BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Entradas etiquetadas como ‘ADN’

Ciencia semanal: grabe su esperma con el móvil

Por si les interesa lo ocurrido en el mundo de la ciencia durante esta semana, aquí les dejo cinco de las noticias más destacadas.

Un test de fertilidad para hombres a través del móvil

Se calcula que más de 45 millones de parejas en todo el mundo sufren de infertilidad, y que en un 40% de los casos el factor responsable es la mala calidad del semen. Investigadores de la Facultad de Medicina de Harvard, dirigidos por el innovador bioingeniero Hadi Shafiee, han diseñado un sistema casero, barato (el coste de los materiales es de 4,45 dólares) y fácil de usar para que los hombres puedan analizar su esperma sin tener que acudir a un centro especializado. Se trata de un dispositivo para la recogida de muestras que se introduce en una carcasa fijada al móvil. La cámara del smartphone se encarga de hacer el recuento de espermatozoides y el análisis de su motilidad. Los investigadores esperan presentar próximamente la solicitud de aprobación del dispositivo a las autoridades sanitarias de EEUU. Seguro que nunca habrían imaginado utilizar el móvil de esta manera.

Esquema del aparato. Imagen de Kanakasabapathy et al, Science Translational Medicine.

Esquema del aparato. Imagen de Kanakasabapathy et al, Science Translational Medicine.

Los espermatozoides tienen marcha atrás

Sin salir del tema, un nuevo estudio ha analizado el movimiento del fluido que crea a su alrededor un espermatozoide durante su trabajosa carrera hacia el óvulo, que en la inmensa mayoría de los casos termina en fracaso: como en Los inmortales, solo puede quedar uno. Los investigadores, de universidades británicas y japonesas, descubren que el pequeño nadador no se limita a avanzar, sino que se mueve a latigazos también hacia ambos lados y hacia atrás para reducir la fricción con el fluido y conquistar su objetivo.

Diagrama del flujo creado por el espermatozoide durante su movimiento. Imagen de Universidad de Kioto.

Diagrama del flujo creado por el espermatozoide durante su movimiento. Imagen de Universidad de Kioto.

Juno paga otra visita a Júpiter

Mañana lunes, la sonda Juno de la NASA sobrevolará Júpiter por quinta vez desde su llegada al gigante gaseoso en julio de 2016. Durante su vuelo a 4.400 kilómetros de la capa de nubes, los instrumentos de Juno recogerán datos para continuar avanzando en el conocimiento de la atmósfera, la magnetosfera y la estructura de Júpiter. Una de las grandes incógnitas sobre el mayor de los planetas del Sistema Solar es si posee un núcleo sólido en lo más recóndito de su densa masa gaseosa.

Un agujero negro supermasivo, expulsado del centro de su galaxia

Desde la primera detección de las ondas gravitacionales, realizada en septiembre de 2015 y divulgada hace poco más de un año, los científicos están comenzando a sacar partido a esa nueva era de la astronomía que se anunciaba con motivo de aquel hallazgo. Un cataclismo cósmico como el que entonces originó las ondas detectadas, la fusión de dos agujeros negros, parece ser la causa de un enorme empujón gravitacional que ha expulsado del centro de una galaxia a un agujero negro supermasivo, con una masa equivalente a mil millones de soles. La energía necesaria para empujar a este monstruo fuera de su ubicación ha sido equivalente a la explosión simultánea de 100 millones de supernovas. Los investigadores calculan que dentro de 20 millones de años el agujero negro escapará de su galaxia y comenzará a vagar por el universo. Pero tranquilos, está a 8.000 millones de años luz de nosotros.

Imagen de hubblesite.org.

Imagen de hubblesite.org.

El 66% de las mutaciones del cáncer son aleatorias

Un interesante estudio publicado esta semana responde a la dramática pregunta que se formulan muchos enfermos de cáncer: ¿por qué yo? Aunque la respuesta no suponga ningún consuelo, explica por qué la mayor parte de la información que se difunde a diario en medios de todo el mundo sobre lo que “da” cáncer o “no da” cáncer es, en el mejor de los casos, de una utilidad muy limitada, cuando no sencillamente ruido y escombro informativo. Utilizando un modelo matemático basado en amplios datos epidemiológicos, investigadores de la Universidad Johns Hopkins (EEUU) descubren que las dos terceras partes de las mutaciones genéticas que provocan los cánceres son aleatorias, simples erratas tipográficas que se introducen al azar en la secuencia de ADN durante el copiado. O dicho de otro modo, solo un tercio de los casos se deben a la herencia genética de nuestros padres (5%) o a factores ambientales como el tabaco o los contaminantes (29%). Pero estas cifras generales varían también según los tipos de cánceres: mientras que en los de pulmón el impacto de las mutaciones aleatorias se reduce al 35%, en los de páncreas sube al 77%, y al 95% en los de próstata, cerebro y huesos. Los autores no recomiendan en absoluto abandonar los hábitos saludables, pero advierten de que esto no debe llevar al error de creerse a salvo y disminuir la vigilancia.

Drácula, Poe, el Kama Sutra y OK Go sobrevivirán al fin del mundo

No es que la música de OK Go sea de mi más especial predilección (como ya he manifestado aquí, mis preferencias suelen ir por otros sonidos), pero admiro lo que hacen estos cuatro tipos de Chicago. Adoro a la gente que camina en sentido contrario a los demás, a quienes se toman demasiadas molestias para algo que realmente no lo requiere, y a los que se enfrascan en algo anteponiendo la pasión al plan de negocio. Es decir, a quienes violan las tres leyes fundamentales del universo: la ley de la inercia, la ley del mínimo esfuerzo y la ley de la conservación de lo que sea.

Captura del vídeo de OK Go. Imagen de YouTube.

Captura del vídeo de OK Go. Imagen de YouTube.

Para quien aún no los conozca, explico que lo más distintivo de OK Go son sus vídeos. Entre tanta saturación de efectos digitales y realidad virtual, ellos se diferencian por organizar unas complejísimas coreografías reales, increíblemente sincronizadas, que a menudo se ruedan en un solo plano secuencia y que además en muchos casos juegan con la ciencia aplicada. Si les interesa descubrirlos, basta una simple búsqueda en YouTube. Pero hay un motivo para que hoy traiga aquí uno de sus clips, el de This Too Shall Pass.

Para este tema, organizaron un montaje al estilo de lo que en EEUU llaman una máquina de Rube Goldberg. Los que pasamos de los 40 tenemos aquí un equivalente cultural propio, los Grandes Inventos del TBO, cuyo principal artífice fue el dibujante catalán Ramón Sabatés.

Tanto Goldberg como Sabatés presentaban a un ficticio profesor (Lucifer Gorgonzola Butts en la versión americana, Franz de Copenhague en la española) que diseñaba unas complicadísimas máquinas cuyo resultado era una tarea muy tonta, fácilmente accesible por medios infinitamente más simples; por ejemplo, limpiar la boca con la servilleta. En el caso del vídeo de OK Go, el resultado final de su máquina es disparar un chorro de pintura a cada uno de los integrantes de la banda.

El motivo por el que hoy lo traigo aquí es que este clip de OK Go es el primer vídeo jamás codificado en forma de ADN. Ya he explicado aquí y en otros medios en qué consiste la codificación de archivos digitales en material genético: se diseña un sistema de conversión del código binario (unos y ceros) a las cuatro bases del ADN (A, T, G y C), se traduce el archivo deseado y se sintetiza una cadena de ADN con esa secuencia.

Y también he explicado por qué esta línea de investigación es interesante: los soportes digitales caducan rápidamente, bien porque se estropean, o bien porque aparecen otros formatos y soportes nuevos que dejan obsoletos a los antiguos. En cuanto a su conservación física, el ADN puede durar cientos de años, miles de años, incluso millones de años, según el sistema de almacenamiento elegido. Y en cuanto a su vigencia tecnológica, si de algo no cabe absolutamente ninguna duda es de que siempre vamos a seguir necesitando dispositivos de lectura de ADN. Las máquinas cambiarán, pero el ADN continuará siendo el mismo por los siglos de los siglos.

Entre los grupos de investigación que trabajan en esta línea se encuentra un equipo de Microsoft Research y la Universidad de Washington (EEUU). El pasado abril, los investigadores presentaron en un congreso la codificación de cuatro imágenes en forma de ADN. Ahora han anunciado un nuevo hito: la conversión a material genético de la Declaración Universal de los Derechos Humanos en más de 100 idiomas, los 100 libros de dominio público más descargados del Proyecto Gutenberg, la base de datos de semillas del proyecto Crop Trust y, claro está, el vídeo de OK Go en alta definición. En total, 200 MB; una ridiculez para los tamaños digitales, un gran salto para el almacenamiento en ADN.

Según Karin Strauss, la investigadora principal del proyecto en Microsoft, eligieron este vídeo de OK Go porque guarda paralelismo con el trabajo que ellos llevan a cabo. “Son muy innovadores y están reuniendo en su campo cosas diferentes de distintas áreas, y sentimos que estamos haciendo algo muy similar”.

Naturalmente, la codificación en ADN tiene sus inconvenientes, y siempre los tendrá. Tanto escribir como leer una secuencia genética es mucho más lento que escribir o leer un archivo binario, y más costoso. En general el sistema no se contempla como para un uso inmediato de los datos en dispositivos móviles, sino para crear repositorios a largo plazo. Pero a cambio, la densidad de información que puede alcanzar el ADN es 100 millones de veces mayor que las cintas magnéticas empleadas hoy en los grandes centros de datos: según los investigadores de Washington, los datos que llenarían todo el volumen de un hipermercado en formato electrónico caben en un terrón de azúcar si se traducen a ADN.

Pero sobre todo, su enorme ventaja es la durabilidad. Si algún día llegara ese fin del mundo que tantas veces hemos contemplado desde la butaca y del que tanto llevan advirtiéndonos, difícilmente se salvarían los datos digitales. Suelen decirnos que en el mundo existen muchas copias de toda la información que volcamos en la red, como estas palabras que estoy escribiendo. Pero ¿cuántas son “muchas”? ¿Decenas? ¿Centenas? ¿Millares, como mucho? Cada una de esas copias está escrita en un sofisticado y frágil soporte electrónico. ¿Cuántos de ellos se salvarían en caso de una catástrofe planetaria?

Como ha demostrado el investigador del Instituto Federal Suizo de Tecnología en Zúrich (ETH) Robert Grass, el ADN puede encapsularse en fósiles artificiales capaces de proteger la información que guardan durante miles o tal vez millones de años. El método consiste en encapsular la molécula en minúsculas bolitas de sílice de 0,15 milésimas de milímetro; es decir, granos de arena muy fina.

Hagamos una pequeña cuenta recreativa: según las compañías EMC Corporation e International Data Corporation, en 2020 el universo digital ocupará un total de 44 zettabytes (ZB), o 44.000 millones de terabytes (TB), o 44 billones de gigabytes (GB). La compañía Cisco calculó que un ZB ocuparía el mismo volumen que la Gran Muralla China. Tomando una cifra publicada para el volumen de la muralla de 34.423.725.600 pies cúbicos, o 974.771.357 metros cúbicos, tenemos que en 2020 el volumen total de datos digitales del planeta será de 42.889.939.708 metros cúbicos.

En forma de ADN, la densidad de almacenamiento es 100 millones de veces mayor, lo que nos daría un volumen de unos 429 metros cúbicos. La raíz cúbica de 429 es aproximadamente 7,5. Es decir, que en un cubo de arena de siete metros y medio de lado cabría, en forma de ADN, toda la información digital jamás producida desde el origen de la humanidad hasta 2020.

Y cuando se sintetiza ADN, no se fabrica una sola copia, sino millones. Playas y playas de nanocápsulas de sílice que conservarían todo lo que fuimos, durante millones de años. Por supuesto que, en caso de apocalipsis, deberíamos esperar a que los supervivientes reinventaran de nuevo la tecnología necesaria para leerlo. O a que otros lo hicieran por nosotros y así llegaran a saber quiénes fuimos.

Por si se lo están preguntando, en ese puñado de libros ya codificados para la eternidad solo hay uno de un autor español, y no es necesario que les aclare de cuál se trata. Pero lamento comunicarles que esta versión comienza así:

In a village of La Mancha, the name of which I have no desire to call to mind, there lived not long since one of those gentlemen that keep a lance in the lance-rack, an old buckler, a lean hack, and a greyhound for coursing. An olla of rather more beef than mutton, a salad on most nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so extra on Sundays, made away with three-quarters of his income.

Antes de que nadie se lleve las manos a la cabeza, insisto en lo que he mencionado más arriba: son los 100 libros más descargados. El Proyecto Gutenberg también dispone de la versión original en castellano. Pero si el Quixote acumula más del doble de descargas que el Quijote, la culpa no es del Proyecto Gutenberg.

Y sí, están el Drácula de Stoker, La metamorfosis y El proceso de Kafka y (solo) dos de los cinco volúmes de las obras completas de Poe. Y Wells. Y Anna Karenina. Y Moby Dick. Y El corazón de las Tinieblas. Y El retrato de Dorian Gray. Y Madame Bovary. Ah, y el Kama Sutra, para que no se nos olvide nada. Personalmente, y si pudiera elegir, añadiría a Proust, La vida es sueño, algunas cosas de Hemingway, Fitzgerald, Steinbeck… Lovecraft… ¡Dinesen, claro!… Y los rusos… algo más de Verne… Y claro, todo el romanticismo español. Pero también Zola. Y Víctor Hugo. Qué difícil es elegir. Pero por razones que no vienen al caso, me gustaría poder volver a escuchar al menos la obertura de la Cavalleria Rusticana de Mascagni, el Moonriver cantado por Audrey Hepburn, November Rain de Guns N’ Roses, el Ecstasy of Gold/Call of Ktulu/Master of Puppets de Metallica, Janie Jones de los Clash y Ceremony de Joy Division. Y el Script of the Bridge completo de los Chameleons. Habría muchísimos más. Pero con esto creo que bastaría para entretenerme mientras espero el fin.

¿Fabricamos una célula humana o viajamos a Alfa Centauri?

Hoy en día, obtener una célula humana gobernada por un genoma sintético está tan al alcance de nuestra tecnología como viajar a Alfa Centauri. Y no digamos ya un “ser humano de laboratorio”, como se está publicando por ahí. Esto es hoy tan viable como fabricar los androides de la saga Alien, o los robots de Inteligencia Artificial. O para el caso, construir la Estrella de la Muerte.

Una célula de piel humana (queratinocito). Imagen de Torsten Wittmann, University of California, San Francisco / Flickr / CC.

Una célula de piel humana (queratinocito). Imagen de Torsten Wittmann, University of California, San Francisco / Flickr / CC.

Para quien no sepa de qué estoy hablando, resumo. A mediados del mes pasado, el New York Times divulgó la celebración de una reunión “privada” en la Facultad de Medicina de Harvard, que congregó a unos 150 expertos para debatir sobre la creación de un genoma humano sintético. Solo por invitación, sin periodistas y sin Twitter. Como no podía ser de otra manera, esto inflamó las especulaciones conspiranoicas en internet: los científicos quieren crear seres humanos “de diseño” al margen de la ley y la ética.

Pero para quien sepa cómo suelen funcionar estas cosas, todo tenía su explicación. Aún no se había hecho pública la propuesta formal, que era precisamente uno de los objetivos de la reunión, y que estaba en proceso de anunciarse en la revista Science. No es un caso de conspiración, sino de torpeza: los organizadores deberían haber imaginado cuáles serían las reacciones. Claro que tal vez era eso lo que buscaban; un poco de intriga con fines publicitarios nunca viene mal.

Por fin, la propuesta se publicó en Science el pasado viernes. El llamado Proyecto Genoma Humano – Escritura (PGH-escritura) nace con la idea de impulsar el progreso en la construcción de largas cadenas de ADN. Como dice la propia propuesta, “facilitar la edición y síntesis de genomas a gran escala”.

El objetivo primario del PGH-escritura es reducir más de mil veces los costes de fabricación y ensayo de grandes genomas (de 0,1 a 100.000 millones de pares de bases) en líneas celulares en los próximos diez años. Esto incluirá la ingeniería de genomas completos en líneas celulares humanas y otros organismos de importancia en salud pública y agricultura, o de aquellos necesarios para interpretar las funciones biológicas humanas; es decir, regulación génica, enfermedades genéticas y procesos evolutivos.

La biología sintética marca una nueva era en la ciencia de la vida: después de descubrir, recrear para crear. Naturalmente, esto no implica que ya esté todo descubierto. Pero hoy ya conocemos lo suficiente, y disponemos de la tecnología necesaria, como para hacer lo que el género humano lleva haciendo cientos de miles de años: aprovechar los recursos disponibles para fabricar piezas con las que construir dispositivos. Y quien tenga alguna objeción a esta práctica, que apague de inmediato el aparato en el que está leyendo estas líneas.

Dado que en la célula todo procede del ADN, la biología sintética busca reinventar el genoma. En el primer escalón de esta ingeniería se encuentran las bacterias, organismos simples unicelulares, sin núcleo y con solo un pequeño cromosoma circular, una cinta de ADN unida por sus extremos.

Como conté hace un par de meses, un equipo de investigadores dirigido por el magnate de la biotecnología J. Craig Venter lleva varios años tratando de construir un cromosoma bacteriano cien por cien artificial que sea capaz de dar vida a una bacteria a la que se le ha extirpado el suyo propio. Este es un logro de enorme complejidad técnica, aunque hoy al alcance de la mano.

Pero de la célula procariota, como la bacteriana, a la eucariota, como las nuestras, el salto es cósmico. Nuestras células custodian su ADN en un núcleo enormemente complejo, donde el ADN está enrollado y vuelto a enrollar con la ayuda de unas complicadas estructuras empaquetadoras que lo condensan o lo descondensan según lo necesario en cada momento. Ya expliqué aquí que cada una de nuestras células contiene un par de metros de ADN. A lo largo del ciclo que lleva a la división en dos células hijas, cada cromosoma fabrica una copia de sí mismo, que luego se separa de la original para que cada célula resultante tenga su juego. Y esto para un total de 23 pares de cromosomas dobles. Frente a los 531.000 pares de bases de la bacteria de Venter, el genoma humano tiene unos 3.000 millones; es decir, es más de 5.600 veces más largo.

La idea de construir genomas humanos estaba ya presente antes incluso de lo que ahora tal vez deberá llamarse el Proyecto Genoma Humano – Lectura. En 1997 se publicó el primer microcromosoma humano sintético, un pequeño elemento construido a imagen y semejanza de nuestros cromosomas, con capacidad para añadirse a los normales de la célula. Así que la biología sintética humana lleva ya funcionando más de un par de decenios.

Claro que, por todo lo dicho arriba, la conclusión de muchos investigadores es que el sistema cromosómico humano es demasiado complejo como para que sea posible y merezca la pena recrearlo con nuestro conocimiento actual, por lo que la vía de los cromosomas sintéticos no ha prosperado demasiado. Hoy los esfuerzos se centran más en modificar que en crear: sustituir grandes fragmentos de ADN para corregir, mejorar o investigar. Un campo que lleva también décadas explorándose con diferentes herramientas y bajo distintos nombres, incluyendo el de terapia génica.

Así pues, nada nuevo bajo los fluorescentes del laboratorio. Nada en lo que no se esté trabajando ya en innumerables centros de todo el mundo, sin cornetas ni pregones. ¿En qué se basa entonces la novedad del proyecto? Lo que pretenden los investigadores es crear un marco que permita estructurar nuevas colaboraciones y concentrar recursos, para que sea posible sintetizar y manejar fragmentos de ADN cada vez más grandes. En un futuro no muy lejano, es concebible que se llegue a disponer de genotecas sintéticas (en el argot llamadas librerías, aunque sería más correcto hablar de bibliotecas) del genoma humano completo: todo el ADN de los 24 tipos de cromosomas humanos (22 autosomas, más el X y el Y) construido a partir de sus bloques básicos y repartido en trozos en diferentes tubitos, en un formato que permita utilizar grandes fragmentos como piezas de recambio.

Pero olvídense de la idea de una célula humana funcionando con un genoma “de laboratorio”. Esto es ciencia ficción y continuará siéndolo durante muchos años. Y los replicantes son hoy algo tan lejano como Alfa Centauri. ¿Y por qué Alfa Centauri? No es un ejemplo elegido al azar. Mañana lo explicaré.

¿Qué ocurrirá cuando puedan resolverse viejos crímenes prescritos?

Existe una película de hace unos años protagonizada por los muy admirables Hilary Swank y Sam Rockwell, y dirigida por Tony Goldwyn, el malo de Ghost. He tenido que recurrir a Google porque no recordaba el título, y poco importa: nada más plano y aburrido que los títulos de las películas de abogados. A esta le pusieron Conviction, en España Betty Anne Waters.

Si no recuerdo mal, Swank interpreta a una camarera y madre que se embarca en el peliagudo empeño de estudiar leyes y convertirse en abogada para liberar de prisión a su hermano (Rockwell), condenado a cadena perpetua por un asesinato del que ella le cree inocente. Me disculpo por el spoiler: al final, y después de una angustiosa carrera por recuperar las pruebas físicas del caso, consigue que su hermano quede exonerado gracias a los tests de ADN, que aún no se habían inventado cuando se cometió el delito.

Retrato robot del asesino de Eva Blanco. Imagen de Guardia Civil.

Retrato robot del asesino de Eva Blanco. Imagen de Guardia Civil.

Ayer conocimos la detención del asesino de la niña Eva Blanco, 18 años después del crimen. La sociedad se ha maravillado, han llovido las felicitaciones a la Guardia Civil y se ha elogiado su incansable trabajo callado durante casi dos decenios en un caso ya frío. Y desde luego que no voy a poner en duda tales merecimientos; pero es capital subrayar –me ciño a las informaciones publicadas– que la resolución satisfactoria del caso no ha sido el producto de 18 años de trabajo, sino solo de uno, el último.

Según cuentan hoy los medios, hace un año el Instituto de Ciencias Forenses de la Universidad de Santiago de Compostela, en colaboración con el Servicio de Criminalística de la Guardia Civil, reanalizó las muestras de ADN halladas en su día en la ropa de Eva. El examen concluyó que los restos biológicos pertenecían a una persona magrebí. Con este dato, la Guardia Civil rastreó el padrón de Algete, seleccionó a los más de 1.000 sospechosos y se fijó en uno que había abandonado la localidad poco después del crimen, pero que aún tenía un hermano viviendo en ese pueblo. A este hermano le practicaron pruebas de ADN, y ¡bingo!

Tal vez alguien se pregunte por qué este análisis de ADN no se realizó hace 18 años. Y la respuesta está en la película de Swank y Rockwell: hace 18 años no podía conocerse el origen geográfico de una persona por su ADN.

Las pruebas forenses de ADN se desarrollaron y comenzaron a aplicarse a la criminología en 1985. Aunque el genoma de todos los humanos es enormemente uniforme, existen pequeñas regiones cromosómicas llamadas minisatélites y microsatélites que varían enormemente entre las personas, pero que son más similares entre los individuos emparentados. Este tipo de análisis es el que se emplea rutinariamente en perfiles de ADN y pruebas de paternidad, y el que probablemente ha servido para pescar al asesino de Eva a partir de la muestra de su hermano.

Pero existe otro tipo de análisis diferente que es mucho más reciente, y que ha podido desarrollarse gracias a iniciativas como el Proyecto Genográfico, lanzado en 2005 por National Geographic y la compañía IBM. Consiste en reunir muestras genéticas de amplias poblaciones humanas y leer las secuencias de dos segmentos concretos, el ADN mitocondrial y el cromosoma Y. El primero se hereda por línea materna y es el ADN rebelde de la célula, el único que no se encuentra en el núcleo sino en las mitocondrias, las centrales energéticas de las células. El segundo se transmite de padre a hijo varón; dado que solo se hereda una copia, su secuencia no se ve alterada por el intercambio de fragmentos entre los pares de cromosomas que se reciben por vías paterna y materna.

En otras palabras: el ADN mitocondrial y el cromosoma Y no varían (o varían poco) dentro de un grupo emparentado, pero sí lo hacen poco a poco en una escala de tiempo histórica, por lo que es posible relacionar secuencias tipo, llamadas haplogrupos, con orígenes étnicos y geográficos concretos. Para ello no solamente fue necesario reunir una extensa colección de muestras, sino además desarrollar herramientas bioinformáticas complejas que permitieran el tratamiento de los datos.

Este tipo de análisis es, supongo, el que ha permitido al Instituto de Ciencias Forenses de Santiago asignar el ADN del sospechoso sin identificar a un haplogrupo originario del Magreb. Y el resto es historia. Así que vaya desde aquí mi felicitación, aunque sea la única, no solo a los magníficos profesionales del Instituto gallego, sino a todos los genetistas de poblaciones, paleoantropólogos moleculares y bioinformáticos que han participado en este progreso científico. Gracias y enhorabuena.

Claro que todo esto tiene un corolario. La semana pasada, un estudio publicado en PeerJ revelaba que cada humano produce, y viaja acompañado por, su propia nube personal de microbios, única e intransferible, compuesta por microorganismos de la piel, la boca y otros orificios corporales. Aunque en principio el hallazgo no sería aplicable a la resolución de un crimen, a no ser que este se produzca dentro de una cámara estéril, el avance ilustra cómo la peculiaridad de que cada uno llevemos puesto nuestro propio reino de microbios –lo que se conoce como microbioma humano– no solo está revolucionando la biología y la medicina, sino que también podría encontrar aplicaciones en la ciencia forense.

Se está avanzando también en otras líneas, como la determinación del fenotipo a partir del genotipo, o los rasgos físicos de una persona conociendo su ADN, y hoy es posible saber en qué región geográfica vivió alguien y qué comía a partir de los isótopos de sus dientes y huesos, algo que se aplicó en la identificación de los restos del rey Ricardo III de Inglaterra.

En resumen, la ciencia avanza en alta velocidad. El problema es que, mientras, la ley viaja en burro. El asesino de Eva podrá recibir lo suyo gracias a que se ha evitado por un par de años el plazo de 20 en el que su crimen habría prescrito. Y no cabe ninguna duda de que dentro de diez años, de veinte y de treinta, la ciencia podrá resolver casos policiales que hoy son callejones sin salida. En países como Estados Unidos, los delitos de asesinato nunca prescriben. Aquí, y a menos que los barandas de turno decidan subirse al tren y hacer algo al respecto, lo más probable y lamentable es que otras muchas Evas quedarán sin recibir justicia.

Cómo empaquetar varios metros de ADN sin un solo nudo

Cada célula de un organismo contiene su genoma completo. Sin necesidad de fijarnos en genomas mayores (que los hay, y posiblemente mucho mayores), quedémonos con los más de dos metros de ADN que contiene cada una de nuestras células. Por supuesto, esta longitud total no es continua, sino que está distribuida en 46 cromosomas; pero cada cromosoma sí consiste en una sola hebra de ADN, y todos ellos comparten el minúsculo espacio del núcleo de la célula, invisible a simple vista.

Cromosomas humanos en metafase. Imagen de Jane Ades, NHGRI / Wikipedia.

Cromosomas humanos en metafase. Imagen de Jane Ades, NHGRI / Wikipedia.

De entre todos los misterios de la biología, uno de los más asombrosos es la capacidad de la célula de empaquetar varios metros de ADN en un volumen tan ínfimo. La imagen más popular de los cromosomas como longanizas dobles unidas por el centro solo existe durante una etapa muy concreta del ciclo celular llamada metafase. Este es el máximo grado de condensación de los cromosomas cuando se va a producir la división de la célula, del mismo modo que empaquetamos nuestras pertenencias para una mudanza. Pero durante el resto del tiempo, los cromosomas están más o menos desempaquetados, porque la secuencia de ADN que contienen debe permanecer utilizable.

Imaginemos esas antiguas salas de códigos de la Segunda Guerra Mundial, con numerosas hileras de pupitres ocupados por descifradores que continuamente leían tiras de papel con caracteres impresos. El núcleo celular es algo parecido, pero esas larguísimas tiras de ADN deben conservarse perfectamente ordenadas, sin romperse ni anudarse.

Todo el que haya tenido que dedicar un rato a desembrollar cables puede imaginar lo que esto supone. Si el año anterior no tuvimos la precaución de guardar las luces de Navidad con un cierto orden, al abrir la caja encontraremos una maraña compacta plagada de nudos. Esto tiene un nombre en física: se conoce como glóbulo de equilibrio. Rescatando los conceptos de mínima energía y entropía que venimos manejando los últimos días, el glóbulo de equilibrio es una configuración de gran desorden (entropía elevada) y mínima energía, motivo por el que surge de forma natural.

Pero parece claro que un glóbulo de equilibrio no sería la configuración ideal para el ADN en la célula, dado que dificultaría enormemente el empaquetamiento reversible y la posibilidad de mantener la secuencia siempre disponible. Empaquetar el ADN en la célula es un proceso enormemente complicado en el que intervienen unas proteínas llamadas histonas. El complejo que forma el ADN con las histonas, como un collar de cuentas, se llama cromatina; esta se enrolla como uno de los antiguos cables de teléfono y luego se vuelve a enrollar para empaquetarse en los cromosomas de la metafase, listos para la mudanza.

Izquierda, un glóbulo de equilibrio. Derecha, un glóbulo fractal que forma territorios. Imagen de L. Mirny, Chromosome research.

Izquierda, un glóbulo de equilibrio. Derecha, un glóbulo fractal que forma territorios. Imagen de L. Mirny, Chromosome research.

Pero ¿qué tipo de forma física adopta la cromatina para permanecer utilizable? Algunos científicos piensan que su configuración es lo que se conoce como glóbulo fractal. El término fractal fue acuñado en 1975 por el matemático nacido en Polonia Benoit Mandelbrot. La geometría fractal consiste en formas que tienen la peculiaridad de repetir estructuras similares a gran escala y a pequeña escala; a primera vista parecen irregulares, pero en realidad siguen un patrón que puede describirse con algoritmos matemáticos. De forma limitada, la geometría fractal aparece también en la naturaleza: ejemplos clásicos son las hojas de los helechos y otros sistemas ramificados, como los bronquios pulmonares o los vasos sanguíneos.

Ejemplo de camino hamiltoniano en un dodecaedro. Imagen de Christoph Sommer / Wikipedia.

Ejemplo de camino hamiltoniano en un dodecaedro. Imagen de Christoph Sommer / Wikipedia.

El glóbulo fractal es una de estas estructuras. Su aspecto general es el de un bloque de noodles de los que se venden secos para meter en agua. Esta estructura tiene la peculiaridad de que consigue un empaquetamiento máximo en el mínimo espacio manteniendo lo que se llama un camino hamiltoniano; es decir, que si seguimos el hilo del ADN, nunca pasamos dos veces por el mismo punto, ya que la hebra nunca se cruza y, por tanto, no hay nudos. Es un caso de la denominada curva de Peano, que llena un plano sin cruces; su aspecto es parecido a los laberintos de las revistas de crucigramas, pero en una estructura regular que se repite a mayor escala: glóbulos de glóbulos de glóbulos. Este tipo de glóbulo sería coherente con el hecho observado de que, cuando la cromatina está desempaquetada, cada cromosoma mantiene una especie de territorio; en el glóbulo de equilibrio esto no sucedería, sino que todos estarían mezclados a lo largo y ancho del volumen que ocupa el núcleo celular.

El glóbulo fractal fue propuesto por primera vez en 1988 como un modelo teórico por el físico ruso Alexander Grosberg, hoy en la Universidad de Nueva York. En 2009, científicos de las Universidades de Harvard y Washington y del Instituto Tecnológico de Massachusetts publicaron en Science la primera prueba que apoyaba el modelo del glóbulo fractal.

Curva fractal de Peano. Imagen de António Miguel de Campos / Wikipedia.

Curva fractal de Peano. Imagen de António Miguel de Campos / Wikipedia.

Investigadores de la Universidad Estatal Lomonosov de Moscú han aportado una prueba más de que la cromatina puede formar glóbulos fractales y funcionar para sus cometidos celulares. Los científicos han logrado modelar una cadena de ADN de un cuarto de millón de unidades utilizando el supercomputador Lomonosov. Según su estudio, publicado en la revista Physical Review Letters, el glóbulo fractal ofrece una estructura muy estable que proporciona una dinámica más rápida que el glóbulo de equilibrio, lo que facilitaría la disponibilidad del ADN para su uso.

Una estructura de glóbulo fractal, como 'noodles' secos'. Imagen de L. Nazarov.

Una estructura de glóbulo fractal, como ‘noodles’ secos. Imagen de L. Nazarov.

Con todo esto queda ilustrado el inmenso grado de orden que existe dentro de una célula; tanto que algunos investigadores han propuesto que esta característica de los seres vivos, la capacidad de mantener un gran orden interno a costa de desordenar su entorno, podría servir para identificar formas de vida en otros planetas que sean muy diferentes a lo que conocemos aquí.

“Con independencia del tipo de forma de vida de que pudiera tratarse, todas deben tener en común el atributo de ser entidades que reducen su entropía interna a costa de la energía libre obtenida de su entorno”, escribían en 2013 los chilenos Armando Azua-Bustos y Cristian Vega-Martínez en la revista International Journal of Astrobiology. “Mostramos que tan solo usando análisis matemático fractal uno podría cuantificar rápidamente el grado de diferencia de entropía (y, por tanto, su complejidad estructural) de procesos vivos (en este caso, crecimientos de líquenes y patrones de crecimiento de plantas) como entidades distintas separadas de su entorno abiótico similar”. Los investigadores proponían que se incluyan estos criterios en la búsqueda de vida en otros lugares del Sistema Solar.

Así pues, esta serie sobre la entropía de los seres vivos nos lleva finalmente a que este concepto podría convertirse en un criterio clave para la búsqueda de vida alienígena. Pero si están a punto de marcharse de vacaciones, tal vez simplemente hayan descubierto que un equipaje bajo en entropía consumirá más energía libre para prepararlo, pero ocupará menos espacio y quedará más fácilmente utilizable.

¿Somos chimpancés en un 99% de nuestro ADN? Ni de lejos

El 1 de septiembre de 2005, un gran consorcio internacional de investigadores publicaba en la revista Nature el primer borrador del genoma del chimpancé, un logro muy esperado desde que cinco años antes se anunciara la primera versión del humano, completado en 2003.

Chimpancé ('Pan troglodytes'). Imagen de Frank Wouters / Wikipedia.

Chimpancé (‘Pan troglodytes’). Imagen de Frank Wouters / Wikipedia.

El genoma de nuestro pariente evolutivo vivo más próximo tenía un enorme interés científico, ya que prometía revelar algo de lo que nos hace específicamente humanos, además de ofrecer un dibujo más claro de la cronología evolutiva de dos especies estrechamente emparentadas. Pero entre la selva de datos y resultados que ofrecían el genoma del chimpancé y su comparación con el humano, una sola conclusión triunfó en los medios de todo el mundo, convirtiéndose en una muletilla repetida mil veces: los chimpancés son genéticamente idénticos a nosotros en un 99%.

Pero ¿es cierto?

La respuesta: sí… y no.

Desde el punto de vista de aquello que los científicos analizan al comparar genomas de diferentes especies, sí lo es. Pero si con ello imaginamos que podríamos colocar el texto completo del ADN de ambos genomas uno junto al otro y que solo encontraríamos diferencia en una letra de cada cien… En este caso, ni de lejos.

Imaginemos un Seat 600 de los antiguos y un Ferrari último modelo. ¿En qué medida se parecen? Alguien que entienda de coches, que no es mi caso, probablemente diría que en casi nada. Pero supongamos que nos olvidamos de todo lo que diferencia a ambos modelos y nos fijamos exclusivamente en aquello que comparten: como coches que son, ambos tienen asientos, volante, pedales, espejos retrovisores, palanca de cambios… Desde este punto de vista, ¿cuánto se parecen?

Algo similar es lo que sucede con los genomas de los chimpancés y los humanos. Si nos fijamos solo en aquello que tenemos en común, nos parecemos en un 99%. Pero ¿cómo de relevante es aquello que no tenemos en común?

Para empezar, ni siquiera tenemos el mismo número de cromosomas: 23 en los humanos, 24 en los chimpancés. En nuestro caso, llevamos uno menos porque en algún momento de nuestra evolución se produjo una fusión entre dos cromosomas ancestrales. Pero este no es ni mucho menos el único cambio a gran escala; nuestro genoma y el de los chimpancés se diferencian enormemente en toda la longitud de nuestras secuencias de ADN, con fragmentos eliminados, introducidos, copiados, fragmentados o cambiados de sitio. A la hora de establecer la comparación, ¿cómo cuenta cada uno de estos grandes fragmentos diferentes? ¿Como uno solo? ¿O según el número de bases (letras) de cada uno de estos segmentos distintos?

Para comparar dos genomas, los científicos se centran exclusivamente en aquellas secuencias que pueden alinearse para buscar similitudes. Es decir, en la presencia de asientos, pedales o retrovisores. En su estudio original, los científicos que secuenciaron el genoma del chimpancé no mencionaban ningún 99% de identidad entre ambas especies. En cambio, sí ofrecían otro dato: el 29% de las proteínas homólogas en el humano y en el chimpancé son idénticas.

Dicho de otro modo: de las proteínas que aparecen codificadas en el genoma de ambas especies y que derivan de la misma secuencia ancestral (se denominan ortólogas), más de dos terceras partes son algo diferentes; si bien es cierto que en general esta diferencia se reduce a un solo aminoácido (los eslabones individuales que forman las proteínas). Pero un cambio tan pequeño puede determinar que la proteína resultante actúe de forma distinta o incluso que no funcione en absoluto.

De lo anterior es de donde deriva el dato del 99%, ya que esta es la coincidencia si consideramos solo esas secuencias que pueden alinearse y contabilizamos cada cambio como una diferencia individual dentro de la longitud total. Pero para eso ha habido que dejar fuera 1.300 millones de letras o bases de ADN, ignorando el 18% del genoma del chimpancé y el 25% del nuestro. Con todo esto, llegamos a ese porcentaje mágico: 98,77% de identidad.

Así pues, decir que somos chimpancés en un 99% es una sobresimplificación de la realidad cuyo origen probablemente reside en una sobresimplificación de la información. Una nota de prensa difundida por los Institutos Nacionales de la Salud de EE. UU. con ocasión de la publicación del genoma del chimpancé decía lo siguiente: “La secuencia de ADN que puede compararse directamente entre los dos genomas es casi idéntica en un 99%”. En otras palabras: los genomas de humanos y chimpancés son idénticos en un 99%… en las zonas en que son idénticos en un 99%. La nota original no marcaba en cursiva y negrita, como yo he hecho, una condición imprescindible que debe mencionarse para que la afirmación sea veraz, pero que probablemente estropea un buen titular.

NO hay nuevas pruebas sobre ‘nuestros’ ancestros neandertales

De acuerdo, el título de este artículo parece afirmar justo lo contrario de lo que se está publicando hoy en otros medios. Pero déjenme explicarme. Ante todo, la historia: la edición digital de Nature publica hoy un valiosísimo estudio en el que se cuenta la secuenciación del ADN extraído de una mandíbula humana moderna hallada en 2002 por un grupo de espeleólogos en una cueva de Rumanía llamada Peștera cu Oase, un bonito y sonoro nombre que significa “la cueva con huesos”. El estudio viene dirigido por expertos en ADN paleohumano de talla mundial: Svante Pääbo, director del Instituto Max Planck de Antropología Evolutiva (Leipzig, Alemania) y del proyecto Genoma Neandertal, y David Reich, de la Universidad de Harvard (EE. UU.).

Mandíbula humana de hace unos 40.000 años hallada en la cueva de Pestera cu Oase (Rumanía). Imagen de Svante Pääbo, Max Planck Institute for Evolutionary Anthropology.

Mandíbula humana de hace unos 40.000 años hallada en la cueva de Pestera cu Oase (Rumanía). Imagen de Svante Pääbo, Max Planck Institute for Evolutionary Anthropology.

Hoy un yacimiento paleoantropológico se trata con el cuidado y esmero de los CSI en la escena del crimen, con el fin de evitar la contaminación de las muestras con ADN humano actual. Pero la mandíbula de la cueva rumana debió de pasar por tantas manos que para los científicos ha sido extremadamente complicado llegar a extraer material genético original del hueso, eliminando todas las contaminaciones microbianas y humanas.

Sin embargo, en este caso el minucioso trabajo merecía la pena, ya que la datación por radiocarbono de este hueso lo situaba en un momento del pasado especialmente crucial: entre 37.000 y 42.000 años atrás; es decir, en la época en que neandertales y sapiens convivían en Europa. Los primeros, nativos europeos, surgieron hace más de 300.000 años y desaparecieron hace unos 40.000 por razones que siempre seguirán discutiéndose. Los segundos, africanos de origen, llegaron a este continente entre 35.000 y 45.000 años atrás. Si pudierámos viajar al pasado, a hace más de 45.000 años, caeríamos en una Europa habitada exclusivamente por neandertales. Por el contrario, si fijáramos el dial de la máquina a hace menos de 35.000, encontraríamos solo humanos modernos. Así que el propietario original de la mandíbula rumana es nuestro hombre; más aún cuando se trata de un hueso claramente sapiens, pero con ciertos rasgos casi neandertales.

Un investigador manipula el hueso hallado en Rumanía. Imagen de Svante Pääbo, Max Planck Institute for Evolutionary Anthropology.

Un investigador manipula el hueso hallado en Rumanía. Imagen de Svante Pääbo, Max Planck Institute for Evolutionary Anthropology.

Esto es especialmente relevante porque los científicos podían pillar casi in fraganti a sapiens y neandertales en el momento en que surgió la chispa del romance entre ambos (y ¿por qué no?; al fin y al cabo, la hipótesis de las violaciones tampoco tiene ninguna prueba a su favor). Sabemos que los humanos actuales de origen no africano llevamos entre un 1 y un 3% de ADN neandertal en nuestros cromosomas. Pero hasta ahora no existían pruebas de que este intercambio de cromos llegara a producirse en suelo europeo, sino que más bien debió de tener lugar en Oriente Próximo hace entre 50.000 y 60.000 años.

Pues bien: to cut a long story short, el ADN original de la mandíbula rumana resulta tener un 6-9% de neandertal, mucho más que cualquier otro humano moderno conocido hasta ahora. Es más; la estimación de los científicos sugiere que el individuo en cuestión tenía antepasados neandertales entre cuatro y seis generaciones atrás. Es decir, que el propietario original de la mandíbula pudo tener tatarabuelos neandertales, y la aportación genética de sus ancestros aún estaba muy fresca.

Así, el estudio aporta una nueva prueba del cruce entre humanos modernos y neandertales, la pista más concluyente hasta ahora, y la primera demostración genética de que esta mezcla de sangres tuvo lugar en Europa. Lo cual ya parece dejar pocas dudas, si es que queda alguna, de que sapiens y neandertales llegaron a intimar y a dejar descendencia.

Pero…

Otra cosa, y a esto se refiere el título del artículo, es que esta descendencia fuera nuestra ascendencia, y la respuesta es que no. Repito que el legado neandertal en nuestros genes está suficientemente justificado. Pero por desgracia, ninguno de los europeos somos descendientes de aquel rumano tataranieto de neandertales; de hecho, genéticamente se parece más a los asiáticos orientales o a los nativos americanos que a los europeos. Por desgracia, el linaje de aquel individuo se extinguió. Según dice Reich en una nota de prensa, “es una prueba de una ocupación inicial de Europa por humanos modernos que no originaron la población posterior. Puede haber sido un grupo pionero de humanos modernos que llegó hasta Europa, pero que fue después reemplazado por otros grupos”. Así que la historia de nuestros ancestros neandertalizados sigue tan oscura como antes.

Dicho todo lo anterior, y dejando ya el estudio, es posible que algún lector se haya hecho el siguiente razonamiento: si llevamos un 1-3% de ADN neandertal, ¿significa que el resto de nuestro material genético es diferente? ¿Cómo es posible, si suele decirse que compartimos un 99% de nuestro ADN con los chimpancés? Si usted se ha hecho esta pregunta, ya se habrá figurado que ciertas cosas se han contado mal. Y es que, como explicaré mañana, la idea de que somos en un 99% genéticamente idénticos a los chimpancés es sencillamente una gran tontería.

Se abre el debate: por primera vez corrigen genes en un embrión humano

Acaba de producirse uno de esos hitos de la biotecnología que solo se cuentan a razón de uno por década, o así, pero que en sus repercusiones teóricas podría situarse a la altura de los antibióticos o de las vacunas. Teóricas, porque difícilmente va a aplicarse en un plazo que podamos prever: a fecha de hoy, si un científico occidental lo hiciera, sería reprobado dentro y fuera de su profesión, y en algunos países podría acabar en la cárcel. Pero China, como sabemos, no se distingue precisamente por su liderazgo ético en el mundo, y muchas cuestiones que en occidente plantean debates morales allí solo significan retos técnicos.

Fertilización in vitro de un óvulo humano. Imagen de Eugene Ermolovich (CRMI) / Wikipedia.

Fertilización in vitro de un óvulo humano. Imagen de Eugene Ermolovich (CRMI) / Wikipedia.

Ante todo, una aclaración esencial: los investigadores chinos no han descubierto nada, y su experimento está a años luz de poder calificarse como éxito. Así pues, si no hay hallazgo revolucionario, si los resultados son mediocres, y si además todo el asunto es éticamente discutible, ¿cómo puede tratarse de algo equiparable a los antibióticos o a las vacunas? La respuesta es que, si un oportuno debate concluyera en la aprobación pública de estos procedimientos, y estos pudieran perfeccionarse para garantizar una eficacia y una limpieza a la altura de los estándares clínicos, desaparecerían del mundo todas aquellas enfermedades congénitas hereditarias cuyos genes responsables han podido identificarse; es decir, la mayoría de lo que conocemos como enfermedades raras.

El término clave es edición genómica embrionaria. Es decir, cortar los genes defectuosos en un embrión y reemplazarlos por versiones sanas. Se trata de un procedimiento de corta-pega molecular, no muy lejano en su concepto a lo que hacían los montadores de cine cuando las películas se rodaban en película. Para aplicarlo a algo tan pequeño como una cadena de ADN, es necesario disponer de unas tijeras infinitamente pequeñas y precisas.

Durante décadas, los biólogos moleculares han utilizado distintos sistemas para corta-pegar genes. La biotecnología nació gracias al descubrimiento de las enzimas de restricción, proteínas que las bacterias emplean como sistemas de defensa frente a virus y que son capaces de reconocer y cortar secuencias específicas de ADN. Hoy se comercializan más de 600 enzimas de restricción distintas, que en los laboratorios se emplean como herramientas de rutina para elaborar construcciones genéticas a voluntad con la contribución de un segundo tipo de elementos: las ligasas, que pegan los bordes cortados. A las enzimas de restricción se han ido sumando otros sistemas más sofisticados como las llamadas nucleasas de dedos de cinc, enzimas artificiales que pueden diseñarse para reconocer y cortar secuencias específicas con mayor precisión que los sistemas bacterianos naturales.

A finales del siglo XX, cuando las nuevas tecnologías facilitaron la secuenciación de genomas a granel, los científicos se dieron cuenta de que muchas bacterias poseían unas extrañas marcas comunes en su ADN: cinco fragmentos repetidos de 29 bases (las letras del ADN), separados por espaciadores de 32 bases y secuencia variable. O sea, y haciendo un símil con un sándwich: pan – queso – pan – chorizo – pan – jamón – pan – mortadela – pan. Los investigadores no tenían la menor idea de qué significaban, pero en 2002 se les puso un nombre: CRISPR, siglas en inglés de Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas; una denominación puramente descriptiva sin ninguna alusión a una función que por entonces era desconocida.

Por abreviar, más tarde se descubrió que los espaciadores variables –el relleno entre cada dos panes– son secuencias de ADN de virus que atacan a las bacterias, fragmentos que estas atrapan de sus invasores para guardar de ellos una especie de huella dactilar que les ayude a reconocerlos y combatirlos en el futuro. Es decir: cuando una bacteria sufre la agresión de un virus, corta pedazos de su ADN y los archiva en sus CRISPR. Más adelante, si el mismo virus ataca de nuevo, unas enzimas llamadas Cas que trabajan en equipo con los CRISPR se encargarán de reconocer estas huellas para cortar esas secuencias y neutralizar así al invasor.

Como ocurrió antes con las enzimas de restricción, de inmediato los biólogos reconocieron el enorme potencial del sistema CRISPR/Cas9 para construir y modificar secuencias genéticas a voluntad, y en solo unos años este campo se ha convertido en uno de los más calientes y prometedores de toda la biología experimental. Desde la ciencia básica hasta la terapia genética, desde la mejora de cosechas a la clonación de mamuts, las aplicaciones de CRISPR/Cas9 son tan incontables que el hallazgo podría valer un Nobel, tal como en 1978 se premió a los descubridores de las enzimas de restricción.

Llegamos así a lo nuevo. Investigadores de la Universidad Sun Yat-sen de Guangzhou (China) han sido los primeros en atreverse a aplicar el sistema CRISPR/Cas9 para editar genes en un embrión humano, una utilidad que ya muchos habían vaticinado pero sobre la que aún no existe un consenso ético. Es imprescindible subrayar, con triple subrayado, que los científicos chinos han empleado embriones NO viables con tres juegos de cromosomas en lugar de los dos normales. Estos embriones triploides se producen durante la fertilización in vitro cuando un óvulo queda fecundado por dos espermatozoides. Recordemos que la presencia de un solo cromosoma de más ocasiona graves alteraciones, como sucede en el síndrome de Down. Un embrión con un triple juego de cromosomas no es de ninguna manera viable.

Para ensayar la edición genómica, los investigadores eligieron el gen de la β-globina (HBB), cuyo producto es una proteína de la hemoglobina cuyas alteraciones causan enfermedades como la anemia falciforme o la beta-talasemia. Pero como ya he señalado al comienzo, no se puede decir que el experimento haya sido un éxito. El sistema CRISPR/Cas9 logró extraer quirúrgicamente el gen HBB en aproximadamente la mitad de los embriones supervivientes analizados, pero solo en pocos casos consiguió reparar la brecha con la secuencia de reemplazo. Aún peor, los científicos observaron que en varios casos la enzima cortó donde no debía y que algunas de las brechas se rellenaron empleando erróneamente otro gen parecido como modelo, el de la delta-globina (HBD), causando mutaciones aberrantes.

En resumen, un pequeño desastre. El propio director del estudio, Junjiu Huang, reconoció a Nature News que no prosiguieron más allá porque el sistema “todavía es demasiado inmaduro”. “Si quieres hacerlo en embriones normales, necesitas acercarte al 100%”, dijo Huang. El investigador asegura que su estudio fue rechazado por Nature y Science debido al conflicto ético que plantea, pero lo cierto es que la calidad de los resultados conseguidos difícilmente superaría los exigentes filtros de estas revistas.

En su lugar, el trabajo se ha publicado en la revista Protein & Cell, de índice de impacto más discreto. Pero no cabe duda de que el impacto del estudio será mucho mayor de lo que merecerían los logros aportados, y que su eco se extenderá mucho más allá de las paredes de los laboratorios. Como suele decirse vulgarmente, el experimento de los investigadores chinos ha abierto un melón, y ahora habrá que discutir sobre qué hacer con él.

ADN, el disco duro del futuro (II)… que durará dos millones de años

Esta es la gran paradoja de la información en la era digital: es imposible borrar nuestro rastro en internet, por mucho que nos empeñemos en lograrlo. Y sin embargo, podemos perder fácilmente nuestros archivos para siempre a causa de un error o una avería. Es más: ningún soporte físico digital está concebido para durar más de medio siglo. Ni discos duros, ni CD, ni DVD, ni memoria flash. Ninguno.

En cambio, conservamos códices medievales que han perdurado cientos de años, y que perdurarán cientos de años más. Tenemos manuscritos que han sobrevivido durante milenios. ¿De qué sirve digitalizar las pinturas de Altamira, si la versión digital deberá cambiarse de soporte sucesivamente para que no desaparezca, mientras el original pervivirá sin que nadie lo toque (especialmente si nadie lo toca)? ¿Acaso creemos que al digitalizar una obra antigua la estamos perpetuando?

De todo lo anterior podríamos llegar a deducir que el soporte del futuro no es otro que el papel. ¿Sorpresa? ¿Absurdo?

Pero el papel puede mojarse, quemarse o ser pasto de los bichos. Una pequeña trampa en el argumento anterior es que, en realidad, se supone que solo conservamos una pequeña parte de todo el papel que jamás se ha escrito o impreso. La inmensa mayoría se ha perdido.

Lo cierto es que, para descubrir mejores soportes de información que el papel y la electrónica, nada mejor que echar una mirada a nuestro entorno natural. La tecnología actual nos permite acceder a información que la naturaleza ha preservado durante cientos de miles de años, en forma de ADN en huesos fósiles. El investigador del Instituto Federal Suizo de Tecnología en Zúrich (ETH) Robert Grass lo explica así a Ciencias Mixtas: “Los libros más antiguos que conocemos tienen más de 1.000 años, y los jeroglíficos se han almacenado en la piedra durante varios miles de años. Este es un plazo largo, pero todavía corto si lo comparamos con los datos que podemos construir a partir del ADN de huesos arqueológicos, que llega hasta los 700.000 años de antigüedad”. Grass se refiere al logro de un equipo de investigadores de la Universidad de Copenhague (Dinamarca), que en julio de 2013 publicó en Nature la secuenciación del genoma de un caballo del Pleistoceno a partir de un hueso conservado en el permafrost de Canadá durante más de medio millón de años.

Ilustración artística del uso de ADN fósil. Imagen de Philipp Stoussel / ETH Zurich.

Ilustración artística del uso de ADN fósil. Imagen de Philipp Stoussel / ETH Zurich.

Grass se planteó el reto de conseguir lo mismo por una técnica artificial; fabricar un fósil capaz de conservar ADN intacto durante tanto tiempo que los procedimientos actuales de almacenamiento de información a largo plazo quedaran ampliamente sobrepasados. La respuesta fue el cristal: encapsular el ADN en esferas de sílice de unos 150 nanómetros, 0,15 milésimas de milímetro. Una vez construidos estos fósiles, y para analizar su durabilidad, Grass y sus colaboradores incubaron las partículas durante un mes a 60 o 70 ºC, lo que simula la degradación química que sufrirían a lo largo de cientos de años. Una vez terminado el tratamiento, los investigadores extrajeron el ADN de su caparazón de arena empleando soluciones de fluoruro como las que se utilizan en el grabado químico, para finalmente leer las secuencias y comprobar su integridad.

A partir de sus resultados, y comparándolos con la dinámica de degradación del ADN en el hueso, los investigadores han estimado cuánto tiempo podrían sobrevivir las muestras siendo aún legibles. Según exponen en su estudio, publicado en la revista Angewandte Chemie, a las temperaturas de Zúrich el ADN se conservaría durante 2.000 años, que aumentarían hasta 100.000 en el lugar más frío de Suiza. Pero si las esferas de sílice se almacenaran en el Banco Mundial de Semillas de Svalbard, una instalación subterránea en Noruega que se mantiene a -18 ºC, el ADN podría durar “más de dos millones de años”, escriben los científicos.

Claro que todo esto no tendría sentido si no fuera para conservar información que podamos codificar a voluntad en el ADN. En mi anterior post expliqué la aproximación más rudimentaria al uso del ADN como lenguaje, traducir la secuencia a proteína y utilizar los aminoácidos como alfabeto de 20 letras. Pero este método solo permite codificar textos; para ampliar sus aplicaciones a cualquier tipo de información, es esencial emplear código binario, el idioma en el que se escriben los archivos digitales. Como conté anteriormente, un grupo de jóvenes investigadores chinos presentó un sistema en 2010, pero no es el único. Ya en 1996 se publicó un método ideado por un interesante personaje llamado Joe Davis, conocido como el “científico loco” del Instituto Tecnológico de Massachusetts (MIT).

Davis ha desarrollado su carrera a caballo entre el arte y la ciencia, siempre en la frontera de la originalidad y la innovación. En la década de 1980, tuvo la idea de introducir en una bacteria una obra de arte digitalizada. Para ello creó Microvenus, un símbolo rúnico que es también una representación simplicada de los genitales femeninos. Lo que Davis hizo fue inspirarse en el sistema empleado por Carl Sagan y Frank Drake en el mensaje de Arecibo, una señal de radio lanzada al espacio en 1974: convertir el gráfico en un panel de ceros y unos, y luego encadenar las líneas para transformarlo en un código lineal. Para ello, era necesario que las dimensiones del gráfico original fueran el producto de dos números primos, con el fin de que su reconstrucción en 2D fuera unívoca. A continuación, Davis tradujo el código binario en bases de ADN empleando una equivalencia con un sistema de compresión y añadiendo la clave al comienzo del mensaje.

El icono Microvenus y su codificación en ADN. Nótese que su traducción gráfica a código binario se realiza en un panel de 5x7, ambos números primos. Imagen de Joe Davis / JSTOR Art Journal.

El icono Microvenus y su codificación en ADN. Nótese que su traducción gráfica a código binario se realiza en un panel de 5×7, ambos números primos. Imagen de Joe Davis / JSTOR Art Journal.

La segunda gran aportación del estudio de Grass es un nuevo sistema de codificación que extiende y mejora la idea de Davis. El investigador del ETH y sus colaboradores han creado un método que toma los caracteres de un texto de dos en dos, pero tratándolos como si cada uno fuera un byte (ocho bits), lo que permite aplicarlo a cualquier tipo de archivo digital. El siguiente paso es transformar el conjunto de dos bytes en base 256 (256²=65.536) en un triplete en base 47 (47³=103.823). ¿Y por qué en base 47? Muy sencillo: es necesario asignar a cada triplete de ADN (ver mi post anterior) un número distintivo para hacer la conversión. Como secuenciar y leer cadenas de ADN con muchas bases repetidas (como GGGGGGGGGG o TTTTTTTTTTT) aumenta las posibilidades de error, los científicos se quedaron solo con los tripletes en los que la segunda y la tercera base son distintas; así, AAC es válido, pero CAA no. De este modo, reducen las repeticiones a un máximo de tres: AAC CCG. Con esto, de los 64 tripletes posibles (variaciones con repetición de cuatro elementos tomados de tres en tres), se quedan solo con 48. Pero como el campo bidimensional de valores debe basarse en un número primo, eligieron el más próximo, 47.

Así, cada par de caracteres o bytes queda transformado en un trío de números del 0 al 46, los cuales a su vez se corresponden con tripletes de ADN. Pero para corregir los errores debidos a la degradación del ADN, la síntesis o la lectura, los investigadores introdujeron redundancias de datos mediante códigos de Reed-Solomon, herramientas muy utilizadas, por ejemplo, en comunicaciones espaciales y en la grabación de soportes digitales como discos duros y CD. Para entender cómo funcionan estos códigos, podemos pensar en los bits de paridad empleados antiguamente para transmitir código ASCII; un carácter ASCII se codifica en siete bits binarios (0/1), pero solía introducirse un octavo bit, llamado de paridad, que tomaba el valor de 0 o 1 según la suma del resto de bits iguales a 1 fuera par o impar. De este modo, se incorporaba un valor de comprobación para detectar errores en la transmisión. Otro ejemplo es el dígito de control de los números de las cuentas bancarias. Los códigos Reed-Solomon son más complejos, pero se inspiran en un principio similar.

Empleando este sistema, los científicos codificaron dos textos, la versión en latín del Pacto Federal de 1291 que daba forma a la primera confederación suiza, y la traducción inglesa de El Método de los teoremas mecánicos perteneciente al Palimpsesto de Arquímedes. Tras la síntesis del ADN codificado, su encapsulación en sílice y el tratamiento térmico, los investigadores encontraron cierto grado de degradación del ADN, pero los códigos Reed-Solomon funcionaron a la perfección para corregir los errores. “Por primera vez, mostramos en experimentos reales que formando fósiles artificiales alrededor de nuestra muestra de ADN, y añadiendo esquemas de corrección de errores a la información almacenada en el ADN, este almacenamiento a largo plazo es posible en la práctica”, concluye Grass.

Los científicos están pensando ya en aplicar su sistema a gran escala. “Estamos concibiendo la creación de una biblioteca de información digital para almacenamiento a largo plazo, pero por el momento es todavía un sueño, y requerirá dinero”, apunta Grass. Sin embargo, otras utilidades no resultan tan lejanas: los investigadores han ensayado el sistema para añadir cápsulas magnéticas fósiles de ADN a modo de marcas de agua genéticas o etiquetas de autenticidad en productos como gasolina, aceites cosméticos o aceite de oliva. Las partículas, que son inalterables y solo pueden retirarse mediante imanes en instalaciones especializadas, introducen un sistema de código de barras genético que sirve para evitar falsificaciones y perseguir el contrabando.

ADN, el disco duro del futuro

Emplear el ADN de un organismo vivo para guardar información ajena a su función biológica no es ciencia-ficción; ya se ha hecho. La bioencriptación es una de las líneas de investigación más innovadoras y divertidas de la biología molecular, pero con claras aplicaciones prácticas. Y es uno de esos ejemplos fronterizos de Ciencias Mixtas que tan bien encajan aquí. Además de ser un tema irresistible para fantasear sobre los avances futuros de la tecnología y cómo cambiarán el mundo que conocemos.

Para explicar cómo, empecemos dejando sentado algo evidente: el ADN es un código. Siempre que hablamos de genes o genomas, nos referimos a ristras de letras (más propiamente, bases) como aquella que daba título a una magnífica película: GATTACA. En este caso, se trata de una secuencia formada por Guanina-Adenina-Timina-Timina-Adenina-Citosina-Adenina. Este ejemplo comprende los cuatro tipos de bases que forman el ADN: G, A, T y C. Para convertir una cadena de ADN a proteína, el producto de los genes, existe una maquinaria celular que lleva a cabo un proceso de transcripción y traducción. En esta última, las bases de ADN se leen de tres en tres, formando tripletes llamados codones. Cada uno de estos tripletes se traduce en un aminoácido, los eslabones de las proteínas. Por ejemplo, en el título de la película tendríamos dos tripletes, GAT-TAC, y nos olvidamos de la A suelta. GAT corresponde al aminoácido llamado ácido aspártico, y TAC se traduce como tirosina.

La secuencia del ADN se puede utilizar para cifrar y conservar mensajes. Imagen de Miki Yoshihito / Flickr / CC.

La secuencia del ADN puede utilizarse para cifrar y conservar mensajes. Imagen de Miki Yoshihito / Flickr / CC.

Por simple combinatoria, las variaciones con repetición de cuatro elementos tomados de tres en tres nos dan un total de 64 codones posibles, pero las proteínas solo están formadas por 20 tipos de aminoácidos distintos. Lo que ocurre es que en muchos casos la tercera base del triplete no influye en la traducción: GCA, GCT, GCC y GCG tienen un mismo significado común, el aminoácido alanina.

Así, cualquier clase de información podría traducirse sobre el papel a una secuencia de ADN con solo inventar un código de equivalencias. La forma más sencilla es utilizar como alfabeto los 20 aminoácidos, dado que cada uno de ellos se abrevia por una letra: el ácido aspártico es D, la tirosina es Y y la alanina es A. El problema es que así obtenemos un alfabeto incompleto en el que faltan las consonantes B, J, X y Z, pero sobre todo dos vocales, O y U.

A pesar de las limitaciones de este sistema, se ha empleado ya para el fin último de todo este tinglado: convertir la secuencia de ADN sobre el papel en una molécula real que conserve el mensaje introducido y que luego pueda ser descodificada. El ejemplo más conocido es el del magnate de la biotecnología J. Craig Venter, que en 2008 incluyó secuencias codificadas en la recreación sintética del genoma de una bacteria llamada Mycoplasma genitalium; entre ellas, su propio nombre: CRAIGVENTER, pero también citas del escritor irlandés James Joyce y de los físicos Richard Feynman y Robert Oppenheimer. Además de su lado recreativo, estas etiquetas genéticas se emplean con un propósito, imprimir una especie de marcas de agua para diferenciar los genomas manipulados. Por ello es una práctica habitual en la producción de organismos transgénicos.

Pero el del alfabeto incompleto no es el único ni el mayor problema de utilizar el código de traducción a proteínas. Por un lado están los errores; los hay en la escritura (síntesis del ADN diseñado) y en la lectura (secuenciación del ADN producido según el diseño), y este sistema no es lo suficientemente robusto para evitarlos. Y lo que es peor, si estos mensajes se incluyen en el genoma de una bacteria como secuencias inertes, fuera de los genes reales que la célula utiliza, la evolución y sus mutaciones irán desfigurando el texto original a lo largo de las generaciones sucesivas hasta un momento en que se volverá ilegible. Por otra parte, el sistema de proteínas es adecuado para cifrar mensajes de texto, mientras que lo ideal sería emplear un código binario que aceptara cualquier tipo de archivo digital.

En 2010, un equipo de investigadores de la Universidad China de Hong Kong presentó un nuevo sistema de bioencriptación en el concurso de biología sintética iGEM del Instituto Tecnológico de Massachusetts. El diseño de los científicos chinos consistía en transformar el texto en caracteres ASCII, que se representan mediante siete bits binarios (0/1). Así, este sistema acepta cualquier tipo de archivo en formato digital. En su día calculé que el método permitiría codificar el texto completo de la Constitución Española en 139.262 bases de ADN, que se repartirían entre 175 bacterias. Los autores del trabajo aportaban el dato de que todos los archivos que caben en 450 discos duros de 2 terabytes podrían almacenarse en solo un gramo de bacterias. Otras estimaciones han propuesto que en medio kilo de ADN podría codificarse toda la información jamás grabada en los ordenadores de todo el mundo. Y todo a prueba de hackers.

Evidentemente, desde el concepto teórico hasta el día en que podamos grabar un vídeo en el genoma de una población de bacterias y luego reproducirlo en un secuenciador-reproductor habrá que saltar unos cuantos abismos tecnológicos. Pero como contaré mañana, el ADN puede esperar. Miles de años, si hace falta.

Continuará…