llegar al larguísimo cuello que hoy tienen.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Representación teórica de la materia oscura (anillo azul) en el grupo de galaxias CL 0024+17. Imagen de NASA/ESA vía Wikipedia.

Suponiendo que esto sucedía así, había que explicar el mecanismo capaz de informar al espermatozoide y al óvulo de que el cuello se había alargado, para que la siguiente generación pudiera heredar ese estiramiento. Y Charles Darwin dio con él: las gémulas, unas partículas diminutas producidas por las distintas células del organismo que confluían en los órganos reproductores para que las semillas sexuales llevaran toda la información actualizada del cuerpo con el fin de transmitirla a los hijos. En conjunto, la teoría se conocía como pangénesis, ya que todo el organismo (“pan” en griego, como en panamericano) participaba en la herencia.

Pero no crean nada de lo anterior: naturalmente, todo esto era pura fantasía. Darwin inventó una entidad exótica, la gémula, para explicar un fenómeno. Pero es que en realidad este fenómeno no se producía tal como todas esas mentes brillantes habían creído durante un par de milenios. En general, la herencia de caracteres adquiridos durante la vida de un individuo no existe (aclaración: en realidad sí existe y se llama epigenética, pero esa es otra historia que no viene al caso en este ejemplo).

La gémula de Darwin no ha sido la única entidad ficticia inventada históricamente para explicar procesos que se entendían mal: el éter luminífero, el flogisto, las miasmas, la fuerza vital, el planeta Vulcano, los cuatro humores corporales…

Como Darwin, Einstein tampoco se libró de la invención de entidades tapa-grietas. Cuando el físico alemán supo que su modelo de la relatividad general daba lugar a un universo que acabaría gurruñándose sobre sí mismo como quien estruja el envoltorio de un polvorón (ya hay que empezar a ponerse en modo navideño), tuvo que meter en sus ecuaciones un término para evitarlo, dado que, como todo el mundo sabía, el universo era estático.

Así nació la constante cosmológica, designada por la letra griega lambda mayúscula (Λ) y que introducía una especie de anti-gravedad para evitar el estrujamiento cósmico y casar las ecuaciones con una realidad que se resistía a colaborar con la teoría.

Resultó que, poco después, el belga Georges Lemaître y el estadounidense Edwin Hubble mostraban que en realidad el universo no era estacionario, sino que se expandía, por lo que la constante cosmológica sobraba. O dicho con más finura, que Λ = 0. Pero irónicamente, en el último par de décadas esto ha cambiado al descubrirse que el universo se expande con aceleración, lo que ha obligado (otra vez) a inventar algo llamado energía oscura y distinto de cero que, curioso, ya tenía un asiento reservado en las ecuaciones de Einstein: la constante cosmológica. Claro que no puede decirse que esto fuera genialidad del alemán, sino más bien un golpe de suerte.

Pero si el universo se expande y las galaxias giran, ¿por qué no se deshilachan como el algodón de azúcar? Debe de haber algo que las recoja y las mantenga unidas, como el palo del algodón. En este caso, el palo sería una masa extra que aumentaría la gravedad encargada de cohesionar la galaxia para que no se deshaga. Y dado que no se ve ningún palo, está claro que se trata de un palo completamente invisible. Ya tenemos la entidad exótica; ahora hay que buscarle un nombre adecuado: ¿qué tal La Fuerza? No, que de estas ya hay demasiadas. ¿Qué tal materia oscura?

Hoy la mayoría de los físicos creen en la existencia de la materia oscura, porque les ofrece la mejor opción disponible para explicar cómo una fuerza tan débil como la gravedad es capaz de mantener las galaxias de una pieza. La mayoría. Pero no todos. Algunos piensan que la materia oscura es otro de esos tapa-grietas como las gémulas, el éter o el flogisto, nacidos de nuestra deficiente comprensión de la naturaleza; en este caso, de la gravedad.

Por ejemplo, algunos físicos piensan que la constante que define la gravedad no es tal constante, sino que aumenta en los bordes de las galaxias donde la aceleración es muy baja. Imaginemos que removemos un plato de sopa desde el centro: aquí los fideos se mueven más deprisa, y más lentamente en la parte del borde del plato. Según esta hipótesis, la periferia de la galaxia que se mueve más despacio estaría sometida a una mayor gravedad, lo que mantendría la cohesión, como hace el borde del plato. Otra posibilidad es que la masa de los cuerpos en movimiento disminuya cuando la aceleración es muy baja, lo que produciría el mismo efecto final, pero en este caso sin modificar la gravedad, sino la inercia.

El físico Mike McCulloch, de la Universidad de Plymouth, ha propuesto un modelo en esta línea que utiliza algo llamado efecto Unruh, del que ya hablé aquí a propósito del EmDrive, ese propulsor que no puede funcionar porque según la física común viola las leyes naturales, pero que a pesar de todo parece empeñarse en funcionar en varios experimentos independientes.

McCulloch propone un modelo modificado de la inercia, ese ímpetu misterioso que nos empuja hacia delante tras un frenazo. Para el físico, la inercia es el resultado de una extraña interacción entre una radiación producida por los cuerpos en aceleración y el tamaño del universo; cuando la aceleración disminuye, la onda de esa radiación aumenta tanto que no cabe en el universo y entonces debe saltar a un tamaño menor, lo que modifica su frecuencia, su energía y por tanto la masa del cuerpo en movimiento, ya que todas ellas están vinculadas (lo expliqué con más detalle aquí).

Cuando McCulloch aplica su hipótesis a la ley de la gravedad de Newton para el caso de los bordes de las galaxias, obtiene valores que se parecen mucho a los reales sin necesidad de introducir un factor de corrección como la materia oscura; simplemente asumiendo que el efecto Unruh modifica las masas y por tanto las aceleraciones de los objetos situados a mayor distancia del centro de la galaxia, lo que reduce su inercia y evita la dispersión. El problema es que esto requiere la existencia de esa radiación debida al efecto Unruh, algo que no ha sido demostrado y de lo que muchos dudan. Pero que de momento tampoco puede descartarse.

Mañana contaré otra nueva hipótesis que explica la acción de la gravedad en las galaxias sin necesidad de fantasmas invisibles. Y aunque de momento parece probable que la física mayoritaria seguirá aceptando la materia oscura, tal vez podríamos estar avanzando un paso más hacia la demolición de otro tótem científico imaginario.